可精确控制药物的细胞内释放和抗癌活性的还原敏感壳可摒弃的生物可降解聚合物纳米载体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酯型聚合物纳米药物载体在体内的药物释放速度通常很慢,而刺激响应性纳米药物载体则能将小分子药物或蛋白质很快释放出来。然而,在生物可降解的胶束和囊泡的研究中缺乏能够精确控制胶束和囊泡药物的释放速度的方法。
     在本论文中,我们将非还原敏感型聚合物PEG-PCL和还原敏感型聚合物PEG-SS-PCL按不同比例混合制备出具有不同还原敏感度的聚合物胶束和囊泡。这类还原敏感型胶束和囊泡能够在模拟细胞内还原环境下由于PEG壳的部分摒弃,能分别精确地控制疏水小分子药物(如阿霉素DOX)或亲水大分子蛋白质药物的释放。
     论文的第二章主要介绍了此类还原敏感型聚合物胶束的工作。我们利用还原敏感的PEG-SS-PCL和非还原敏感的PEG-PCL两种嵌段共聚物形成的还原敏感的胶束来装载抗癌药物阿霉素(DOX),系统地研究了体系中双硫键含量对其还原敏感性、粒径变化、药物的释放速度以及抗癌活性等方面的影响。双硫键的含量是在制备胶束过程中通过改变PEG-PCL和PEG-SS-PCL两种嵌段共聚物的质量分数来控制的。还原触发的体外DOX释放速度、细胞内DOX的含量以及装载DOX的聚合物胶束体系对癌细胞的细胞毒性均密切依赖于胶束体系中双硫键的含量,这一结果可能是由于还原条件下PEG壳层的脱落导致在胶束内形成孔道。
     论文的第三章我们设计利用还原敏感的PEG-SS-PCL和非还原敏感的PEG-PCL两种嵌段共聚物来制备还原敏感、壳可摒弃的聚合物囊泡,其在类似细胞内还原条件下可部分摒弃PEG壳而形成壁膜多孔的聚合物囊泡,通过控制壁膜上的孔道的大小、数量可用于精确控制蛋白质药物的释放。在本章中,所选的PEG-SS-PCL和PEG-PCL中,PCL的分子量要比第二章中的大,PEG和PCL的分子量分别为5和18kDa左右,有利于形成聚合物囊泡结构。我们具体研究了用该还原敏感囊泡装载蛋白质的情况,并系统地研究了双硫键含量对囊泡体系的还原敏感性、粒径变化、各种蛋白质的释放速度等方面的影响。实验结果表明,还原触发的体外蛋白质的释放速度密切依赖于囊泡体系中双硫键的含量。此外,我们也用不同分子量的蛋白质及葡聚糖初步研究了还原敏感囊泡在还原条件下壁膜的渗透性。通过体外释放曲线的拟合得到渗透率范围为0.7-12×10~(-13)m/s,还原敏感度越大即含PEG-SS-PCL成分越多的囊泡其壁膜形成的孔道对包载物质的渗透率越大,即渗透率顺序为SS100>SS70>SS50>SS30>SS0;尺寸越小的包载物质在纳米载体的渗透率也越大,即渗透率顺序为FITC-dex4k>FITC-BSA> FITC-IgG> FITC-dex40k。另外,在模拟细胞内还原条件下该还原敏感聚合物囊泡壁膜上形成的可供药物通过的孔道尺寸至少为13nm左右。
     与PEG-SS-PCL胶束和囊泡在还原环境下很快发生聚集的情况不同,含有10至90wt.%PEG-PCL的PEG-SS-PCL胶束和囊泡体系在脱去亲水PEG壳后其粒径并没有明显变化。因此,还原触发的还原敏感纳米载体的亲水壳的摒弃是一种能精确控制小分子疏水抗癌药物和亲水大分子药物的细胞内释放及抗癌活性的有效措施。
Traditional polyester based micelle and polymersome nanocarriers often exhibit slowdrug release profiles in vivo, while stimuli sensitive micelles and polymersomes couldrelease drugs or proteins very quickly. However, there is lack of fine control in drug releasefrom the biodegradable micelles and polymersomes so far. In this thesis, we designedbiodegradable micelles and polymersomes based on a mixture reducible polyethyleneglycol-SS-polycaprolactone (PEG-SS-PCL) and nonreducible PEG-PCL, which exhibitedtunable DOX or protein release profiles, elegantly manipulated by varying the compositionof the two diblock copolymers.
     In chapter2of the thesis, effects of disulfide contents on reduction-sensitivity, triggereddrug release as well as anti-tumor activity of shell-sheddable micelles self-assembled fromwere systematically investigated. Interestingly, in contrast to rapid aggregation ofPEG-SS-PCL micelles, mixed micelles containing10~90wt.%PEG-PCL displayed littlesize change in response to10mM dithiothreitol (DTT). The in vitro release studies showedthat under intracellular-mimicking reductive environments, DOX release rate increased withincreasing PEG-SS-PCL contents in the micelles, in which about29.4,42.7,77.9and86.9%DOX was released within12h from micelles containing30,50,70and90wt.%PEG-SS-PCL, respectively. In contrast, DOX release was minimal (<20%) undernon-reductive physiological conditions. Notably, flow cytometry displayed clear correlationbetween cellular DOX levels and PEG-SS-PCL contents in DOX-loaded micelles. Moreover,confocal laser scanning microscopy (CLSM) observations indicated progressively strongerDOX fluorescence in RAW264.7cells following12h treatment with DOX-loaded micellescontaining increasing PEG-SS-PCL contents. In addition, MTT assays in RAW264.7cellsshowed that the cytotoxicity of DOX-loaded micelles was augmented proportionally toPEG-SS-PCL contents, signifying the role of reduction-triggered “active” drug release incells.
     In chapter3of the thesis, we continued the study with the polymersomes whichcomposed of PEG-SS-PCL/PEG-PCL block copolymers with high PCL molecular weight of 18kDa. We investigated the encapsulation and release of hydrophilic macromacromoleculelike proteins and dextran of the reducible polymersomes. The reducible polymersomes couldshed off PEG shell partially to form polymersomes with porous membranes underbioreducible mimicking environments, and by controlling PEG-SS-PCL content the size andthe number of the pores formed and thus the protein release could be manipulated. Theprotein loaded polymersomes with size of143-153nm (PDI0.1-0.2) could be prepared viadirect hydration method. It is found that reduction triggered protein and dextran release wasintimately dependent on the PEG-SS-PCL content in the polymersomes, possibly due to thepore formation resulting from PEGshedding under reducible conditions. By studying the invitro release of proteins and dextran of different molecular weight and size, we analyzed thepermeability of the polymersomes in the presence of10mM DTT. After fit the release datawe got the permeability of the different polymersomes for different macromolecules inbetween0.7-12×10~(-13)m/s. Moreover, high PEG-SS-PCL in the polymersomes or smallmacromolecules led to high permeability. Furthermore, the pore size formed in10mM DTTin the polymersome membranes was at lease13nm. These results have shown that the invitro drug or protein release, intracellular drug release and therefore anti-tumor activity ofnano drugs can be precisely controlled by extentof reduction-triggered shedding offhydrophilic shells.
引文
[1] S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsivenanocarriers for drug and gene delivery. Journal of Controlled Release126(3)(2008)187-204.
    [2] X. Wang, L. Yang, Z.G. Chen, D.M. Shin, Application of nanotechnology in cancertherapy and imaging. CA Cancer J Clin58(2)(2008)97-110.
    [3] P. Couvreur, C. Vauthier, Nanotechnology: intelligent design to treat complex disease.Pharm Res23(7)(2006)1417-1450.
    [4] V.P. Torchilin, Targeted pharmaceutical nanocarriers for cancer therapy and imaging.AAPS J9(2)(2007) E128-147.
    [5] V.P. Torchilin, Recent approaches to intracellular delivery of drugs and DNA andorganelle targeting. Annu Rev Biomed Eng8(2006)343-375.
    [6] M.C. Garnett, Gene-delivery systems using cationic polymers. Critical reviews intherapeutic drug carrier systems16(2)(1999)147-207.
    [7] A. Kichler, C. Leborgne, E. Coeytaux, O. Danos, Polyethylenimine-mediated genedelivery: a mechanistic study. J Gene Med3(2)(2001)135-144.
    [8] M. Ogris, E. Wagner, Targeting tumors with non-viral gene delivery systems. DrugDiscov Today7(8)(2002)479-485.
    [9] D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar systems forcancer targeted drug delivery. Pharm Res24(6)(2007)1029-1046.
    [10] F. Danhier, O. Feron, V. Preat, To exploit the tumor microenvironment: Passive andactive tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release148(2)135-146.
    [11] V.P. Torchilin, A.N. Lukyanov, Z. Gao, B. Papahadjopoulos-Sternberg, Immunomicelles:targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A100(10)(2003)6039-6044.
    [12] B. Gupta, V.P. Torchilin, Transactivating transcriptional activator-mediated drugdelivery. Expert Opin Drug Deliv3(2)(2006)177-190.
    [13] M. Lundberg, S. Wikstrom, M. Johansson, Cell surface adherence and endocytosis ofprotein transduction domains. Mol Ther8(1)(2003)143-150.
    [14] E. Chambers, S. Mitragotri, Prolonged circulation of large polymeric nanoparticles bynon-covalent adsorption on erythrocytes. J Control Release100(1)(2004)111-119.
    [15] L. Zhang, Y. Hu, X. Jiang, C. Yang, W. Lu, Y.H. Yang, Camptothecin derivative-loadedpoly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles andtheir biodistribution in mice. Journal of Controlled Release96(1)(2004)135-148.
    [16] E.S. Kawasaki, A. Player, Nanotechnology, nanomedicine, and the development ofnew, effective therapies for cancer. Nanomedicine1(2)(2005)101-109.
    [17] C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, P. Couvreur, Drug delivery toresistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J ControlRelease93(2)(2003)151-160.
    [18] S.P. Vyas, A. Singh, V. Sihorkar, Ligand-receptor-mediated drug delivery: anemerging paradigm in cellular drug targeting. Critical reviews in therapeutic drugcarrier systems18(1)(2001)1-76.
    [19] M.E.R. O.Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane,D.G. Kieback, P. Tomczak, S.P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler,Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylatedliposomal doxorubicin HCl (CAELX/Doxil) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Annals of Oncology15(3)(2004)440-449.
    [20] R. Gref, A. Domb, P. Quellec, T. Blunk, R.H. Meller, J.M. Verbavatz, R. Langer, Thecontrolled intravenous delivery of drugs using PEG-coated sterically stabilizednanospheres. Advanced Drug Delivery Reviews16(2)(1995)215-233.
    [21] Y. Yu, C. Deng, F. Meng, Q. Shi, J. Feijen, Z. Zhong, Novel injectable biodegradableglycol chitosan-based hydrogels crosslinked by Michael-type addition reaction witholigo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.Journal of Biomedical Materials Research Part A99A(2)316-326.
    [22] K. Letchford, H. Burt, A review of the formation and classification of amphiphilicblock copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules andpolymersomes. European Journal of Pharmaceutics and Biopharmaceutics65(3)(2007)259-269.
    [23] Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao,T. Okusaka, H. Ueno, M. Ikeda, N. Watanabe, Phase I clinical trial andpharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British J.Cancer91(2004)1775-1781.
    [24]T.-Y. Kim, D.-W. Kim, J.-Y. Chung, S.G. Shin, S.-C. Kim, D.S. Heo, N.K. Kim, Y.-J.Bang, Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free,polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin.Cancer Res.10(11)(2004)3708-3716.
    [25] W. Chen, F. Meng, R. Cheng, Z. Zhong, pH-Sensitive degradable polymersomes fortriggered release of anticancer drugs: A comparative study with micelles. Journal ofControlled Release142(1)(2009)40-46.
    [26] H. Xu, F. Meng, Z. Zhong, Reversibly crosslinked temperature-responsive nano-sizedpolymersomes: synthesis and triggered drug release. Journal of Materials Chemistry19(24)(2009)4183-4190.
    [27] G. Hiram F, P. Lester, Methods in Enzymology, Vol. Volume251, Academic Press,1995, pp.8-28.
    [28] S. Raina, D. Missiakas, Making and breaking disulfide bonds. Annu. Rev. Microbiol.51(1997)179-202.
    [29] W.M. Saltzman, L.K. Fung, Polymeric implants for cancer chemotherapy. Adv DrugDeliv Rev26(2-3)(1997)209-230.
    [30] Y. Ikada, H. Tsuji, Biodegradable polyesters for medical and ecological applications.Macromolecular Rapid Communications21(3)(2000)117-132.
    [31] E.S.J. Arnér, A. Holmgren, Physiological functions of thioredoxin and thioredoxinreductase. European Journal of Biochemistry267(20)(2000)6102-6109.
    [32] D.M. Townsend, K.D. Tew, H. Tapiero, The importance of glutathione in humandisease. Biomed Pharmacother57(3-4)(2003)145-155.
    [33] Y.M. Go, D.P. Jones, Redox compartmentalization in eukaryotic cells. BiochimBiophys Acta1780(11)(2008)1273-1290.
    [34] G. Wu, Y.Z. Fang, S. Yang, J.R. Lupton, N.D. Turner, Glutathione metabolism and itsimplications for health. J Nutr134(3)(2004)489-492.
    [35] G. Saito, J.A. Swanson, K.-D. Lee, Drug delivery strategy utilizing conjugation viareversible disulfide linkages: role and site of cellular reducing activities. AdvancedDrug Delivery Reviews55(2)(2003)199-215.
    [36]P. Kuppusamy, M. Afeworki, R.A. Shankar, D. Coffin, M.C. Krishna, S.M. Hahn, J.B.Mitchell, J.L. Zweier, In vivo electron paramagnetic resonance imaging of tumorheterogeneity and oxygenation in a murine model. Cancer Res58(7)(1998)1562-1568.
    [37] Y. Li, B.S. Lokitz, S.P. Armes, C.L. McCormick, Synthesis of Reversible ShellCross-Linked Micelles for Controlled Release of Bioactive Agents. Macromolecules39(8)(2006)2726-2728.
    [38] J. Zhang, X. Jiang, Y. Zhang, Y. Li, S. Liu, Facile Fabrication of Reversible CoreCross-Linked Micelles Possessing Thermosensitive Swellability. Macromolecules40(25)(2007)9125-9132.
    [39] S. Ghosh, K. Irvin, S. Thayumanavan, Tunable Disassembly of Micelles Using aRedox Trigger. Langmuir23(15)(2007)7916-7919.
    [40] H. Sun, B. Guo, X. Li, R. Cheng, F. Meng, H. Liu, Z. Zhong, Shell-SheddableMicelles Based on Dextran-SS-Polycaprolactone Diblock Copolymer for EfficientIntracellular Release of Doxorubicin. Biomacromolecules11(4)848-854.
    [41] H. Sun, B. Guo, R. Cheng, F. Meng, H. Liu, Z. Zhong, Biodegradable micelles withsheddable poly(ethylene glycol) shells for triggered intracellular release ofdoxorubicin. Biomaterials30(31)(2009)6358-6366.
    [42] A. Harada, K. Kataoka, Novel Polyion Complex Micelles Entrapping EnzymeMolecules in the Core: Preparation of Narrowly-Distributed Micelles from Lysozymeand Poly(ethylene glycol)-Poly(aspartic acid) Block Copolymer in Aqueous Medium.Macromolecules31(2)(1998)288-294.
    [43] Y. Kakizawa, A. Harada, K. Kataoka, Environment-Sensitive Stabilization ofCore-Shell Structured Polyion Complex Micelle by Reversible Cross-Linking of theCore through Disulfide Bond. Journal of the American Chemical Society121(48)(1999)11247-11248.
    [44] Y. Kakizawa, A. Harada, K. Kataoka, Glutathione-Sensitive Stabilization of BlockCopolymer Micelles Composed of Antisense DNA and Thiolated Poly(ethyleneglycol)-block-poly(l-lysine): A Potential Carrier for Systemic Delivery of AntisenseDNA. Biomacromolecules2(2)(2001)491-497.
    [45] M. Oishi, T. Hayama, Y. Akiyama, S. Takae, A. Harada, Y. Yamasaki, F. Nagatsugi,S. Sasaki, Y. Nagasaki, K. Kataoka, Supramolecular Assemblies for the CytoplasmicDelivery of Antisense Oligodeoxynucleotide: Polyion Complex (PIC) Micelles Basedon Poly(ethylene glycol)-SS-Oligodeoxynucleotide Conjugate. Biomacromolecules6(5)(2005)2449-2454.
    [46] S.H. Kim, J.H. Jeong, S.H. Lee, S.W. Kim, T.G. Park, PEG conjugated VEGF siRNAfor anti-angiogenic gene therapy. J Control Release116(2)(2006)123-129.
    [47] S.H. Lee, S.H. Kim, T.G. Park, Intracellular siRNA delivery system usingpolyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate andcationic fusogenic peptide. Biochemical and Biophysical Research Communications357(2)(2007)511-516.
    [48] H. Mok, J.W. Park, T.G. Park, Antisense Oligodeoxynucleotide-ConjugatedHyaluronic Acid/Protamine Nanocomplexes for Intracellular Gene Inhibition.Bioconjugate Chemistry18(5)(2007)1483-1489.
    [49] S. Takae, K. Miyata, M. Oba, T. Ishii, N. Nishiyama, K. Itaka, Y. Yamasaki, H.Koyama, K. Kataoka, PEG-Detachable Polyplex Micelles Based on Disulfide-LinkedBlock Catiomers as Bioresponsive Nonviral Gene Vectors. Journal of the AmericanChemical Society130(18)(2008)6001-6009.
    [50] F. Meng, Z. Zhong, J. Feijen, Stimuli-Responsive Polymersomes for ProgrammedDrug Delivery. Biomacromolecules10(2)(2009)197-209.
    [51] O. Onaca, R. Enea, D.W. Hughes, W. Meier, Stimuli-Responsive Polymersomes asNanocarriers for Drug and Gene Delivery. Macromolecular Bioscience9(2)(2009)129-139.
    [52] S.R. Little, D.S. Kohane, Polymers for intracellular delivery of nucleic acids. Journalof Materials Chemistry18(8)(2008)832-841.
    [53] H. Ohshima, M. Tatemichi, T. Sawa, Chemical basis of inflammation-inducedcarcinogenesis. Archives of Biochemistry and Biophysics417(1)(2003)3-11.
    [54] S. Cerritelli, D. Velluto, J.A. Hubbell, PEG-SS-PPS: Reduction-Sensitive DisulfideBlock Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules8(6)(2007)1966-1972.
    [55] J. Zhang, L. Wu, F. Meng, Z. Wang, C. Deng, H. Liu, Z. Zhong, pH and ReductionDual-Bioresponsive Polymersomes for Efficient Intracellular Protein Delivery.Langmuir (2012).
    [56] J. Xiong, F. Meng, C. Wang, R. Cheng, Z. Liu, Z. Zhong, Folate-conjugatedcrosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel.Journal of Materials Chemistry21(15).
    [57] G. Liu, S. Ma, S. Li, R. Cheng, F. Meng, H. Liu, Z. Zhong, The highly efficientdelivery of exogenous proteins into cells mediated by biodegradable chimaericpolymersomes. Biomaterials31(29)7575-7585.
    [58] R. Yang, F. Meng, S. Ma, F. Huang, H. Liu, Z. Zhong, Galactose-DecoratedCross-Linked Biodegradable Poly(ethylene glycol)-b-polycaprolactone BlockCopolymer Micelles for Enhanced Hepatoma-Targeting Delivery of Paclitaxel.Biomacromolecules12(8)(2011)3047-3055.
    [59] C. Zhu, S. Jung, S. Luo, F. Meng, X. Zhu, T.G. Park, Z. Zhong, Co-delivery ofsiRNA and paclitaxel into cancer cells by biodegradable cationic micelles based onPDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials31(8)2408-2416.
    [60] Y.-L. Li, L. Zhu, Z. Liu, R. Cheng, F. Meng, J.-H. Cui, S.-J. Ji, Z. Zhong, ReversiblyStabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicininto the Nuclei of Cancer Cells. Angewandte Chemie International Edition48(52)(2009)9914-9918.
    [61] P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsivedrug delivery. Drug Discovery Today7(10)(2002)569-579.
    [1] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers asan emerging platform for cancer therapy. Nat Nano2(12)(2007)751-760.
    [2] M.E. Davis, Z. Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatmentmodality for cancer. Nat Rev Drug Discov7(9)(2008)771-782.
    [3] N. Xiao, H. Liang, J. Lu, Degradable and biocompatible aldehyde-functionalizedglycopolymer conjugated with doxorubicin via acid-labile Schiff base linkage forpH-triggered drug release. Soft Matter7(22)10834-10840.
    [4] Y. Kakizawa, K. Kataoka, Block copolymer micelles for delivery of gene and relatedcompounds. Advanced Drug Delivery Reviews54(2)(2002)203-222.
    [5] Y. Bae, K. Kataoka, Intelligent polymeric micelles from functional poly(ethyleneglycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews61(10)(2009)768-784.
    [6] Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T.Okusaka, H. Ueno, M. Ikeda, N. Watanabe, Phase I clinical trial and pharmacokineticevaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer91(10)(2004)1775-1781.
    [7] T.-Y. Kim, D.-W. Kim, J.-Y. Chung, S.G. Shin, S.-C. Kim, D.S. Heo, N.K. Kim, Y.-J.Bang, Phase I and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free,Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies.Clinical Cancer Research10(11)(2004)3708-3716.
    [8] J. Slager, A.J. Domb, Biopolymer stereocomplexes. Advanced Drug DeliveryReviews55(4)(2003)549-583.
    [9] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry,D.A. Boothman, J. Gao, Multifunctional Polymeric Micelles as Cancer-Targeted,MRI-Ultrasensitive Drug Delivery Systems. Nano Letters6(11)(2006)2427-2430.
    [10] M. Vert, S.M. Li, G. Spenlehauer, P. Guerin, Bioresorbability and biocompatibility ofaliphatic polyesters. Journal of Materials Science: Materials in Medicine3(6)(1992)432-446.
    [11] L.K. Fung, W.M. Saltzman, Polymeric implants for cancer chemotherapy. AdvancedDrug Delivery Reviews26(2)(1997)209-230.
    [12] H. Tsuji, Y. Tezuka, Stereocomplex Formation between Enantiomeric Poly(lacticacid)s.12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from theMelt. Biomacromolecules5(4)(2004)1181-1186.
    [13] H. Sun, B. Guo, X. Li, R. Cheng, F. Meng, H. Liu, Z. Zhong, Shell-SheddableMicelles Based on Dextran-SS-Polycaprolactone Diblock Copolymer for EfficientIntracellular Release of Doxorubicin. Biomacromolecules11(4)848-854.
    [14] H. Sun, B. Guo, R. Cheng, F. Meng, H. Liu, Z. Zhong, Biodegradable micelles withsheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin.Biomaterials30(31)(2009)6358-6366.
    [15] L.-Y. Tang, Y.-C. Wang, Y. Li, J.-Z. Du, J. Wang, Shell-Detachable Micelles Based onDisulfide-Linked Block Copolymer As Potential Carrier for Intracellular DrugDelivery. Bioconjugate Chemistry20(6)(2009)1095-1099.
    [16] Y.-C. Wang, F. Wang, T.-M. Sun, J. Wang, Redox-Responsive Nanoparticles from theSingle Disulfide Bond-Bridged Block Copolymer as Drug Carriers for OvercomingMultidrug Resistance in Cancer Cells. Bioconjugate Chemistry22(10)1939-1945.
    [17] B. Khorsand Sourkohi, A. Cunningham, Q. Zhang, J.K. Oh, Biodegradable BlockCopolymer Micelles with Thiol-Responsive Sheddable Coronas. Biomacromolecules12(10)3819-3825.
    [18] T. Thambi, H.Y. Yoon, K. Kim, I.C. Kwon, C.K. Yoo, J.H. Park, Bioreducible BlockCopolymers Based on Poly(Ethylene Glycol) and Poly(Benzyl l-Glutamate) forIntracellular Delivery of Camptothecin. Bioconjugate Chemistry22(10)1924-1931.
    [19] X.-J. Cai, H.-Q. Dong, W.-J. Xia, H.-Y. Wen, X.-Q. Li, J.-H. Yu, Y.-Y. Li, D.-L. Shi,Glutathione-mediated shedding of PEG layers based on disulfide-linked catiomers forDNA delivery. Journal of Materials Chemistry21(38)14639-14645.
    [20] J. Liu, W. Huang, Y. Pang, X. Zhu, Y. Zhou, D. Yan, Self-Assembled Micelles from anAmphiphilic Hyperbranched Copolymer with Polyphosphate Arms for Drug Delivery.Langmuir26(13)10585-10592.
    [21] S. Son, K. Singha, W.J. Kim, Bioreducible BPEI-SS-PEG-cNGR polymer as a tumortargeted nonviral gene carrier. Biomaterials31(24)6344-6354.
    [22] J. Li, M. Huo, J. Wang, J. Zhou, J.M. Mohammad, Y. Zhang, Q. Zhu, A.Y. Waddad, Q.Zhang, Redox-sensitive micelles self-assembled from amphiphilic hyaluronicacid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel.Biomaterials33(7)2310-2320.
    [23] J. Liu, Y. Pang, W. Huang, Z. Zhu, X. Zhu, Y. Zhou, D. Yan, Redox-ResponsivePolyphosphate Nanosized Assemblies: A Smart Drug Delivery Platform for CancerTherapy. Biomacromolecules12(6)2407-2415.
    [24] R. Cheng, F. Feng, F. Meng, C. Deng, J. Feijen, Z. Zhong, Glutathione-responsivenano-vehicles as a promising platform for targeted intracellular drug and genedelivery. Journal of Controlled Release152(1)2-12.
    [25] T. Suzuki, D. Demurtas, A. Finka, J.A. Hubbell, A Novel Method for theEncapsulation of Biomolecules into Polymersomes via Direct Hydration. Langmuir25(16)(2009)9025-9029.
    [26] W.-F. Dong, A. Kishimura, Y. Anraku, S. Chuanoi, K. Kataoka, Monodispersed PolymericNanocapsules: Spontaneous Evolution and Morphology Transition from ReducibleHetero-PEG PICmicelles by Controlled Degradation. Journal of the American ChemicalSociety131(11)(2009)3804-3805.
    [27] Philip L.Ritger, N. A.Peppas, A simple equation for description of solute release I.Journal of Controlled Release5(1986)23-36.
    [28] Philip L.Ritger, N. A.Peppas, A simple equation for description of solute release II.Journal of Controlled Release5(1986)37-42.
    [29] J.-H. Ryu, S. Park, B. Kim, A. Klaikherd, T.P. Russell, S. Thayumanavan, HighlyOrdered Gold Nanotubes Using Thiols at a Cleavable Block Copolymer Interface.Journal of the American Chemical Society131(29)(2009)9870-9871.
    [30] K.K. Upadhyay, A.N. Bhatt, A.K. Mishra, B.S. Dwarakanath, S. Jain, C. Schatz, J.-F.Le Meins, A. Farooque, G. Chandraiah, A.K. Jain, A. Misra, S. Lecommandoux, Theintracellular drug delivery and anti tumor activity of doxorubicin loaded poly(benzyll-glutamate)-b-hyaluronan polymersomes. Biomaterials31(10)2882-2892.
    [31] R. Li, R. Wu, L. Zhao, M. Wu, L. Yang, H. Zou, P-Glycoprotein Antibody FunctionalizedCarbon Nanotube Overcomes the Multidrug Resistance of Human Leukemia Cells. ACSNano4(3)1399-1408.
    [32] Y. Tao, R. Liu, M. Chen, C. Yang, X. Liu, Cross-linked micelles of graftlike blockcopolymer bearing biodegradable [varepsilon]-caprolactone branches: a novel deliverycarrier for paclitaxel. Journal of Materials Chemistry22(2).
    [1] C.A. Fustin, V. Abetz, J.F. Gohy, Triblock terpolymer micelles: A personaloutlook<sup>a</sup>. The European Physical Journal E: Soft Matter andBiological Physics16(3)(2005)291-302.
    [2] D.E. Discher, A. Eisenberg, Polymer Vesicles. Science297(5583)(2002)967-973.
    [3] A. Rosler, G.W.M. Vandermeulen, H.-A. Klok, Advanced drug delivery devices viaself-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews53(1)(2001)95-108.
    [4] S.-C. Chen, Y.-C. Wu, F.-L. Mi, Y.-H. Lin, L.-C. Yu, H.-W. Sung, A novel pH-sensitivehydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipinfor protein drug delivery. Journal of Controlled Release96(2)(2004)285-300.
    [5] M. van de Weert, W.E. Hennink, W. Jiskoot, Protein Instability in Poly(Lactic-co-GlycolicAcid) Microparticles. Pharmaceutical Research17(10)(2000)1159-1167.
    [6] V.R. Sinha, A. Trehan, Biodegradable microspheres for protein delivery. Journal ofControlled Release90(3)(2003)261-280.
    [7] J.C. Hulteen, R.P. Van Duyne, Nanosphere lithography: A materials general fabricationprocess for periodic particle array surfaces. Journal of Vacuum Science&Technology A:Vacuum, Surfaces, and Films13(3)(1995)1553-1558.
    [8] N.W.S. Kam, H. Dai, Carbon Nanotubes as Intracellular Protein Transporters: Generalityand Biological Functionality. Journal of the American Chemical Society127(16)(2005)6021-6026.
    [9] D.E. Discher, F. Ahmed, POLYMERSOMES. Annual Review of BiomedicalEngineering8(1)(2006)323-341.
    [10] F. Ahmed, D.E. Discher, Self-porating polymersomes of PEG-PLA and PEG-PCL:hydrolysis-triggered controlled release vesicles. Journal of Controlled Release96(1)(2004)37-53.
    [11] A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation-responsivepolymeric vesicles. Nat Mater3(3)(2004)183-189.
    [12] U. Borchert, U. Lipprandt, M. Bilang, A. Kimpfler, A. Rank, R. Peschka-Suss, R.Schubert, P. Lindner, S. Forster, pH-Induced Release from P2VP-PEO BlockCopolymer Vesicles. Langmuir22(13)(2006)5843-5847.
    [13] S. Cerritelli, D. Velluto, J.A. Hubbell, PEG-SS-PPS: Reduction-Sensitive DisulfideBlock Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules8(6)(2007)1966-1972.
    [14] H. Kukula, H. Schlaad, M. Antonietti, S. Forster, The Formation of Polymer Vesiclesor peptosomes by Polybutadiene-block-poly(l-glutamate)s in Dilute Aqueous Solution.Journal of the American Chemical Society124(8)(2002)1658-1663.
    [15] F. Meng, W.E. Hennink, Z. Zhong, Reduction-sensitive polymers and bioconjugatesfor biomedical applications. Biomaterials30(12)(2009)2180-2198.
    [16] J. Zhang, L. Wu, F. Meng, Z. Wang, C. Deng, H. Liu, Z. Zhong, pH and ReductionDual-Bioresponsive Polymersomes for Efficient Intracellular Protein Delivery.Langmuir28(4)2056-2065.
    [17] W. Chen, F. Meng, R. Cheng, Z. Zhong, pH-Sensitive degradable polymersomes fortriggered release of anticancer drugs: A comparative study with micelles. Journal ofControlled Release142(1)40-46.
    [18] Z. Cheng, D.L.J. Thorek, A. Tsourkas, Porous Polymersomes with EncapsulatedGd-Labeled Dendrimers as Highly Efficient MRI Contrast Agents. AdvancedFunctional Materials19(23)(2009)3753-3759.
    [19] K.T. Kim, J.J.L.M. Cornelissen, R.J.M. Nolte, J.C.M. van Hest, A PolymersomeNanoreactor with Controllable Permeability Induced by Stimuli-Responsive BlockCopolymers. Advanced Materials21(27)(2009)2787-2791.
    [20] C.P. Oneil, T. Suzuki, D. Demurtas, A. Finka, J.A. Hubbell, A Novel Method for theEncapsulation of Biomolecules into Polymersomes via Direct Hydration. Langmuir25(16)(2009)9025-9029.
    [21] H. Bermudez, A.K. Brannan, D.A. Hammer, F.S. Bates, D.E. Discher, MolecularWeight Dependence of Polymersome Membrane Structure, Elasticity, and Stability.Macromolecules35(21)(2002)8203-8208.
    [22] S. Raina, D. Missiakas, MAKING AND BREAKING DISULFIDE BONDS. Annu.Rev. Microbiol.51(1)(1997)179-202.
    [23] E.F. Stanley, The calcium channel and the organization of the presynaptic transmitterrelease face. Trends Neurosci20(9)(1997)404-409.
    [24] Z. She, M.N. Antipina, J. Li, G.B. Sukhorukov, Mechanism of protein release frompolyelectrolyte multilayer microcapsules. Biomacromolecules11(5)1241-1247.
    [25] Z. Cheng, A. Tsourkas, Paramagnetic porous polymersomes. Langmuir24(15)(2008)8169-8173.
    [26] D.M. Vriezema, P.M. Garcia, N. Sancho Oltra, N.S. Hatzakis, S.M. Kuiper, R.J. Nolte,A.E. Rowan, J.C. van Hest, Positional assembly of enzymes in polymersomenanoreactors for cascade reactions. Angew Chem Int Ed Engl46(39)(2007)7378-7382.
    [27] S.F.M. van Dongen, M. Nallani, J.J.L.M. Cornelissen, R.J.M. Nolte, J.C.M. van Hest,A Three-Enzyme Cascade Reaction through Positional Assembly of Enzymes in aPolymersome Nanoreactor. Chemistry–A European Journal15(5)(2009)1107-1114.
    [28] J.-H. Ryu, S. Park, B. Kim, A. Klaikherd, T.P. Russell, S. Thayumanavan, HighlyOrdered Gold Nanotubes Using Thiols at a Cleavable Block Copolymer Interface.Journal of the American Chemical Society131(29)(2009)9870-9871.
    [29] Z. An, H. Mohwald, J. Li, pH controlled permeability of lipid/protein biomimeticmicrocapsules. Biomacromolecules7(2)(2006)580-585.
    [30] R. Georgieva, S. Moya, E. Donath, H. Baumler, Permeability and conductivity of redblood cell templated polyelectrolyte capsules coated with supplementary layers.Langmuir20(5)(2004)1895-1900.
    [31] G. Battaglia, A.J. Ryan, S. Tomas, Polymeric vesicle permeability: a facile chemicalassay. Langmuir22(11)(2006)4910-4913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700