金属离子掺杂TiO_2纳米管制备及光催化还原CO_2性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,工业迅速发展的同时,人们面临着两大问题,可再生能源的日益匮乏及化工生产对环境造成重污染。然而,利用光催化反应制备一系列化工产品正好解决了上述问题。TiO_2因其具有无毒、廉价、催化活性高等优点被广泛的应用于光催化反应中。但是,颗粒状的纳米TiO_2对可见光利用率不高是光催化反应一直不能工业化的原因。因此,学者们尝试采用物理和化学方法改变TiO_2的颗粒状结构,例如将其制备成纳米管、纳米棒、纳米线和纳米薄膜,并对其进行金属掺杂,期望提高TiO_2的光催化反应效率。
     本文以钛酸四丁酯为钛源,采用改良溶胶-凝胶法制备了纳米TiO_2颗粒。设计了单因素实验研究了原料配比、反应温度、反应时间和煅烧温度等因素对制备纳米TiO_2催化剂的影响。经XRD、BET、SEM、TG/DSC和Uv-Vis等仪器表征催化剂得知,纳米TiO_2颗粒平均粒径为94.2 nm、锐钛矿晶型、比表面积为54.31 m2/g、最佳煅烧温度为500℃、对紫外光有较强吸收,对可见光响应较弱。
     本文以纳米TiO_2颗粒为前驱体,采用水热法制备出TiO_2纳米管,并对其进行金属离子(Fe3+、Cu2+、Cr3+、Co2+、Al3+)掺杂,得到了金属离子掺杂的TiO_2纳米管。研究了水热反应时间、水热反应温度、煅烧温度及前驱体用量对TiO_2纳米管光催化活性的影响,通过正交试验对TiO_2纳米管的制备条件进行了优化。经SEM检测得知纳米TiO_2颗粒经水热处理后形成了管状物,管径均小于30 nm,管长大于500 nm;经XRD检测得知未掺杂的TiO_2纳米管为锐钛矿;BET测试得知其比表面积为154.3 m2/g;经TG/DSC检测得知最佳煅烧温度为300℃; Uv-Vis检测发现TiO_2纳米管催化剂对紫外和可见光均有较大提高。
     本文以TiO_2纳米管为催化剂、紫外灯为光源,在自行设计的光催化反应装置中进行还原CO2制备CH3OH实验。以单因素实验和正交实验结合确定了光催化还原CO2的最佳反应条件。实验结果表明Fe3+、Cu2+、Al3+离子掺杂TiO_2纳米管反应制得CH3OH产量较高,Co2+、Cr3+离子掺杂的TiO_2纳米管虽然对紫外光和可见光有较好的吸收,但其光催化反应能力一般。
     本文还进行了光催化还原CO2制备CH3OH反应动力学研究,结果表明反应温度为30℃、40℃时产物CH3OH浓度与时间的关系分别为C=29.94t0.043、C=13.7t0.54。计算活化能得知TiO_2催化剂的加入降低了光催化还原CO2制备CH3OH反应的能垒,使反应更易进行。
In recent years, with rapidly industrial development, people are faced two problems:the increasing shortage of renewable energy and the environment are seriously polluted by chemical production. However, these problems could be solved by using a series of chemical products which prepared by photocatalytic reaction. With the merits of non-toxic, low-cost and High-performance catalytic activity, Nano-TiO2 catalyst are widely used in the photocatalytic reaction. However, due to the lower utilization rate of Nano-TiO2 for visible light, photocatalytic reaction hve been unable to industrialization. Therefore,the granular structure of TiO2 have been changed to improve the photocatalysis by physical or chemical methods, for example, nanotubes, nanotubes, nanowire and nanofilm.
     In this work, the nanoparticle TiO2 was prepared with tetrabutyl titanate (TNB) by modified sol-gel method. The effect of the ratio of reactants, reaction time, reaction temperature and calcination temperature on preparation of nano-TiO2 were investigated in the single factor experiment The Nano-TiO2 catalysts were characterized by XRD, BET, SEM, TG/DSC and UV-Vis spectroscopy. The results showed that structure of nano-TiO2 was anatase, average diameter size was 94.2 nm, surface area was 54.31 m2/g and the optimal calcinations temperature was 500℃. Moreover, the ultraviolet absorbability of nano-TiO2 was more significant than visible light.
     The TiO2 nanotube was prepared with TiO2 doped with metal ions:Fe3+, Cu2+, Cr3+, Co2+, Al3+ by hydrothermal method. The influence of calcinations temperature, dosage of raw material, synthesis temperature and time on photocatalytic performance of TiO2 nanotube was investigated. Result of SEM showed that TiO2 nanoparticle transformed into nanotube with hydrothermal treatment, the diameter of nanotube was smaller than 30 nm, the length of nanotube was more than 500 nm. XRD showed that the structure of TiO2 nanotube was anatase. The surface area was 154.3 m2/g by BET characteristic, and the optimal calcinations temperature was 300℃by TG/DSC, Uv-Vis spectroscopy showed that TiO2 nanotube had better photocatalytic performance than the TiO2 nanoparticle.
     In the experiment of photocatalysis, methanol were prepared by photoreduction of CO2 with TiO2 catalysts in self-designed reactor under ultraviolet. The optical reaction conditions were studied by single factor combined with orthogonal design experiments. The results showed that TiO2 nanotube doped with Fe3+, Cu2+, Al3+ possessed remarkable photocatalytic activity. TiO2 nanotube doped with Co2+, Cr3+ had more significant absorption of ultraviolet than visible light, however, it had weaker photocatalytic performance.
     The reaction kinetics of photocatalytic reduction of CO2 was also discussed. The results showed that the photocatalytic reaction rate equation were C=29.94t0.443 or C=13.7t0.54 when reaction temperature was 30℃or 40℃, respectively. Photoreduction of CO2 was more likely occured upon the addition of TiO2, the energy barrier of reaction of photocatalytic reduction of CO2 was decreased, which made the photoreduction of CO2 be more likely occurred.
引文
[1]Fujishima A, Honda K. Electrochemical photosis of water at a semiconductor electode[J]. Nature,1972,37(1):238-245
    [2]Carey J.H, Lawrence.J. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension[J]. Bull.Environ. Lontam. Toxical,1976,16(3):679-701
    [3]Frank S.N, Bard A.J. Heterogeneous photocatalytic oxidation of cyanideion in aqueous solution at TiO2 powder[J]. J.Am.Chem.soc,1977,99(2):303-304
    [4]Frank S.N, Bard A.J. Heterogenous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. J.physchem,1977,81(7):1484-1488
    [5]Tadashi Matsunage, Ryozo Tomoda. Photoelectrochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiology letters,1985,29(2):211-214
    [6]Hofman M.R, Martin S.T, Wonyong C, et al. Environmental applications of semiconductor photocatalysis[J]. Chem.Rev,1995,95(1):69-75
    [7]Simons PY, Duchille F. The structure of TiO2(Ⅱ) a high-pressure phase of TiO2[J]. Acta cryst,23(1967):334
    [8]Latroche M, Brohan L, Marchand R. Tournoum. New Holland its oxides:TiO2(H) and K0.06TiO2[J]. Solid state chem,81(1989):78
    [9]马国斌,李齐,朱健民,刘治国,闵乃本,冯端.TiO2纳米材料中的多重孪晶研究[J].人工晶体报,29(5):256
    [10]Zhang HZ, Banfield J.F. Understanding Polymorphic Phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO2[J]. Phy chem B, 104(2000):3481
    [11]Held EF. Weiss CW Kinetics and mechanism of the anatase/rutile transformation as catalyzed by ferric oxide and reducing conditions [J]. Am. Min,57(1972):20
    [12]Nuth JA. Small-particle physics and interstellar diamonds[J]. Nature,329(1987):589
    [13]Garvle RC. Stabilization of the tetragonal structure in zirconia microcrystands[J]. Phy chem,82(1978):218
    [14]Mchale JM, Auroux A, Perrotta AJ, Navrotsky A. Surface energies and thermodynamic Phase stability in nanocrystalline aluminas[J]. Science,277(1977):788
    [15]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M]·北京,化学工业出版社,2002
    [16]Navrotsky A, Kleppa OJ. Enthalpy of the anatase-rutile transformation[J]. Am Ceram Soc,50(1968):623
    [17]Mitsihashi T, J Am. Ceram Soc,62(1972):1305
    [18]Zhang HZ, Banfield JF. Phase transformation of nanocrystalline anatase to rutile via combined interface and surface nucleation[J]. Mater Res,15(2000):437
    [19]Kumar SR, Asha CS, Vasudevan K, Suja R, Mukundan P, Warrier KGK. Phase transformation in sol-gel titania containing silica[J]. Mater Letter,38(1999):161
    [20]Tanaka T, Capule MFV, Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett,187(1991):73
    [21]Kumar KNP, Keizer K, Burggraaf AJ. Textural Evolution and phase transformation in titania membranes:Part-1 Unsupported membranes[J]. Mater Chem,3(1993):1141
    [22]Shannon R D, Pask J A. Kinetics of the Anatase-Rutile Transformation[J]. Am Ceram Soc,48(1965):391
    [23]Vargas S, Arroyo R, Haro E, Rodriguez R, Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method[J]. Mater Lett,54(2002):3932
    [24]Arroyo R, Cordoba G, Padilla J, Lara V H. Influence of manganese ions on the anatase-rutile phase transition of TiO2 prepared by the sol-gel process[J]. Mater Lett,54(2002):397
    [25]Karvinen S. The effects of trace elements on the crystal properties of TiO2[J]. Solid State Sci,5(2003):811
    [26]Shannon R D, Pask J A. Kinetics of the Anatase-Rutile Transformation[J]. Am Ceram Soc,48(1965):391
    [27]Vargas S, Arroyo R, Haro E, Rodriguez R. Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method[J]. Mater Lett,54(2002):3932
    [28]Arroyo R, Cordoba G, Padilla J, Lara V H. Influence of manganese ions on the anatase-rutile phase transition of TiO2 prepared by the sol-gel process [J]. Mater Lett, 54(2002):397
    [29]Karvinen S. The effects of trace elements on the crystal properties of TiO2[J]. Solid State Sci,5(2003):811
    [30]Rao CNR, Turner A, Honig JM. Some Observations concerning the effect of impurities on the Anatase-Rutile transition[J]. Phys Chem,11(1959):173
    [31]Zhang HZ, Banfield JF. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO2[J]. Phys Chem B, 104(2000):3481
    [32]Colon G, Hidalgo MC, Navio JA. Effect of ZrO2 incorporation and calcinations temperature on the photocatalytic activity of commercial TiO2 for salicylic acid and Cr(Ⅳ) photodegradation[J]. Appl Catal A Gen,231(2002):185
    [33]Shannon RD, Pask JA. Kinetics of the Anatase-Rutile Transformation[J]. Am Ceram Soc, 48(1965):391
    [34]Stir M, Traykova T, Nicula R, Burkel E, Baehtz C, Knapp M, Lathe C. In situ high-pressure and high-temperature diffraction experiments on pure and Ag-doped TiO2 nanopowders[J]. Nucl Instrum Meth Phys Res B,199(2003):59
    [35]Tanaka T, Capule MFV, Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett,187(1991):73
    [36]Muggli DS, Ding L. Photocatalytic Performance of Sulfated TiO2 and Degussa P25 TiO2 During Oxidation of Organics[J]. Appl Catal B:Environ,32(2001):181
    [37]Bickley R, Gonzalea-Carreno T, Less JS. Mutiphoton semi conductor photocatalysis[J]. Solid State Chem,92(1991):178
    [38]高伟,吴凤清,罗臻,富菊霞,王德军,徐宝琨.TiO2晶型与光催化活性关系研究[J].高等化学学报,22(2001).660
    [39]姜勇,张平,刘祖武.高活性多孔纳米TiO2的制备及协同光催化作用机理探讨[J].材料科学与工程学报,22(2004):584
    [40]Salvador P, Gonzalez Garia ML, Mdoz F. Catalytic Role of Lattice Defects In the photoassisted oxldatlon of water at (001) n-TiO2 Rutile[J]. Phys Chem,96(1992):10349
    [41]Bard AJ. Photoelectrochemistry[M]. Science,207(1980):139
    [42]Hoffman MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of Semiconductor Photocatalysis[J]. Chem Rev,95(1995):69
    [43]陶跃武,赵梦月,陈士夫.有机物的光催化降解[J].太阳能学报,16(1995):234
    [44]Hongrui P, Guicun L, Zhikun Zh. Synthesis of bundle-like structure of titania nantotubes[J]. Materials Letters,2005,59(10):1142~1145
    [45]Tomoko Kasuga, Masayoshi Hiramatsu M, Akihiko Hoson, etal. Formation of Titanium Oxide Nanotube. Langmuir,1997,14(12):3160-3163
    [46]Wu X, Jiang QZ, Ma ZF, Fu M, Guan WFS. Synthesis of Titania nanotubes by microwave irradiation. Solid State Commun,2005,136:513~517
    [47]Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey ECJ. Mater Res,2001,16:3331
    [48]Cai Q, Paulose M, Varghese OK, Grimes CA. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Mater Res,2005,20:230-235
    [49]GK Mor, OK Varghese, M Paulose, N Mukherjee. Grimes[J]. Mater Res,2003,18:2588
    [50]Hoyer P. Adv Mater,1996,8:857-859
    [51]Zhang M, Bando Y, Wada KJ. Mater Sci Lett,2001,20:167-170
    [52]李晓红,张校刚,力虎林.TiO2纳米管的模板法制备及表征.高等学校化学学报,2001,22:130-132
    [53]Ma Dongling, Linda S, Schadler, et al. Preparation and structure investigation of nanoparticle-assembled titanium dioxide microtubes. Appl Phys Letter,2003,83:1839~ 1841
    [54]王芹,陶杰,等.氧化钛纳米管的合成机理与表征[J].2004,19(5):9-12
    [55]GH Du, Q Chen, RC Che, ZY Yuan, LM Peng. Appl Phys Lett,79,3702-2001
    [56]YQ Wang, et al. Chemical Physics Letters,365(2002):427-431
    [57]赖跃坤,孙岚等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066
    [58]Regan BO, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2[J]. Nature,1991, (353):737
    [59]Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. Electro chem Soc,2003,150(8):488
    [60]Gopal KM, Oomman KV, Maggie P, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements[J]. Thin Solid Films,2006,496(1):42-48
    [61]Hippe C, Wark M, Lork E, et al. Platinum-filled oxidic nanotubes[J]. Microp Mesop Mater,1999,31(3):235
    [62]Idakieva V, Yuan ZY, Tabakova T. Titaium oxide nanotubes as supports of nano-sized gold catalysts for Low temperature water-gas shift reaction[J]. Applied Catalysis A: General,2005,281(1-2):149~155
    [63]邵颖,薛宽宏,何春间等.TiO2纳米管对十二烷基苯磺酸钠的光催化降解[J].化学世界,2003,44(4):174-178
    [64]Yang S, Quan X, Ruan X, Zhao H. Preparation of Titania Nanotubes and Their Environmental Applications as Electrode. Environ Sci Technol,2005, ASAP Article
    [65]Varghese OK, Gong D, Paulose M, et al. Hydrogen Sensing Using Titania Nanotubes [J]. Sen Actuators:B,2003,93:338~334
    [66]Huang JG, Kunitake T, Onoue SY. A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle. Chem Conunun,2004,8:1008~1009
    [67]Uchida S, Chiba R, Tomiha M, et al. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry,2002,70:418~420
    [68]Mor GK, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrys[J]. Nano Lett,2005,5(1):191~195
    [69]Ma Dong Ling, Linda SS, Richard WS, et al. Preparation and structure investigation of nanoparticle-assembled titanium dioxid microtubes[J]. Appl Phys Lett,2003,83(9): 1839~1841
    [70]曹茂盛,关长斌,徐甲强等.纳米材料导论[M].哈尔滨工业大学出版社,(2001):6-13
    [71]Bessekhouad Y, Robert D, Weber JV. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions[J]. Photochem Photobiol A:Chem,2003,157: 47~53
    [72]Xu N P, Shi Z F, Fan Y Q, et al. Effect of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions [J]. Ind Eng Chem Res,1999,38: 373-379
    [73]Ihare T, Miyoshima, Iriyama, et al. Preparation of avisible-light-active TiO2 photocatalyst by RF plasma treatment[J]. Mater Sci,2001,36:4201~4207
    [74]Deng X Y, Yue Y H, Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations[J]. Appl Catal B:Environmental, 2002,39(2):135-147
    [75]Ranijit K T. Iron phthalocyanine-midified titanium dioxide a novel photocatalyst for the enhanced photodegradation of organic pollutants [J]. J Phys Chem B,1998,102(47): 9397-9412
    [76]Song K Y, Kwon Y T, Choi G J, et al. Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper[J]. Bull Korean Chem Soc,1999,20(8):957~960
    [77]Choi W, Termin A, Hoffman N, et al. The role of metaliondopants in quantum-sized TiO2:correlation between photoreactivity and charge-carrier recombination dynamics[J]. Phys Chem,1994,98(51):13669~13679
    [78]郭俊怀,沈星灿,郑文军等.载银纳米TiO2光催化降解水中有机物[J].应用化学,2003,20(5):420-423
    [79]王明理,姚秉华,裴亮,程刚.钌掺杂TiO2/Ti光电极的制备及光电催化性能.稀有金属材料与工程[J],2010,39(7):1240-1243
    [80]Li X Z, Li F B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment[J]. Environ Sci Technol,2001,35(11):2381~2387
    [81]吴忠杰,万涛,吴秀玲,等.掺钇纳米二氧化钛光催化降解甲基橙的研究[J].应用化工,2007,36(12):1221~1223
    [82]梁春华,吴峰,等.钐离子掺杂二氧化钛光催化降解甲基橙研究[J].环境保护科学,2008,32(2):45-47
    [83]李国祥,张俊卿,冯德荣,等.掺杂镨的纳米二氧化钛光催化降解2,4-二硝基苯酚的研究[J].稀土,2007,28(2):37-39
    [84]张宗伟,樊君,等.Tb掺杂对纳米TiO2光催化活性的影响[J].石油化工,2007,36(9):956~960
    [85]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293:269~271
    [86]Shu Yin, Yohei Aita. Synthesis of Excellent Visible-light Responsive TiOxNy Photocatalyst by Ahomogeneous Precipitation-solvothermal Process[J]. J. Mater Chem, 2005,15:674-682
    [87]蔡伟民,王正鹏,徐俊.光催化活性氮掺杂二氧化钛纳米材料的制备方法[P].CN:1555913A,2004
    [88]林华盛,张宁,陈超,等.碳掺杂TiO2的制备及光电性质的研究[J].化工新型材料,2007,35(5):27-29
    [89]Nagaveni K, Hegde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir,2004,20(7):2900~2907
    [90]Sano T, Negishi N, Koike K, et al. Preparation of a visible light responsive photocatalyst from a complex of Ti4+ with anit rogen containing ligand[J]. J Mater Chem,2004,14(1):380~384
    [91]Hideyuki K, Takahisa A, Koichi Y. Surface characterization of titanium dioxide powder treated by the CH4-H2 plasma CVD method[J]. The journal of Chemical Physics,2005,12(1):84~86
    [92]Wang J S, Yin S, Zhang Q W, et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties [J]. Chem Lett,2003,32(6):540~541
    [93]Yamaki T, Umebayashi T, Sumita T. Fluorine-doping in titanium dioxide by ion implantation technique[J]. Nucl Instrum Meth B,2003,206(1):254-258
    [94]Sakatani Y, Nunoshige J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2[J]. Chem Lett,2003,32(12):1156-1157
    [95]华南平,吴遵义,杜玉扣等.Pt、N共掺杂TiO2在可见光下对三氯乙酸的催化降解作用[J].物理化学学报,2005,21(10):1081~1085
    [96]Xie Y, Li Y Z, Zhao X J. Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped TiO2[J]. Journal of Molecnlar Catalysis A:Chemical,2007,277:119~126
    [97]Wei F Y, Liang S N, Peng C. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity[J]. Journal of Hazardous Materials,2008, 156(1-3):135-140
    [98]Lin L, Zheng R Y, Xie J L, et al. Synthesis and characterization of phosphor and nitrogen co-doped titania[J]. Applied Catalysis B:Environmental,2007,76:196~202
    [99]Marci G, Augugliaro V, Lopez-munozm J, et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime[J]. Phys Chem B,2001,10(5): 1033-1040
    [100]Tada H, Hattori A. Phys Chem B,2000,104:4585-4587
    [101]Do Y R, Lee W, Dwight K, et al. The effect of WO3 on the photocatalytic activity of TiO2[J]. Solid State Chem,1994,108(1):198-201
    [102]Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide band gap semi-conductors[J]. Phys Chem, 1994,98(12):3183-3188
    [103]Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Photochem Photobiol A:Chem,2001,141:209~217
    [104]Solbrand A, Henningsson A, Soidergren S. Charge transport properties in dye-sensitized nanostructured TiO2 thin filmelectrodes studied by photoinduced current transients[J]. Phys Chem B,1999,103(7):1078~1083
    [105]Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J]. Environ Sci Technol,2001,35(5):966~970
    [106]Bae E Y, Choi W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visiblelight[J]. Environ Sci Technol,2003, 37(1):147~152
    [107]Ranjit K T, Cohen H, Willner, et al. Lanthanide oxide-doped titanium dioxide:effective photocatalysts for the degradation of organic pollutants [J]. Mater Sci,1999,34:5273~ 5280
    [108]方宁,李新勇,贾金平.SiO2-TiO2纳米管的制备及光催化性能的研究[J].环境科学与技术,2007,3(30):34-40
    [109]彭秧,侯林瑞,原长洲.ZnO/TiO2纳米管复合材料的制备及光催化性能[J].新疆大学学报(自然科学版),2007,24(2):195~199
    [110]Cui X, Zhao G H, Lei Y Zh, et al. Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time[J]. Materials Chemistry and Physics,2009,113(1):314~321
    [111]包华辉,徐铸德,殷好勇.TiO2纳米管负载Ag、Au、Pt纳米粒子的微波合成与表征[J].无机化学学报,2005,21(3):374~378
    [112]宋旭春,郑遗凡,曹广胜等.过渡金属离子置换钛酸纳米管的制备和光催化活性[J].无机化学学报,2005,21(12):1897-1900
    [113]王美丽,宋功保,李健等.磁性离子掺杂钛酸盐纳米管的合成与表征[J].化工进展,2006,25(12):1428~1430
    [114]Ghicov A, Schmidt B, Kunze J, et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes[J]. Chemical Physics Letters,2007,433:323~326
    [115]Xu J Ch, Lu M, Guo X Y, et al. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in the water [J]. Journal of Molecular Catalysis A:Chemical,2005,226:123~127
    [116]李静,孙岚,庄惠芳等.Fe掺杂Ti02纳米管的制备及其电化学性质[J].电化学,2008,14(2):213~217
    [117]孙超,黄浪欢,刘应亮等.氮掺杂二氧化钛纳米管制备与光催化性能[J].功能材料,2005,36(9):1412-1417
    [118]Geng J Q, Yang D, Zhu J H, et al. Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method[J]. Materials Research Bulletin,2008,44(1-8):145~150
    [119]Kim D, Fujimoto S, Schmuki P, et al. Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys[J]. Electrochemistry Communications,2008,10:910-913
    [120]Su Y L, Song H, Zhang X W, et al. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes[J]. Materials Chemistry and Physics,2008,110:239~246
    [121]刘萍,李新勇,方宁.Ti02纳米管的改性及光助催化性能研究[J].渤海大学学报(自然科学版),2006,27(3):199~205
    [122]Shi J, Li J, Cai Y F. Fabrication of C、N-Codoped TiO2 Nanotube Photocatalysts with Visible Light Response[J]. Acta Phys-Chim Sin,2008,24(7):1283~1286
    [123]陈秀琴,苏雅玲,张兴旺等.可见光响应型S、F共掺杂TiO2纳米管的制备[J].科学通报,2008,53(11):1274-1278
    [124]Lei L Ch, Su Y L, Zhou M H, et al. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolye[J]. Materials Research Bulletin,2007, 42(12):2230~2236
    [125]Huang L H, Sun C, Liu Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activityunder visible light[J]. Applied Surface Science,2007,253:7029~7035
    [126]Nishijima K, Fujisawa Y, Murakami N, et al. Development of an S-doped titania nanotube (TNT) site-selectively loaded with iron(Ⅲ) oxide and its photocatalytic activites[J]. Applied Catalysis B:Environmental,2008,84(3-4):584~590
    [127]Amar Kumbhar, George Chumanov[J]. Journal of Nanoparticles Research,2005,7: 489~498
    [128]Serpone N, Texier I, Zhao J, et al. Photobiol[J].2000,136(3):145~155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700