热镀锌层上钼酸盐转化膜、硅烷膜及钼酸盐/硅烷复合膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环保意识的提高,用于取代传统铬酸盐处理的各种无铬钝化技术的研究日益受到重视。钼酸盐钝化作为最有希望替代铬酸盐钝化的工艺之一,具有低毒性且无污染,在提高金属的耐蚀性、涂装性等方面有及其广泛的应用。金属表面硅烷化预处理具有无污染、适用面广、对有机涂层粘接性能优异等优点,已成为目前表面处理技术的研究热点。
     本文系统地研究了钼酸盐转化膜和硅烷膜在热镀锌层上成膜工艺、成膜机理、膜层结构及影响因素,探索出最佳配方。由于单一膜的钼酸盐转化膜或硅烷膜只能获得较薄的连续膜层,其耐蚀性难以达到或超过常规铬酸盐钝化膜层,在单一膜的基础上再采用两步处理的方法获得钼酸盐/硅烷复合膜。采用扫描电子显微镜(SEM)、能谱仪(EDS)、原子力扫描电镜(AFM)、X射线衍射仪(XRD)、俄歇电子能谱仪(AES)、X射线光电子能谱仪(XPS)、红外光谱(RA-IR)等研究了这些膜层的微观形貌、结构、化学成分,继而探讨了各膜的成膜机理及复合膜的协同效应。研究发现,(1)钼酸盐膜是一种无定型的化学转化膜,其成分Mo、P、O、Zn含量沿膜的深度方向呈梯度变化;当膜层达到一定值时出现不贯穿膜层的微米级宽度的裂纹。(2)硅烷膜中,硅烷与锌层并非以简单物理吸附方式结合在一起,而是与锌层表面的Zn-OH发生化学作用形成Si-O-Zn键紧密地粘合在热镀锌层基体表面;同时通过硅烷分子间的缩合形成Si-O-Si立体网络结构,从而在热镀锌层上形成了致密的三维网络结构的硅烷膜。(3)与单一膜相比,复合膜在厚度上有所增加,根据成分的变化形成双层膜;钼酸盐首先在锌层表面形成转化膜,然后硅烷与基膜间通过Si-O-Me、Si-O-Si化学键及物理吸附作用牢固粘结在一起,通过这两种膜的相互协同作用,热镀锌层上形成了致密、完整、连续并具有一定厚度的钼酸盐/硅烷复合膜。
     中性盐雾试验(NSS)结果表明,以试样出现5~8%面积的白锈的喷雾时间计,未经处理的热镀锌钢试样不足2h,单一钼酸盐转化膜或硅烷膜试样耐盐雾腐蚀的时间明显延长至1天左右,而钼酸盐/硅烷复合膜试样的耐蚀性进一步提高,大约为2天。
     塔菲尔动电位极化结果表明,热镀锌钢经各种方式处理后,极化曲线的阳极分支和阴极分支均向左移动,左移的程度分别反应了阳极过程和阴极过程受到抑制的程度。以未经处理热镀锌试样(极化电阻350?·cm2 )为参照,钼酸盐转化膜的极化电阻(1.32~7.952k?·cm2)大大提高,腐蚀电流明显减小,其中阴极电流密度减小较为显著,说明钼酸盐转化膜是以抑制阴极反应为主;硅烷膜极化曲线的阳极分支和阴极分支均明显左移,表明硅烷膜主要起物理屏障的作用,同时抑制腐蚀过程的阴极和阳极反应,极化电阻约4.4~5.2 k?·cm2;钼酸盐/硅烷复合膜极化曲线的阳极和阴极分支均左移,变化规律与硅烷膜相似。复合膜的腐蚀电流密度远小于单一膜,极化电阻达到59.02 k?·cm2,高于铬酸盐钝化膜(极化电阻31.4 k?·cm2),表明复合膜发挥了钼酸盐膜和硅烷膜的协同效应,其耐蚀性甚至超过铬酸盐钝化膜,有望成为毒性铬酸盐钝化膜的代替品。
     电化学阻抗谱(EIS)的Bode图中,3种膜的的低频阻抗ZLF(主要反映耐蚀性)均比HDG提高;不同工艺条件下生成的膜,ZLF大小顺序与NSS和塔菲尔极化中反映耐蚀性高低的规律一致;Bode和Nyquist图中,不同工艺条件下生成的3种膜可呈现2~3个时间常数;共同的2个时间常数中,低频端的时间常数对应于传输电阻Rct和电双层电容Cdl,高频端的时间常数对应于膜层电阻Rf和膜层电容Cf。在钼酸盐膜和复合膜中,在锌基界面可出现扩散阻抗,是由于该处存在氧浓度差和较慢的氧扩散;在较厚的钼酸盐膜、硅烷膜和钼酸盐/硅烷膜复合膜的EIS图中,还呈现第3个时间常数,反映存在于膜层表面的另一个薄层的膜层电阻Rf 1和膜层电容Cf 1 ,Rf1值较小,可能对应存在一个疏松或有裂纹(电解质可渗入)的薄层。
With the increased environmental awareness of people, an intense research effort is being undertaken to replace chromates aestivation by new non-chromate treatments adhesive agents. Molybdate conversion coating is considered as one of the most possible alternatives to chromate conversion coating, which presents very little toxicity and no carcinogenic nature has been studied ,and molybdate conversion coating have been widely used to improve the corrosion resistance and the painting capacities of the metals. Silane coupling agents is a new and environment-protecting surface-treatment technology applied in metal pretreatments, which has great advantages such as low cost, wide application and excellent adhesive strength to organic coatings, therefore attracts many experts' attention.
     Preparation of the molybdate conversion film and silane film for hot-dip galvanized (HDG) steel has been systematically developed in this paper, so as the growth, structure and anticorrosive properties of all kinds of the films. The optimal passivation technics was obtained. However, the anticorrosive properties both of molybdate conversion film and silane film still have a gap compare with chromate conversion coating. Based on the treatment technology of every single film, the continuous thicker double-layer composite films are gained by two-step treatments, i.e. top-coating silane film on the molybdate conversion film. Surface morphologies, composition and structure of above films were observed and characterized by scanning electronic microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and infrared spectroscopy (RA-IR), meanwhile whose formation and corrosion resistance mechanism were investigated. The results show that:(1) the molybdate conversion film is amorphous, the chemical composition content of Mo, P, O, Zn of film have continuous gradient change along the depth direction of the whole film from the surface. But if the thickness of the conversion film is more than a certain value (about 100 nm), it is apt to cracking but not throughout the whole film. (2) The silane molecules were not combined with HDG coating by the simple physical absorption, but chemical action was generated between Si-OH from silane solution and Zn-OH on HDG coating, then form metallosiloxane bonds, Si-O-Zn. This action made the interface of the silane films be combined with HDG coating tightly. The remaining silanol groups in the films condensed and formed Si-O-Si bonds, and further formed dense three-dimensional network structure on HDG coating. (3) Compared with every single film, the continuous thicker double-layer composite films are gained by two-step treatments. The HDG coating surface was mostly covered by molybdate conversion film, and they were covered by silane films which reacted with molybdate film surface and absorded to molybdate conversion coatings. Through the interaction between these two kinds of films, continuous, compact and complete composite coatings were formed on the galvanized steel substrate.
     The results of neutral salt spray (NSS) test show that: there is 5 to 8% area of white rust appeared on the untreated hot-dip galvanized (HDG) steel within 2 hours in the salt spray environment. If the HDG sample covered by the single molybdate coatings or silane coatings, the appearance of the 5 to 8% area white rust would delay to 1 day; if the HDG sample covered by the composite coatings, the time of Salt spray could extend to 2 day.
     The results of tafel polarization curve measurement show that: the anodic and cathodic processes of zinc corrosion are suppressed more markedly after hot dip galvanized steel with treatments by a variety of ways. The polarization resistance of the molybdate conversion coating (1.32~7.952 k?·cm2) obtained from the optimal technics treatment is far more than untreated hot dip galvanized steel (500~800?·cm2). The cathodic processes of zinc corrosion are suppressed more markedly than anodic processes by the molybdate conversion coating; The silane coating act as a barrier on the surface of zinc layer, which can control both anode and cathode reaction. The polarization resistance of the silane coating is 4.4~5.2 k?·cm2. Both the anodic and the cathodic processes of zinc corrosion are suppressed by the composite coatings. The corrosion current density value of the composite coatings is much smaller than that of the single coatings; the polarization resistance of the coating reach 59.02 k?·cm2, which is more than chromate conversion coating (31.4 k?·cm2). For the composite coatings, the synergistic corrosion protection effect of the molybdate films and silane films, the protection properties of the composite coatings are markedly enhanced and are highly superior to those of the chromate conversion coatings. Therefore, the composite coatings are promising to be as the replacers for the chromate conversion coatings.
     The results of electrochemical impedance spectroscopy (EIS) measurements show that: for the three coatings, the Low-frequency impedance (ZLF) value of the coatings is more than that of the hot dip galvanized steel; the anti-corrosion property order of three coatings were tested by electrochemical impedance spectroscopy (EIS) measurements is as same as that of neutral salt spray test (NSS) and tafel polarization curve measurement; in the Bode and Nyquist diagram, there are 2 to 3 time constant of each coating appeared, among these time constants, the low frequency time constant corresponds to the Charge transfer resistance (Rc t )and electric double layer capacitance (Cdl), high-frequency time constant corresponds to the film resistance (Rf ) and film capacitor (Cf). Because of the existence of oxygen concentration and the slowly oxygen diffusion, there are diffusion resistance occurring in the zinc-based interface of the Molybdate coatings and composite coatings. In the EIS diagram of molybdate film, silane film and composite film, the first three time constants appeared, which reflects another thin layer on the coating surface, film resistance (Rf1) and film capacitor (Cf1), and the film resistance (Rf1) value is very small, may correspond to the existence of a loose or cracks (electrolyte can penetrate) thin layer.
引文
[1] Postlewaithe J, Dobbin M H, Bergevin K. The role of oxygen mass transfer in the erosion2corrosion of slurry pipelines[J ] . Corrosion, 1986,9,42(10):518-522
    [2] Tang P T, Bech-Nielsen G, Moller P M. Molybdate based passivation of zinc [J]. Transactions of the Institute of Metal Finishing, 1997, 75(4): 144-148
    [3] Elisabete Almeida, Diamantino T C, Figueiredo M O, et al. Oxidising alternative species to chromium VI in zinc galvanised steel surface treatment. Part 1—A morphological and chemical study[J] .Surface and Coatings Technology 1998,9,106 (9):8–17
    [4] Lu Jin-tang, Kong gang, Chen Jin-hong, et al. Growth and corrosion behavior of molybdate passivation Film on hot dip galvanized steel [J] . Tansactions of Nonferrous Metals Society of China, 2003,13(1):145-148
    [5] Magalhaes A A O, Margarit I C P, Mattos O R . Molybdate conversion coatings on zinc surfaces [J]. Journal of Electroanalytical Chemistry , 2004, 572 (2): 433-440
    [6]郑环宇,安茂忠,赖勤志.镀锌层无铬钝化工艺的研究[J] .材料保护,2005,9,28(9):18-22
    [7]宫丽,卢燕.热镀锌钢板钼酸盐钝化膜的改性及耐蚀性[J] .钢铁研究学报,2007,3,19(3):88-92
    [8]吕建,吴海江.热锌镀层钼酸盐钝化膜的电子能谱分析[J] .装备环境工程,2007,8,4(4):39-41
    [9]吴海江,陈锦虹,卢锦堂.镀锌层无铬钝化耐蚀机理的研究进展[J] .材料保护,2004,3,37(3):43-45
    [10]卢锦堂,陈锦虹,许乔瑜.无铬钝化的研究进展[J] .材料保护,1999,32(3):24-26
    [11]单凤君,刘常升,于晓中等.镀锌钢板无铬钝化技术的研究进展[J] .材料保护,2007,40(10):45-49
    [12]王雪明,李爱菊,李国丽,管从胜.硅烷偶联剂在防腐涂层金属预处理中的应用研究[J] .材料科学与工程学报,2005,2,23(1):147-148
    [13] Montemor M F, Ferreira M G S, Analytical characterisation and corrosion behaviour of bis-aminosilane coatingsmodied with carbon nanotubes activated with rare-earth salts applied on AZ31Magnesium alloy[J] .Surface and Coatings Technology, 2008,9(9)202 :4766–4774
    [14]王雪明.硅烷偶联剂在金属预处理及有机涂层中的应用研究[D].济南:山东大学, 2005: 74-75
    [15] Pan Guirong , Schaefer Dale W, Van Ooij Wim J , et al .Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl) propyl] tetrasulfide and bis-[trimethoxysilylpropyl] amine [J] .Thin Solid Films, 2006,515(4): 2771–2780
    [16] Cabral A M, Trabelsi W , Serra R , et al .The corrosion resistance of hot dip galvanised steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl] tetrasulfide solutions doped with Ce(NO3) 3 [J]. Corrosion Science,2006,48(11):3740–3758
    [17]徐溢,滕毅,徐铭熙.硅烷偶联剂应用现状及金属表面处理新应用[J] .表面技术,2001,6,30(3):48-51
    [18]徐溢,唐守渊,陈立军.铁表面硅烷试剂膜的反射吸收红外光谱[J] .分析测试学报,2002,3,21(2):72-74
    [19]刘倞,胡吉明,张鉴清等.金属表面硅烷化防护处理及其研究现状[J] .中国腐蚀与防护学报,2006,2,26(1):59-64
    [20] van Ooij W J , Zhu D , Stacy M, et al. Corrosion protection properties of organofunctional silanes—an overview [J]. Tsinghua Science and Technolog, 2005, 10(6):639-664
    [21] Cabral A.M., Duarte R.G., Montemor M.F., et al. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: Composition of the films formed[J]. Progress in Organic Coatings, 2005, 54(4): 322-331
    [22]徐溢,唐守渊,滕毅.金属表面处理用硅烷试剂的水解与缩聚[J].重庆大学学报, 2002, 25(10): 72
    [23]胡吉明,刘倞,张金涛等.铝合金表面BTSE硅烷化处理研究[J].金属学报, 2004, 40(11): 1189-1194
    [24] Trabelsi W., Dhouibi L., Triki E., et al. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes[J]. Surface and Coatings Technology, 2005, 192 (2): 284-290
    [25] Song J., Van Ooij W.J.. Bonding and corrosion protection mechanisms ofγ-APS and BTSE silane films on aluminum substrates[J]. Journal of Adhesion Science and Technology, 2003, 17(16): 2191-2221
    [26] Zhu D.Q., Van Ooij W.J.. Enhanced corrosion resistance of AA 2024-T3 and hot-dipgalvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl] amine[J]. Electrochimica acta, 2004, 49(7): 1113-1125
    [27] Klusmann E, Schultze J W. pH-Microscopy: technical application in phosphating solutions [J]. Electrochimica Acta, 2003, 48(20-22): 3325-3332
    [28] Kurosawa K, Fukushima T. Effects of pH of a Na2 MoO4 -H3PO4 type aqueous solution on the formation of chemical conversion coatings on steels [J]. Corrosion Science, 1989, 29 (9): 1103-1114
    [29] Clayton C R, Lu Y C. A bipolar model of the passivity of stainless steel-III: the mechanismof formation and incorporation [J]. Corrosion Science, 1989, 29 (7): 881-884 2-MoO4
    [30]吴海江.环境友好型热镀锌层无铬钝化膜的研究[D].华南理工大学博士学位论文(指导老师:卢锦堂),广州,华南理工大学,2006.
    [31]韩克平,方景礼.用XPS和AES研究锌表面彩色防腐蚀膜[J].中国腐蚀与防护学报, 1997, 17(1): 41-45
    [32]杨熙珍,杨武.金属腐蚀电化学热力学:电位-pH图及其应用[M].北京:化学工业出版社, 1991: 210-232
    [33] Amirudin A, Thierry D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings [J]. Progress in Organic Coatings, 1996, 28(1): 59-75
    [34] Cachet C, Ganne F, Maurin G, et al. EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc [J]. Electrochimica Acta, 2001, 47(3): 509-518
    [35] Cachet C, Ganne F, Joiret S, et al. EIS investigation of zinc dissolution in aerated sulphate medium. Part II: zinc coatings [J]. Electrochimica Acta, 2002, 47(21): 3409-3422
    [36]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [37] Ride D. CRC Handbook of Chemistry and Physics[M]. Boca Raton :CRC Press,2002.
    [38] Flis J, Tobiyama Y, Mochizuki K, et al. Characterisation of phosphate coatings on zinc, zinc-nickle and mild steel by impedance measurements in dilute sodium phosphate solutions[J]. Corrosion Science, 1997,39(10-11) :1757-1770.
    [39] Benedetti A, Sumodjo P, Nobe K, et al. Electrochemical studies of copper, copper–aluminium and copper–aluminium–silver alloys: impedance results in 0.5 M NaCl[J], Electrochem Acta ,1995,40 (16) :2657-2668.
    [40] Zhu D Q, van Ooij W J. Corrosion protection of metals by water-based silane mixtures of -[trimethoxysilylpropyl] amine and vinyltriacetoxysilane [J]. Progress in Organic Coatings, 2004, 49(1): 42-53
    [41]张明宗,管从胜,王威强.有机硅烷偶联剂在金属表面预处理中的应用[J].腐蚀科学与防护技术, 2001, 13(2): 96-100
    [42]王雪明,李爱菊,李国丽,等.硅烷偶联剂在防腐涂层金属预处理中的应用研究[J].材料科学与工程学报, 2005, 23(1): 146-150
    [43] Zhu D Q, van Ooij W J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl] amine [J]. Electrochimica acta, 2004, 49(7): 1113-1125
    [44]吴森纪.有机硅及其应用[M].北京:科学技术文献出版社, 1990: 282-285
    [45] Montemora M F, Rosqvistb A. Fagerholmb H. The early corrosion behaviour of hot dip galvanised steel pre-treated with bis-1,2-(triethoxysilyl)ethane[J]. Progress in Organic Coatings, 2004, 51(3): 188~194
    [46] Ferreira M G S, Duarte R G, Montemor M F, et al. Silanes and rare earth salts as chromate replacers for pretreatments on galvanised steel[J]. Electrochim Acta, 2004, 49(17-18): 2927-2935
    [47] Montemor M F, Ferreira M G S. Corrosion performance of a two-step pre-treatment for galvanised steel based on lanthanum nitrate and silanes[J]. Surface and Interface Analysis, 2004, 36(1): 773-776
    [48] Cabral A M., Trabelsi W, Serra R, et al.. The corrosion resistance of hot dip galvanized steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl]tetrasulfide solutions doped with Ce(NO3)3 [J]. Corrosion Science, 2006, 48(11): 3740-3758
    [49] Zhu Danqing, Van Ooij Wim J. Corrosion protection of metals by silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane[J]. Progress in Organic Coatings, 2004, 49(1): 42-53
    [50] Van Ooij W J , Zhu D , Stacy M, et al .Corrosion protection properties of organofunctional silanes—an overview [J] . Tsinghua Science and Technolog, 2005, 10(6):639-664
    [51]卢锦堂,张双红,孔纲等.镀锌钢上钼酸盐/硅烷复合膜的组成与耐蚀性[J].华南理工大学学报, 2009, 12:12-17
    [52] Van Ooij W J, Child T F. Protecting metals with silane coupling agents [J]. Chemtech, 1998, 28(2): 26-35
    [53] Beari F, Brand M, Jenkner P, et al. Organofunctional alkoxysilanes in dilute aqueous solution: new accounts on the dynamic structural mutability [J]. Journal of Organometallic Chemistry, 2001, 625: 208-216
    [54]张招贵,郭青山.硅烷偶联剂化学[J].有机硅材料及应用, 1990, 12(4): 7-9
    [55] Franquet A, Le Pen C, Terryn H, et al. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium[J]. Electrochimica acta, 2003, 48(9): 1245-1255
    [56] Kim H, Jang J. Infrared spectroscopic study of SiOx film formation and decomposition of vinyl silane derivative by heat treatment. II. On copper surface [J]. Journal of Applied Polymer Science, 1998, 68(5): 785-792
    [57]黄令,林克发,杨防祖,等.铜表面修饰硅烷膜在碱性溶液中的耐蚀性能研究[J].材料保护, 2005, 38(11): 10-13
    [58]张卫民,胡吉明.硅烷膜的阴极电化学辅助沉积及其防护性能[J].金属学报, 2006, 42(3): 295-298
    [59]黄世强,孙争光,李盛彪,等.新型有机硅高分子材料[M].北京:化学工业出版社, 2004: 174
    [60] Bexell U, Grehk M, Olsson M, et al. XPS and AES characterization of hydrolysedγ-mercaptopropyltrimethoxysilane deposited on Al, Zn and Al-43.4Zn-1.6Si alloy-coated steel [J]. Surface and Interface Analysis, 2004, 36(7): 624-631
    [61]刘世宏,王当憨,潘承璜. X射线光电子能谱分析[M].北京:科学出版社, 1988: 299
    [62] Montemor M F, Rosqvist A, Fagerholm H, et al. The early corrosion behaviour of hot dip galvanised steel pretreated with bis-1,2-(triethoxysilyl) ethane [J]. Progress in Organic Coatings, 2004, 51(3): 188-194
    [63] Valadez-Gonzalez A, Cervantes-Uc J M, Olayo R, et al. Chemical modification of henequén fibers with an organosilane coupling agent [J]. Composites Part B: Engineering, 1999, 30(3): 321-331
    [64] Mutel B, Taleb A B, Dessaux O, et al. Characterization of mixed zinc-oxidized zinc thinfilms deposited by a cold remote nitrogen plasma [J]. Thin Solid Films, 1995, 266(2): 119-128
    [65] Horr T J, Arora P S. Determination of the acid-base properties for 3-amino, 3-chloro and 3-mercaptopropyltrimethoxysilane coatings on silica surfaces by XPS [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 126(2-3): 113-121
    [66] Ibrahim F, Wilson J I B, John P, et al. Structural analysis of amorphous hydrogenated silicon-carbon thin films from silane/propane mixtures [J]. Journal of Non-Crystalline Solids, 1994, 175(2): 195-203
    [67] Cabral A M, Duarte R G, Montemor M F, et al. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: Composition of the films formed[J]. Progress in Organic Coatings, 2005, 54(4): 322-331
    [68] Trabelsi W, Dhouibi L, Triki E, et al. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes[J]. Surface and Coatings Technology, 2005, 192 (2): 284-290
    [69] Toth A, Bertoti I, Blazso M, et al. Oxidative damage and recovery of silicone rubber surfaces. I. X-rayphotoelectron spectroscopic study [J]. Journal of Applied Polymer Science, 1994, 52(9): 1293-1307
    [70] Morra M, Ochiello E, Garbassi F. The effect of plasma-deposited siloxane coatings on the barrier properties of HDPE [J]. Journal of Applied Polymer Science, 1993, 48(8): 1331-1340
    [71] Plueddemann E P. Silane Coupling Agents[M].2nd ed. New York: Plenum Press, 1991
    [72]安炜.多组份Mo-Bi-O催化剂结构及选择性氧化性能[J].石油化工, 1999, 28(9): 640-644

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700