靶向siRNA阻断NF-κB信号通路对胆管癌增殖和侵袭影响实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆管癌早期诊断困难以及其自身临床病理特征,癌细胞容易沿血管及神经鞘浸润扩散,手术虽然是唯一可能获得治愈的手段,但大部分根治手术切除率低术后易复发,且放化疗无助于生存率的提高,寻找确切有效的胆管癌治疗手段具有重要的现实意义。胆管癌发病的高危因素共同病理特征是胆道的慢性炎症。NF-κB作为“炎癌链”的关键调控环节,在多种肿瘤细胞的增殖侵袭调控中发挥中枢性作用,为此本研究以NF-κBp65为潜在的抗肿瘤靶点且进行干预研究,以期阻断胆管癌发生发展进程,达到化学预防和治疗目的。以免疫组化及western blot法检测临床胆管癌石蜡及新鲜标本的NF-κBp65分布表达发现:肿瘤分级程度越低,侵袭性越明显,越伴有淋巴转移,NF-κBp65越趋向细胞核分布,COX-2及iNOS亦表达并与NF-κBp65呈现明显相关性。据此以NF-κBp65为靶点,T7RNA聚合酶体外转录体系设计合成三个靶向siRNA,以RT-PCR、western blot验证三个靶位点对NF-κBp65基因mRNA干扰效果均有效,应用其中之一靶位点siRNA体体内外验证阻断NF-κBp65表达对胆管癌影响效果并探讨了抗肿瘤可能机制。本文包括五部分内容:胆管癌组织中NF-κB表达与COX-2及iNOS蛋白表达的相关性;体外转录合成NF-κBp65靶向siRNA的构建及功能筛选;NF-κBp65靶向siRNA体外抑制胆管癌细胞研究;靶向NF-κB小干扰RNA抑制胆管癌细胞下游COX-2、iNOS基因表达作用;靶向NF-κB的siRNA对胆管癌裸鼠移植瘤影响作用。
Surgical resection offers the only chance to cure not only for its difficult of diagnosis but also itself clinical pathological characteristics with infiltration and spread out along the vessel and the nerve sheath. However, the outcome of patients with advanced cholangiocarcinoma still remains the higher rate of tumor recurrence and extremely poor even after resection. Radiotherapy and chemotherapy does not improve survival rate. For the sake of these, it is practical importance to study the precise and effective treatment of cholangiocarcinoma. Epidemiological investigation of risk factors for cholangiocarcinoma is common pathological features of chronic inflammation. NF-κB as a ubiquitous transcription factor, activation abnormal in a variety of tumor cell proliferation and invasive regulation play important of role, is "inflammation-associated carcinoma chain "of key control aspect. The topic is precisely based on this issue cholangiocarcinoma of the main pathological features of chronic inflammation, focus on NF-κB signaling pathway,‘inflammation-associat -ed carcinoma chain’the key aspect of regulation, observating the cholangiocarcinoma NF-κB signal expression through the experiments in vivo and in vitro ,and use of NF-κBp65 targeting small interfering technology to block NF-κB signaling pathway to explore the role of anti-proliferation and invasiveness in vivo and in vitro.This paper included 5 sections.
引文
1. Altemeier WA, Gall EA, Zinninger MM, et al. Sclerosing carcinoma of the major intrahepatic bile ducts. AMA Arch Surg,1957,75:450-460.
    2.Klatskin G Adenocarcinoma of the hepatic duct at its bifurcation within the porta hepatis: an unusual tumor with distinctive clinical and pathological features. Am J Med,1965,38:241-256.
    3.Kuwayti K, Baggenstoss AH, Stauffer MH, et al.Carcinoma of the major intrahepatic and the extrahepatic bile ducts exclusive of the papilla of Vater. Surg Gynecol Obstet,1957,104:357-366.
    4.Bismuth H, Corlette MB.Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. Surg Gynecol Obstet 1975; 140:170-178.
    5.Launois B, Campion JP, Brissot P, Gosselin M. Carcinoma of the hepatic hilus. Surgical management and the case for resection. Ann Surg 1979; 190: 151-157.
    6.Tompkins RK, Thomas D, Wile A, Longmire WP Jr. Prognostic factors in bile duct carcinoma: analysis of 96 cases. Ann Surg 1981;194: 447-457.
    7.Blumgart LH, Hadjis NS, Benjamin IS, Beazley R.Surgical approaches to cholangiocarcinoma at confluence of hepatic ducts. Lancet 1984;1:66-70.
    8.Lai EC, Tompkins RK, Mann LL, Roslyn JJ.Proximal bile duct cancer. Quality of survival.Ann Surg 1987;205:111-118.
    9.Bengmark S, Ekberg H, Evander A, Klofver-Stahl B, Tranberg KG.Major liver resection for hilar cholangiocarcinoma. Ann Surg 1988; 207: 120-125.
    10.Boerma EJ.Research into the results of resection of hilar bile duct cancer. Surgery 1990;108:572-580.
    11. Bismuth H, Nakache R, Diamond T. Management strategies in resection for hilar cholangiocarcinoma. Ann Surg 1992;215:31-38.
    12.Tsuzuki T, Ogata Y, Iida S, Nakanishi I, Takenaka Y, Yoshii H. Carcinoma of the bifurcation of the hepatic ducts. Arch Surg 1983;118:1147-1151.
    13.Sugiura Y, Nakamura S, Iida S, Hosoda Y, Ikeuchi S, Mori S, Sugioka A, Tsuzuki T. Extensive resection of the bile ducts combined with liver resection for cancer of the main hepatic duct junction: a cooperative study of the Keio Bile Duct Cancer Study Group.Surgery 1994;115:445-451.
    14 Kawarada Y, Isaji S, Taoka H, Tabata M, Das BC, Yokoi H. S4a + S5 with caudate lobe (S1) resection using the Taj Mahal liver parenchymal resection for carcinoma of the biliary tract.J Gastrointest Surg 1999;3:369-373.
    15. Kamiya S,Nagino M, Kanazawa H, Komatsu S, Mayumi T, Takagi K, Asahara T, Nomoto K, Tanaka R, Nimura Y. The value of bile replacement during external biliarydrainage: an analysis of intestinal permeability, integrity, and microflora. Ann Surg 2004;239:510-517.
    16. Noie T, Sugawara Y, Imamura H, Takayama T, Makuuchi M. Selective versus total drainage for biliary obstruction in the hepatic hilus: an experimental study. Surgery 2001;130:74-81.
    17.Chari R, Kim R,Savarese D. Treatment of cholangiocarcinoma, Up To Date 2001;9:3.
    18.Kennedy A, Darwin P, Ponheur JL.Cholangiocarcinoma.eMedicine Journal 2001;2.
    19.Jarnagin WR. Cholangiocarcinoma of the extrahepatic bile ducts. Semin Surg Oncol 2000;19:156-176.
    20.Nishio H, Nagino M, Nimura Y. Surgical management of hilar cholangiocarcinoma; the Nagoya experience. HPB Surg 2005;7(4):26.
    21.Shaked A, Colonna JO, Goldstein L,Busuttil RW.The interrelation between sclerosing cholangitis and ulcerative colitis in patients undergoing liver transplantation. Ann Surg 1992;215:598-605.
    22. Thanan R,Murata M,Pinlaor S,et al. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine in patients with parasite infection and effect of antiparasitic drug in relation to cholangiocarcinogenesis.Cancer Epidemiol Biomarkers Prev. 2008;17(3):518-524.
    23.Greten FR, Eckmann L, Greten TF, et al. IKKβlinks inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118:285-296.
    24.Hayden MS, Ghosh S.Signaling to NF-kappaB. Genes Dev 2004;18:2195–2224.
    25.Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kB functions as a tumour promoter in inflammation-associated cancer. Nature 2004;431:461-466.
    26.Madrid LV, Mayo MW, Reuther JY, et al. Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-kB through utilization of the IkB kinase and activation of the mitogen-activated protein kinase p38. J.Biol.Chem. 2001,276:18934-18940.
    27.Jeong SJ, Pise-Masison CA, Radonovich MF, et al. Activated AKT regulates NF-kB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 2005,24:6719-6728.
    28.Haller D, Russo MP, Sartor RB et al. IKKb and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gramnegative enteric bacteria-induced RelA phosphorylation and NF-kB activation in both primary and intestinal epithelial cell lines.J.Biol.Chem. 2002,277:38168-38178.
    29.Natoli G, Saccani S, Bosisio D, et al. Interactions of NF-kB with chromatin: the art of being at the right place at the right time. Nat. Immunol. 2005,6:439-445.
    30.Ghosh S,Kann M,Missing pieces in the NF-kappa]]puzzle.Cell,2002,109(supp 1):81-96.
    31.Aggarwal BB.Nuclear factor-kappaB:the enemy within.Cancer Cell,2004,6(3):203-208.
    32.Biswas DK, Cruz AP,GansbergerE,et al. Epidermal growth factorinduced nuclear factor kappa B activation:A major pathway of cellcycle progression in estrogen-receptor negative breast cancer cells.Prec Natl Acad Sci USA,2000,97(15):8542-8547.
    33 Etienne MC, Formento JL, Lebrun-Frenay C, et al. Epidermal growth factor receptor and labeling index are independent prognostic factors in glial tumor outcome.Clin Cancer Res,1998,4(1O):2383-2390.
    34.Bhat-Nakshatri P,Sweeney CJ, Nakshatri H.Identifcation of signal transduction pathways involved in constitutive NF-kappaB activation in breast cancer cells.Oncogene, 2002,21(13):2066-2078.
    35.Duffer DC, Chen Z, DonS G,et al. Expression of a dominantnegative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits surviva1,proinflammatory cytokine expression,and tumor growth in vivo.Cancer Res,1999,59(14):3468-3474.
    36.Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539-545.
    37.Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogentic and antitumor of cyclooxygenase-2 inhibitors. Cancer Res,2000, 60(5): 1306-11.
    38.Denkert C, Kobel M, Pest S, et al. Expression of cyclooxygenase 2 is an independent prognostic factor in human ovarian carcinoma. Am J Pathol, 2002, 160(3):893-903.
    39. Cheng J, Hada T.The significance of COX-2 and COX-2 inhibitors in liver fibrosis and liver cancer. Curr Med Chem-Anti-Inflamm Anti-Allergy Agents, 2005, 4(2): 199-206.
    40. Lim HY, Joo HJ,Choi JH, et al.Increased expression of cyclooxygenase-2 protein in human gastric carcinoma.Clin Cancer Res,2000,6(2):519-25.
    41.Kase S, Osaki M, Honjo S, et al.Expression of cyclooxygenase-1 and cyclooxygenase-2 in human esophagealmucosa, dysplasia and carcinoma. Pathobiology, 2004,71(2): 84-92.
    42. Castelao JE, Bart RD, DiPerna CA, et al. Lung cancer and cyclooxygenase-2. Ann Thorac Surg,2003,76(4):1327-35.
    43. Sudbo J,Ristimaki A, Sondresen JE, et al. Cyclooxygenase-2(COX-2) expression in high-risk premalignant oral lesions.Oral Oncol, 2003,39(5):497-505.
    44.Tucker ON, Dannenberg AJ, Yang EK,et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer.Cancer Res, 1999, 59(5):987-90.
    45.Davies G, Salter J, Hills M, et al. Correlation between cyclooxygenase-2 expression andangiogenesis in human breast cancer. Clin Cancer Res, 2003, 9(7): 2651-6.
    46. Oshima, M., M.M. Taketo.COX selectivity and animal models for colon cancer. Curr. Pharm.Des. 2002;8:1021-34.
    47.Yamamoto Y, et al. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer.J Clin Invest,2001;107(2):135.
    48.ChungΚC, et al. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by the differential regulation of intracellular zinc and copper ion levels, NF-kappaB, and MAP kinases. J Neurosci Res,2000;59(1):117.
    49.Mattson MP, et al. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest.2001;107(3):247.
    50.May MJ,D’Acquisto F, Madge LA, et al. Selective inhibition of NF-κB activation by a peptide that blocκs the ineraction of NEMO with the IκB kinase complex. Science,2000,289(5485):1550.
    51. Marshall E. The Trouble w]ith vectors.Science,1995,269:1052-1053.
    52.Kohn D B, Sadelain M, Glorioso J C, et al. Occurrence of leukaemia following gene therapy of X-linked SCID.Nat Rev Cancer,2003,3(7):477-488.
    53.Marshall E. Second child in French trial is found to have leukemia[J].Science, 2003,299(5605):320.
    54.Ready T. Gene therapy in recovery phase[J]. Nat Med,2002,8(5):429-430.
    55.Sadelain M.Insertional oncogenesis in gene therapy: how much of a risk? Gene Ther,2004,11(7):569-573.
    56.Check E. Gene-therapy trials to restart following cancer risk review[J]. Nature, 2005,434(7030):127.
    1. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kB functions as a tumour promoter in inflammation-associated cancer. Nature 2004;431:461-466.
    2. Bismuth H, Corlette MB.Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. Surg Gynecol Obstet 1975; 140:170-178.
    3. Chanmugam P, Feng L, Liou S, et al.Radicicol, a protein tyrosine kinase inhibitor, suppresses the expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide and in experimental glomerul -onephritis.J Biol Chem,1995;270(10):5418-26.
    4. Christian M, Michalis PC, Upinder B, et al.Expression of cyclooxygenase-2 parallelsexpression of inter-leukin-1beta,interleukin-6 and NF-kappaB in human colorectal cancer. Carcinogenesis,2003,24(4);665-671.
    5. Hayden MS and Ghosh S. Signaling to NF-kB. Genes Dev. 2004,18:2195–2224.
    6. Perkins ND. Achieving transcriptional specificity with NF-kB. Int. J.Biochem. Cell. Biol. 1997,29: 1433–1448.
    7. Saccani S, Pantano S and Natoli G. Modulation of NF-kB activity by exchange of dimers. Mol. Cell. 2003,11: 1563–1574.
    8. Waddick KG, Uckun FM. Innovative treatment programs against cancer: II. Nuclear factor-kappaB (NF-kappaB ) as a molecular target[ J]. Biochem Pharm, 1999, 57(1):9 -17.
    9. Vane,J.R, Bakhle,Y.S. and Botting,R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97-120.
    10. Kargman,S.L, O'Neill,G.P, Vickers,P.J, et al. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res. 1995, 55, 2556-2559.
    11. Eberhart,C.E, Coffey,R.J, Radhika,A,et al. Up-regulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas.Gastroenterology, 1994,107, 1183-1188.
    12. Dimberg,J, Samuelsson,A, Hugander, A, etal. Differential expression of cyclooxy- genase-2 in human colorectal cancer.Gut, 1999, 45, 730-732.
    13. Chazotte-Aubert L, Oikawa S, Gilibert I, Bianchini F, Kawanishi S, Ohshima H. Cytotoxicity and site-specific DNA damage induced by nitroxyl anion (NO-) in the presence of hydrogen peroxide. Implications for various pathophysiological conditions. J Biol Chem 1999; 274: 20909-20915.
    14. Pinlaor S, Ma N, Hiraku Y, Yongvanit P, et al.Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2'- deoxyg- uanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis. 2004 Aug;25(8):1535-1542.
    15. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogentic and antitumor of cyclooxygenase-2 inhibitors. Cancer Res,2000, 60(5): 1306-1311.
    16. Oshima, M., M.M. Taketo.COX selectivity and animal models for colon cancer. Curr. Pharm.Des. 2002;8:1021-1034.
    17. Williams CS, Smalley,W, DuBois RN. Aspirin use and potential mechanisms for colorectal cancer prevention.J.Clin.Invest.1997,100,1325-1329.
    18. Smalley W, Ray WA,DaughertyJ,Griffin MR.Use of nonsteroidal antiinflammatory drugs and incidence of colorectal cancer: a population-based study. Arch.Intern.Med,1999;159:161-166.
    19. Appleby SB, Ristimaki A,Neilson K, et al. Structure of the human cyclooxygenase-2 gene. Biochem.J., 1994;302,723-727.
    20. Mayo MW,Baldwin AS.The transcription factor NFkappaB:control of oncogenesis and cancer therapy resistance. Biochim.Biophys. Acta, 2000,1470,M55-M62.
    21. Nomura A, Stemmermann GN, Chon PH, et al. Helicobacter pylori infection gastric carcinoma among Japanese Americans in Hawaii.N Engl J Med,1991;325(9):1132-1136.
    22. Lim JW,Kim H, Kim KH, et al. Nuclear factor-κB regulates cyclooxygenase-2 expresion and cell proliferation in human gastric cancer cells. Lab Ivest,2001,81(3):349-360.
    23. Ganster RW, Taylor BS,Shao LF, et al. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat1 and NF-κB.Proc Natl Acad Sci USA,2001,98(15):8638-8643.
    24. Keinanen R,Vartiainen N,Koistinaho J.Molecular coloning and haracterization of the rat inducible nitric oxide synthase gene. Gene,1999,234(2):279-305.
    25. Wilson KT, Fu S, Ramanujamk S,et al. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas.Cancer Res,1998,58(14)2829-2834.
    26. Pahl HL. Activators and target genes of Rel/NF-kB transcription factors[J]. Oncogene,1999,18(49):6853-6866.
    27. Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development[J].Leukemia,2002,16(6):1053-1068.
    28. Baldwin AS.Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kB[J].J Clin Invest,2001,107(3):241-246.
    29. Karin M, Cao Y, Greten FR. NF-kB in cancer: from innocent bystander to major culprit[J].Nat Rev Cancer,2002,2(4):301-310.
    1. Fire A,Xu S,Montogomery MK,et al.Potent and specific genetic inforference by double-stranded RNA in Caenorhabditis legans.Nature,1998,391(6669):806-811.
    2. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001 ,18;409(6818):363-366.
    3. Lin SL. D-RNAi(messenger RNA-antisense DNA interference)sa a novel defense system against cancer and viral infections.Curr Cancer Drug Targets, 2001,Nov;1(3):241-247.
    4. Wilda M, Fuchs U, Wossmann W, et aI. Killing of leukemic cells with a BCR/ABLfusion gene by RNA interference (RNAi). Oncogene 2002,21(37):5716-5724.
    5. Borkhardt A. Blocking oncogenes in malignant cells by RNA terference--new hope for a highly specific cancer treatment? Cancer Ce11,2(3):167-168.
    6. Templeton NS.Liposomal delivery of nucleic acid in vivo. DNA Cell Biol.2002; 21(12):857-867.
    7. Kishida T,Asad AH,Gojo S,et al.Seqence-special gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA.J Gene Med.2004;6:105-110.
    8. Schwarz DC,Hutvagner G,Haley B,et al.Evidence that siRNAs function as guard, not primers in the Drosophila and human RNAi pathways.Mol Cell,2002,10:537-548.
    9. Chiu YL,Rana TM.RNAi in human cells:basic structural and functional features of small interfering RNA.Mol Cell,2002,10:549-561.
    10. Xudong Zhu,Tao Li,Ying Dang,et al.A Novel In Vitro Transcription Method for Producing siRNAs Without Specific Sequence Requirements[J].Molecular Biotech,2005,31:187-192.
    11.张莹莹,李朝,杨志新等.应用H1-U6双启动子RNAi载体筛选人泛素结合酶hUBE2W的RNAi有效靶点. Chin J Biotech 2008,25;24(11):1975-1980.
    12. Starkuviene V, Seitz A, Erfle H, et al. Measuring secretory membrane traffic: a quantitative fluorescence microscopy approach.Methods Mol Biol.2008;457:193-201.
    13. Williams,C.S., Smalley,W, et al. Aspirin use and potential mechanisms for colorectal cancer prevention. J. Clin. Invest. 1997,100,1325-1329.
    14. Smalley,W, Ray,W.A, Daugherty,J, et al. Use of nonsteroidal anti-inflammatory drugs and incidence of colorectal cancer: a population-based study. Arch. Intern. Med. 1999, 159, 161-166.
    15. Labayle,D, Fischer,D, Vielh,P, et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology, 1991,101,635-639.
    16. van Stolk,R., Stoner,G., Hayton,W.L., et al. Phase I trial of exisulind (sulindac sulfone, FGN-1) as a chemopreventive agent in patients with familial adenomatous polyposis. Clin. Cancer Res. 2000,6,78-89.
    17. Cogoni C,Macino G.Post-transcriptional gene silencing across kingdoms.Curr Opin Genet Dev.2000,10(6):638-643.
    18. Gura T.A silence that speaks volumes.Nature.2000,404(6780):804-808.
    19. Worby CA;Simonson-Leff N;Dixon JE.RNA interference of gene expression (RNAi)in cultured Drosophila cells.Sci-STKE,2001,2001(95):PL1.
    20. Grunweller A,Hartmann RK.RNA interference as a gene-specific approach for molecularmedicine.Curr Med Chem,2005,12(26):3143-3161.
    21. Paddison PJ, Candy AA,Hannon GJ.Stable suppression of gene expression by RNAi in mammalian cells.Proc Natl Acad Sci USA,2002,99(3):1443-1448.
    22. Miralem T,Hu Z,Torno MD,et al.Small interference RNA-mediated gene silencing of human biliverdin reductase,but not that of heme oxygenase-1,attenuates arsenite-mediated induction of the oxygenase and increases apoptosis in 293A kidney cells.J Biol Chem,2005,280(17):17084-17092.
    23. Richard I,Ader M,Sytnyk V,et al.Electroporation-based gene transfer for efficient transfection of neural precursor cells.Brain Res Mol Brain Res, 2005,138(2):182-190.
    24. Moriguchi R,Kogure K,Iwasa A,et al.Non-linear pharmacodynamics in a non-viral gene delivery system:Positive non-linear relationship between dose and transfection efficiency.J Control Release,2006,110(3):605-609.
    1. Caplen NJ. RNAi as a gene therapy approach. Expert Opin Biol.Ther, 2003, 3(4):575-86.
    2. Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry. 2002 Apr 9;41(14):4503-10.
    3. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference.Nat Biotechno1.2004 Mar;22(3):326-330.
    4. Brummelkamp, TR, Bemards R Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002,296:550-553.
    5. Bertrand JR, Pottier M, Vekris A. Comparison of antisense oligonucleotides and siRNAsin cell culture and in vivo. Biochem Biophys Res Commun.2002 Aug 30;296(4):1000-1004.
    6. Elbashir SM, Harborth J, L,endeckel W,.et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,24;411(6836):494-498.
    7. Yu JY, DeRuiter SL,Turner DL.RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A, 2002, 30; 99(9):6047-6052.
    8.万锋,雷霆,舒凯,等.垂体瘤的体外侵袭模型-Boyden小室法的建立和特点.中华神经外科杂志[J]. 2005,21(3):149-152.
    9. Bharti AC,Aggarwal BB.Nuclear factor-kappa B and cancer:its role in prevention and therapy.Biochem Pharmacol,2002,64(5-6):883-888.
    10. Hahm KB, Lim HY, Sohn S, et al. In vitro evidence of the role of COX-2 in attenuating gastric inflammation and promoting gastric carcinogenesis. J Environ Pathol Toxcol Oncol,2002,21(2):165-176.
    11. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell,2004,6(3):203-208.
    12. Biswas DK,Cruz AP,GansbergerE,et al. Epidermal growth factor-induced nuclear factor kappa B activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci U S A,2000,97(15):8542-8547.
    13. Etienne, MC, Formento JL, Lebrun-Frenay C,et al. E pidermal growth factor receptor and labeling index are independent prognostic factors in glial tumor outcome.Clin Cancer Res,1998 ,4(10):2383-2390.
    14. Wang CY, Mayo MW , Komduk RG, et a1. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science,1998,281(5383):l680-1683.
    15. Chen S, Fribey A, Wang CY. Potentiation of tumor necrosis factor mediated apoptosis of oral squamous cell carcinoma cells by adenovirus-mediated genes transfer of NF-κB inhibitor.J Dent Res,2002,81(2):98-102.
    16. Ismail HA,Lessard L, Mes-Masson AM. Expression of NF-kB in prostate cancer lymph node metastases[J].Prostate,2004,58(3):308-313.
    17. Bancroft CC, Chen Z, Dong G, et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways . Clin Cancer Res, 2001,7(2):435-442.
    18. Huang S,DeGuzman A,Bucana CD, et al. Nuclear factor-kppaB activity correlates with growth, angiogenesis, and metastasis of human melalloma cells in nude mice. Clin Cancer Res, 2000,6(6):2573-2581.
    19. Kim JH, Kim B, Cai L, et a1.Transcriptional regulation of a metastasis suppressor gene by Tip60 an d beta-catenin complexes. Nature,2005,434(7035):921-926.
    20. Greten FR, Eckmann L, Greten TF, et a1. IKKbeta links inflammation and tumorigenesis in a mouse medel of coltis-associated cancer. Cell, 2004,118(3):285-296.
    21. Ghosh S,Kann M,Missing pieces in the NF-kappaB puzzle.Cell,2000,109(suppl): 81-96.
    22. Xiong HQ, Abbruzzese JL, Lin E. NF-kB activity blockade impairs the angiogenic potential of human pancreatic cancer cells[J].Int J Cancer,2004,108(2):181-188.
    23. Shibata A, Nagaya T, Imai T. Inhibition of NF-kB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells [J]. Breast Cancer Res Treat, 2002,73(3):237-243.
    24. Vermes I,Hannen C,Steffens-Nakken H,et al.A novel assay for apoptosis. Flow cytometric detection of phasphatidylserine expression early apoptotic cells using flourescein labeled Annexin V.J. Immunol[J].Methods,1995,184(1):39-51.
    25.郑骏年,谢叔良,陈家成等.流式细胞术定量检测细胞凋亡3种方法的比较研究.中国免疫学杂志[J].1999,15(10):467-469.
    26.雷晓,余佩武.双标记流式细胞术定量分析5-FU诱导胃癌细胞早期凋亡[J].第三军医大学学报,2002,24(7):855-857.
    27. Kobayashi S,Higuchi T,Anzai K.Application of the BC1 RNA gene promoter for short hairpin RNA expression in cultured neuronal cells.Biochem Biophys Res Commun,2005,334(4):1305-1309.
    28. Michel U, Malik I,Ebert S,et al.Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons. Biochem Biophys Res Commun, 2005,326(2):307-312.
    29. Harborth J,Elbashir SM,et al.Sequence,chemical,and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.Antisense Nucleic Acid Drug Dev.2003,13(2):83-105.
    30. Liotta LA.Tumor invasion and metastases-role of the extracellular matrix[J].Cancer Res,1986,46(1):1-7.
    1.左连富.流式细胞术与生物医学[M].辽宁:辽宁科学技术出版社,1996.73-75,24.
    2. Milyamoto S, Verma IM. REL/NF-κB/IκB Story.Adv Cancer Res,1995,66(7):255-261.
    3. Hayden MS and Ghosh S. Signaling to NF-κB. Genes Dev. 2004,18:2195–2224.
    4. Perkins ND. Achieving transcriptional specificity with NF-κB. Int. J.Biochem. Cell. Biol. 1997,29: 1433–1448
    5. Baldwin AS.The NF-κB, IκB proteins new discoveries and sights.Annu Rev Immunol,1996, 14(2):649-658.
    6. Whiteside ST, IsraeI A.IκB proteins:structure,function and regulation.Semin Cancer Biol,1997;8:75-82.
    7. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immuno1,1994,12:141-179.
    8. Appleby SB, Ristimaki A, Neilson K, et al. Structure of the human cyclooxygenase-2 gene. Biochem J, 1994, 302:723-727.
    9. Chariyalertsak S, Sirikulchayanonta V, Mayer D, et a1. Aberrant cycloxygenase isozyme expression in human intrahepatic cholangiocarcinoma. Gut,200l,48(1):80-86.
    10. Jin YM, Lee KB, Wang HJ, et a1. Expression of cycloxygenase-2 intrahepatic cholangiocarcinoma.Hepatology,1999,30:A277.
    11. Siriea AE, Lai GH, Zhang Z.Biliary cancer growth pathways, cycloxygenase-2 and potential therapeutic strategies.J Gastroenteml Hepatol, 2001, l6:363-372.
    12. Hayashi N , Yamamoto H , Hiraoka N . Differential expression of cycloxygerm-2(COX-2)in human bile duct epithelial cells and bile duct neoplasm.Hepatology,2001,34(4 Pt 1):638-650.
    13. Henry Y, Lepoiver M, Drapler JC, et al. EPR characterization of molecular targets of NO in mammalian cells and organelles. FASEB J, 1993,7(12):1124-1134.
    14. Lim JW, Kim H, Kim KH, et al. Nuclear factor-κB regulates cyclooxygenase-2 expresion and cell proliferation in human gastric cancer cells. Lab Ivest,2001,81(3):349-360.
    15. Wilson KT, Fu S, Ramanujamk S,et al. Increased expression of inducible nitric oxidesynthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas.Cancer Res,1998,58(14)2829-2834.
    16. Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development[J].Leukemia,2002,16(6):1053-1068.
    17. Baldwin AS.Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kB[J].J Clin Invest,2001,107(3): 241-246.
    18. Karin M, Cao Y, Greten FR. NF-κB in cancer: from innocent bystander to major culprit[J].Nat Rev Cancer, 2002, 2(4):301-310.
    19. Hiscott J, Kwon H, Genin P. Hostile takeovers: viral appropriation of the NF-κB pathway[J]. J Clin Invest, 2001, 107(2):143-151.
    20. Lee NS.Dohjima T,Bauer G. et a1.Expression of smalIinterfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002;20(5):500-505.
    21. 100.Yu JY.DeRuiter SL. Turner DL.RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells. Proc Nati Acad Sci USA 2002;99(9):6047-6052.
    1. Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res,2006;66(7):3351-3354.
    2. Gulliksrud K, Vestvik IK, Galappathi K, et al. Detection of different hypoxic cell subpopulations in human melanoma xenografts by pimonidazole immunohisto -chemistry. Radiat Res. 2008;170(5): 638-50.
    3. Fukuta K, Kohri K, Fukuda H, et al. Induction of multinucleated cells and apoptosis in the PC-3 prostate cancer cell line by low concentrations of polyethylene glycol 1000.Cancer Sci.2008;99(5): 1055-62.
    4. Nimura Y, Kawata T, Uzawa K,et al.Silencing Ku80 using small interfering RNA enhanced radiation sensitivity in vitro and in vivo.Int J Oncol.2007; 30(6):1477-84.
    5. Klostergaard J,Auzenne E,Ghosh S,et al.Magnetic resonance imaging-based prospectivedetection of intraperitoneal human ovarian carcinoma xenografts treatment response.Int J Gynecol Cancer,2006,16 (Suppl1):111-117.
    6. Rivette AS,Tokar EJ,Williams DE,et al.Selection of cell lines with enhanced invasive phenotype from xenografts of the human prostate cancer cell line WPE1-NB26.J Exp Ther Oncol,2005,5(2):111-123.
    7. Kasukabe T,Okabe-Kado J,Kato N,et al.Effects of combined treatment with rapamycin and cotylenin A,a novel differentiation-inducing agent,on human breast carcinoma MCF-7 cells and xenografts. Breast Cancer Res,2005,7(6):R1097-1110.
    8. Kim S,Prichard CN,Younes MN,et al.Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice.Clin Cancer Res,2006,12(2):600-607.
    9. Sun H, Chung WC, Ryu SH, et al. Cyclic AMP-responsive element binding protein and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis.Cancer Prev Res.2008;1(5):316-28.
    10. Androic I, Kr?mer A, Yan R,et al.Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol.BMC Cancer,2008;29;8:391.
    11. Sun Y, Liu M, Yang B,et al.Inhibition of laryngeal cancer cell invasion and growth with lentiviral-vector delivered short hairpin RNA targeting human MMP-9 gene.Cancer Invest.2008;26(10):984-9.
    12. Putral LN, Gu W, et al. RNA interference for the treatment of cancer. Drug News perspect,2006;19(6):317-324.
    13. Friedrich I, Shir A, Klein S, Levitzki A. RNA molecules as anti-cancer agents, Semin Cancer Biol,2004;14(4):223-230.
    14. Lofgren C, Hjortsberg L, Blennow M, et al. Mechanisms of cross-resistance between nucleoside analogues and vincristine or daunorubicin in leukemic cells. Biochem Biophys Res Commun,2004;320(3):825-832.
    15. Keppel S, Matthess Y, Zimmer B, et al. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res,2006;34(16):4527-4536.
    16. Shi Z,Liang YJ,Chen ZS,et al.Reversal of MDR1/P-glycoprotein-Mediated Multidrug Resistance by Vector-Based RNA Interference In Vitro and In Vivo.Cancer Biol Ther,2006,5(1):39-47.
    17. Ryo A,Uemura H,Ishiguro H,et al.Stable suppression of tumorigenicity by Pin1-targeted RNA interference in prostate cancer.Clin Cancer Res,2005,11(20):7523-7531.
    18. Howard BA,Furumai R,Campa MJ,et al.Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo.CancerRes,2005,65(19):8853-8860.
    19. Piva R,Chiarle R,Manazza AD,et al.Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas.Blood,2006,107(2):689-697.
    20. Chan DW,Ng IO.Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells.J Pathol,2006,208(3):372-380.
    21. Moyano JV,Evans JR,Chen F,et al.AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer.J Clin Invest,2006,116(1):30-32.
    22. Wyatt CA,Geoghegan JC,Brinckerhoff CE.Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells:effects on matrix destruction and tumor growth.Cancer Res,2005,65(23):11101-11108.
    23. Chandra S.Subcellular imaging of RNA distribution and DNA replication in single mammalian cells with SIMS: the localization of heat shock induced RNA in relation to the distribution of intranuclear bound calcium.J Microsc.2008 Oct;232(1):27-35.
    [1] Wessells J,Baer M,Young HA,et al. BCL-3 and NF-kappa B p50 attenuate lipopolysaccharide induced inflammatory responses in macrophages [J].J Biol Chem,2004,279(48):49995- 50003.
    [2] Morishita R, Higaki J, Tomita N, et al. Application of transcription factor decoy strategy as means of gene therapy and study of gene expression in cardiovascular disease [J]. Circ Res,1998,82(10):1023~1028.
    [3] Pai R,Tamawski AS,Tran T.Deoxycholic acid activates betacate-nin signaling pathway and increases colon cell cancer growth and invasiveness[J].Mol Biol Cell,2004,15(5):2156-2163.
    [4] Schimmer AD,Welsh K,Pinilla C, et a1. Smal1-molecule an antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity [J] . Cancer Cell,2004,5(1):25-35.
    [5] Clohisy JC, Roy BC, Biondo C, et a1. Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis [J] . J Ilmmunol,2003,171(10):5547-5553.
    [6] Aya K, Alhawagri M, Hagen-Stapleton A, et a1. NF-(kappa) B-inducing kinase controls lymphocyte and osteoclast activities in inflammatory arthritis [J]. J Clin Invest,2005.115(7):1848-l854.
    [7] Bemal-Mizrachi L, Lovly CM, Ratner L. The role of NF-kappa B-1 and NF-kappa B-2- mediated resistance to apoptosis in lymphomas [J]. Prec Natl Acad Sci USA, 2006,103(24): 9220- 9225.
    [8] Im E,Martinez JD.ursodeoxycholic acid (UDCA) can inhibit deo-xycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells[J].J Nutr,2004,134(2):483-486.
    [9] Raufman JP, Cheng K, Zimniak P. Activation of muscarinic receptor signaling by bile acids: physiological and medical implications [J] . Dig Dis Sci ,2003,48(8):1431-1444.
    [10] JJenkins GJ,Harries K,Doak SH,et a1. The bile acid deoxycholic acid (DCA)at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro [J]. Carcinogenesis, 2004,25(3):317-323.
    [11] Ru-Fu Chen, Zhi-Hua Li, Xian-He Kong, et al. Effect of mutated IκBαtransfection on multidrug resistance in hilar cholangiocarcinoma cell lines [J]. World J Gastr,2005;11(5):726-728.
    [12] Shin SR, Sanchez-Velar N, Sherr DH, et a1. 7,12-dimethyl-benz(a) anthracenetreatment of a c-rel mouse mammary tumor cell line induces epithelial to mesenchymal transition via activation of nuclear factor-kappaB [J].Cancer Res,2006,66(5):2570-2575.
    [13] Gill JS, Zhu X, Moore MJ, et al. Effects of NF-κB decoy oligonucleotides released form biodegradable polymer microparticles on a glioblastoma cell line [J]. Biomaterials,2002,23: 2773- 2781.
    [14] Hirokazu U, Minoru H, Masashi K, et al. Inhibition of inducible NF-κB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line [J]. Experimental Cell Res,2003,289:27-35.
    [15] Glazner G W, Mattson M P. Differential effects of BDNF,ADNF9,and TNFαon levels of NMDA receptor subunits, calcium homeostasis and neuronal vulnerability to excitotoxicity [J]. Exp Neurol,2000,161(2):442~452.
    [16] Kupatt C, Wichels R, Deiis M, et al. Retroinfusion of NF-κB decoy oligonucleotide extends cardioprotein achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs [J]. Gene Therapy,2002,9:518-526.
    [17] Hess D C, Honard E, Cheng C, et al. Hypertonic mannitol loading of NF-kB transcription factor decoys in human brain microvascular endothelial cells blocks up regulation of ICAM-1[J]. Stroke,2000,31(5):1179-1186.
    [18] Yokoseki O, Suauki J, Kitabayashi H, et al. cis-Element decoy against nuclear factor-κB attenuates development of experimental autoimmune myocarditis in rats [J]. Circ Res,2001,89: 809-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700