Cu(Ti,C)/CoCrPt/Cu(Ti)纳米颗粒膜的制备、微结构和磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性薄膜的研究,是磁学领域的研究热点。其研究成果不仅可以直接应用于磁记录、传感器等领域,同时又可以丰富和完善微磁学理论。本论文利用对靶磁控溅射法制备了一系列Cu/CoCrPt/Cu、Ti/CoCrPt//Ti和C/CoCrPt//Ti等铁磁性纳米颗粒膜,并利用VSM、SPM和XRD等对材料的磁特性和微结构进行了研究。得到的结果如下:
     1.用对靶磁控溅射法制备了Cu(x=3,7,11,15nm)/CoCrPt(40nm)/Cu(20nm)系列样品,发现退火和Cu覆盖层厚度对样品的微结构和磁特性有很大影响。530℃退火30min后,CoCrPt薄膜呈六角密积(HCP)结构:当Cu覆盖层厚度为11nm时,垂直矫顽力达到最大H_(C⊥)=1775Oe,平均粒径最小
The research of magnetic granular films is the focus in magnetism field. The achievement was not only applied to the fields of magnetic recording and sensors etc, but also perfected the theory of micromagnetism. Five series granular films were prepared by rf and dc magnetron sputtering onto glass substrates at room temperature. The microstructures of films were examined by X-ray diffraction (XRD). The morphologies and domain structures were observed by scanning probe microscope (SPM). And magnetic properties were measured by vibrating sample magnetometer (VSM).X-ray diffraction profiles show that the CoCrPt magnetic layers are formed as the hexagonal-close-packed (HCP) structure. All samples show a strong perpendicular anisotropy.It has been found that the microstructure and magnetic properties of Cu/CoCrPt/Cu films depend strongly on the Cu overlayer thickness and the magnetic layer thickness. VSM measurements indicate that the out-of-plane coercivity reaches the maximum 1775 Oe and AFM images show the minimum average grain size = 7.8 nm just at 11 nm Cu overlayer thickness. And the out-of-plane coercivity reaches the maximum 1842 Oe, the minimum average grain size = 6.9 nm just when the thickness of magnetic layer is 35 nm.For series of Ti (x = 0, 5, 10, 15, 20, 30 nm) /CoCrPt (30 nm) /Ti (30 nm) films, VSM measurements indicate that the out-of-plane coercivity reaches the maximum 1675.5 Oe, AFM images show the minimum average grain size = 7.2 nm and MFM images show that the minimum average magnetic cluster size is estimated to be about 6.4 nm just at x = 5 nm.It has been found that the microstructure and magnetic properties of C/CoCrPt/Ti films depend strongly on the postannealing temperature and C overlayer thickness. VSM measurements indicate that the out-of-plane coercivity reaches the maximum 1648 Oe, AFM images show the minimum average grain size = 9.6 nm just postannealed at T_a = 300 ℃. From switching field distribution (SFD) measurements, we conclude that more C atoms are segregated into the grain boundaries and thus decrease the intergrain interaction so as to improve the properties of the magnetic films.
引文
[1] V. Poulsen. U. S. Patent, 1900, No: 661619
    [2] L. Krusin-Elbaum, T. Shibauchi, B. Argyle, et al. , Nature, 410 (2001) 444
    [3] Y. Shinjo. T. Okuno, R. Hassdorf, et al. , Science, 289 (2000) 930
    [4] M. Hehn, K. Ounadjela, and J. P. Bucher, Science, 272 (1996) 1782
    [5] V. Karanasos, I. Panagiotopoulos, D, Niarchos, et al. , J. Appl. Phys. . 88 (2000) 2740
    [6] S. Iwasaki. and Y. Nakamula, IEEE Trans. Magn. , 137 (1977) 1272
    [7] J. P. Lazzari, I. Melnick, D. Randet, IEEE Trans. Magn. , 3 (1967) 205
    [8] S. C. Chen. P. C. Kuo, C. Y. Chou, et al. , J. Appl. Phys. , 97 (2005) 10N107
    [9] Yasuyuki Kawada, Yukie Ueno, and Kazuyoshi Shibatal IEEE Trans. Magn. , 38 (2002) 2045
    [10] S. Stavroviannis, I. Panagiotopoulos, D. Niarchos, et al. J. Appl. Phys. . 85 (1999) 4304
    [11] B. Lu. D. E. Laughlin, D. N. Lambeth, S. Z. Wu, et al. , J. Appl. Phys. . 85 (1999)4295
    [12] S. Hashimoto, Y. Ochiai, K. Aso, J. Appl. Phys. , 66 (1989) 4909
    [13] 冯洁.物理学报,52(2003)487
    [14] 《铁磁学》,戴道生,钱昆明编著,科学出版社,1992年
    [15] 《铁磁学》,郭贻诚编著,高等教育出版社,1965年
    [16] 《铁磁性理论》,姜寿亭编著,科学出版社,1993年
    [17] I. Panagiotopoulos, L. Withanawasam, G. C. Hadjipanayis, J. Magn. Magn. Mater. , 152 (1996) 353
    [18] J. Ding, P. A. I. Smith, P. G. Mcormiek, R. Street, J. Magn. Magn. Mater. , 161 (1996)303
    [19] P. E. Kelly, K. O. Grady, P. I. Hayo, R. W. Chantrell, IEEE Trans. Magn. , 25 (1989) 3881
    [20] M. EI-Hilo, K. O. Grady, R. W. Chantrell, et al. . IEEE Trans. Magn. , 27 (1991) 5061
    [21] E. M. T. Velu, and D. N. Lambeth, IEEE Trans. Magn. , 28 (1992) 3249
    [22] M. EI-hilo, K. O. Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. , 28 (1992) 3282
    [23] K. O. Grady, M. EL-Hilo, and R. W. Chantrell. IEEE Trans. Magn. . 29 (1993) 2608
    [24] K. O. Grady, R. W. Chantrell, and I. L. Sanders, IEEE Trans. Magn. , 29 (1993) 286
    [25] E. P. Wohlfarth, J. Appl. Phys. , 29 (1958) 595
    [26] J. -J. Delaunay, T. Hayashi, et al. , Appl. Phys. Lett. , 71 (1997) 3427
    [27] D. V. Berkov, V. L. Petinov, IEEE Trans. Magn. , 23 (1987) 189
    [28] G. W. Spratt, P. R. Bissell, and R. W. Chantrell, IEEE Trans. Magn. , 23 (1987) 186
    [29] G. W. Spratt, P. R. Bissell, R. W. Chantrell, E. P. Wohlfarth, J. Magn. Magn. Mater. , 75 (1988) 309
    [30] P. R. Bissell, R. W. Chantrell, G. Tomka, et al. , IEEE Trans. Magn, , 25 (1989) 3650
    [31] D. E. Speliotis, W. Lynch, J. Appl. Phys. , 69 (1991) 4496
    [32] 《铁磁学》中册,钟文定编著,科学出版社,2000年
    [33] 《金属物理学》第四卷,冯端编著,科技出版社,2000年
    [34] C. P. Luo, and D. J. Sellmyer, Appl. Phys. Lett. , 75(20) (1999) 3162
    [35] Yingfan Xu, Z. S. Shan, JianPing Wang, ChongTow Chong, J. Magn. Magn. Mater. , 232 (2001) 103
    [36] Pawel Glijer, John M. Sivertsen, and Jack H. Judy, J. Appl. Phys. , 73 (1993) 5563
    [37] Yukiko Kubota, Liesl Folks, Emesto E. Marinero, J. Appl. Phys. , 84 (1998) 6202
    [38] S. Y. Hong, K. H. Shin, and T. D. Lee, J. Magn. Magn. Mater. , 226 (2001) 2056
    [39] J. Schoenmaker, I. C. Oppenheim, and E. F. Chinaglia, J. Magn. Magn. Mater. , 226 (2001) 1653
    [40] Michael F. Toney, Emesto E. Marinero, and Mary F. Doerner, J. Appl. Phys. , 94 (2003) 4018
    [41] C. L. Platt, J. K. Howard, and A. G. Roy, J. Appl. Phys. , 91 (2002) 772
    [42] Wei-Chuan Chen, Chih-Huang Lai, P. H. Tsai, and I. P. Ding, IEEE Trans. Magn. , 39 (2003) 2267
    [43] T. Oikawa, M. Nakamura, H. Uwazumi, et al., IEEE Trans. Magn., 38 (2002) 1976
    [44] H. Zeng, Z.S. Shan, Y. Liu, J. Magn. Magn. Mater., 251 (2002) 283
    [45] M. Mikami, D.D. Djayaprawira, H. Domon, J. Appl. Phys., 91 (2002)7074
    [46] Yasuo Tateno, Hitoshi Katakura, Takahiro igari, J. Appl. Phys., 93 (2003) 2804
    [47] A.G. Roy, David E. Laughlin, J. Appl. Phys., 91 (2002) 8076
    [48] N. lnaba, A. Nakamura, T. Yamamoto, Y. Hosoe, M. Futamoto, J. Appl. Phys., 79 (1996) 5354
    [49] H. Uwazumi, T. Shimatsu, Y. Sakai, et al., J. Appl. Phys., 91 (2002) 8058
    [50] Yingfan. Xu, J.P. Wang, Y. Su, J. Appl. Phys., 87 (2000) 6971
    [51] H. Zeng, M.L. Yan, Y. Liu, D.J. Sellmyer, J. Appl. Phys., 89 (2001) 810
    [52] W. Peng, Z. Qian, C. Yang, J.M. Sievertson, and J.H. Judy, J. Appl. Phys., 85 (1999) 4702
    [53] S. Jeong, T. Ohkubo, A.G. Roy, et al., J Appl. Phys., 91 (2002) 6863
    [54] Z.L. Zhao, J. Ding, K. lnaba, et al, Appl. Phys. Lett., 83 (2003) 2196
    [55] A.G. Roy, S. Jeong, D.E. Laughlin, IEEE Trans. Magn., 38 (2002)2018
    [56] A.G. Roy, N.T. Nuhfer, and D.E. Laughlin, J. Appl. Phys., 93 (2003) 8179
    [57] H. Domon, D.D. Djayaprawira, M. Takahashi, et al., J. Appl. Phys., 91 (2002) 8632
    [58] D. Jin, J.P. Wang, H. Gong, J. Vac.Sci. Technol., A20 (2002) 7
    [59] Yingfan Xu, Z.G. Sun, Y. Qiang, D.J. Sellmyer, J. Appl. Phys., 93 (2003) 8289
    [60] P. Lubitz, Shu Fan Cheng, and F.J. Rachford, J. Appl. Phys., 93 (2003) 8283
    [61] Sungkyun Park, Sukmock Lee, and Charles M. Falco, J. Appl. Phys., 91 (2002) 8141
    [62] C. A. F. Vaz, and J. A. C. Bland, J. Appl. Phys., 89 (2001) 7374
    [63] C.C. Chiang, Chih-Huang Lai, and Y.C. Wu, Appl. Phys. Lett., 88 (2006) 152508
    [64] Yun Zhu, and J.W. Cai, Appl. Phys. Lett.. 87 (2005) 032504
    [65] Yingfan Xu, J.S. Chen, and J.P. Wang, Appl. Phys. Lett., 80 (2002) 3325
    [66] L. Tang, L. -L. Lee, D.E. Laughling, and D.N. Lambeth, Appl. Phys. Lett., 69 (1996) 1163
    [67] Kannan M, Krishnan, Y. Honda, Y. Hirayama, and M. Futamoto, Appl. Phys. Lett., 64 (1994) 1499
    [68] An-Cheng Sun, P.C. Kuo, Jen-Hwa Hsu, et al., J. Appl. Phys., 98 (2005) 076109
    [69] Ryoichi Mukai, Takuya Uzumaki, and Atsushi, Tanaka, J. Appl. Phys., 93 (2005) 10N 119
    [70] S.H. Park, D.H. Hong, and T.D. Lee, J. Appl. Phys., 97 (2005) 10N106
    [71] S.I. Pang, J.P. Wang, and T.C. Chong, J. Appl. Phys., 91 (2002) 5929
    [72] Chih Huang Lai, Wei Chuan Chen, P.H. Tsai, and I.P. Ding, J. Appl. Phys., 93 (2003) 8468
    [73] Y. Shiroishi, Y. Hosoe, A. Ishikawa, et al., J. Appl. Phys., 73 (1993) 5569
    [74] Sudhir S. Malhotra, Donald C. Stafford, Brij B. Lal, et al., J. Appl. Phys., 85 (1999) 6157
    [75] Li-Lien Lee, D.E. Laughlin, and D.N. Lambeth, J. Appl. Phys., 81 (1997)4366
    [76] C. A. Ross, T.P. Nolan, R. Ranjan, and D. Lu, J. Appl. Phys., 81 (1997)4369
    [77] Y. Shimada, T. Sakurai, T. Yazaki, et al., J. Magn. Magn. Mater., 262 (2003) 329
    [78] M.J. Frederick. G. Ramanath, J. Appl. Phys., 95 (2004) 3202
    [79] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, J. Appl. Phys.. 80 (2002) 2147
    [80] D. Pescia, G. Zampieri, M. Stampanoni, et al., Phys. Rev. Lett., 58 (1987) 933
    [81] C.J. Sun, J.P. Wang, E.W. Soo, and G.M. Chow, J. Appl. Phys., 95 (2004) 7303
    [82] Pyungwoo. Jang, Sooyoul Hong, Jongryul Kim, J. Appl. Phys., 93 (2003) 7741
    [83] I. S. Lee, H. Ryu, H.J. Lee, and T.D. Lee, J. Appl. Phys., 85 (1999) 6133
    [84] M. Yu, Y. Liu, and D.J. Sellmyer, J. Appl. Phys., 85 (1999) 4319
    [85] J.-J. Delaunay, T. Hayashi, M. Tomita, and S. Hirono, J. Appl. Phys., 82 (1997) 2200
    [86] J.-J. Delaunay, T. Hayashi, M. Tomita, and S. Hirono, J. Appl. Phys., 36 (1997) 7801
    [87] H. Wang, J. Appl. Phys., 88 (2000) 4919
    [88] M. Yu, and Y. Liu, J. Appl. Phys., 75 (1999) 3992
    [89] J. Du, S. Wang, C. Ruby, et al., J. Magn. Magn. Mater., 231 (2001) 231
    [90] Y. Xu, J.P. Wang, Z.S. Shan, J. Magn. Magn. Mater., 225 (2001) 359
    [91] P.I. Mayo, K. O'Grady, P.E. Kelly, et al., J. Appl. Phys., 69 (1991) 4733

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700