POSS改性介孔分子筛去除饮用水中氨氮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究工作致力于合成介孔材料,寻找合适的原料合成POSS材料来改性介孔材料,使改性后的分子筛能够提高去除饮用水中氨氮的效率。
     研究用正硅酸乙酯为硅源,P123为模板剂,采用水热晶化法直接合成出SBA-15分子筛。用稻壳灰和3-甲氧基巯丙基硅烷为原料用溶胶-凝胶法分别合成八聚四甲基铵POSS和八聚巯丙基POSS。然后对这两种POSS材料进一步官能化,分别改性介孔材料SBA-15分子筛,得到POSS-COOH和POSS-SO_3H改性SBA-15分子筛。
     对合成出的材料进行了以下表征:质谱、红外光谱(FT-IR)、透射电镜(TEM)、扫描电镜(SEM)、小角XRD、氮气吸附/脱附分析。合成的POSS材料用质谱进行表征,分析表明有相应的POSS材料生成,并进一步用红外光谱进行分析验证POSS的生成。采用小角XRD表征了SBA-15和改性的分子筛的结构,结果显示分子筛的二维六方的形态没有发生改变。红外光谱被用来显示改性后官能团的变化,谱图中特征峰的出现说明了POSS分子筛与分子筛链接起来。三种分子筛的微观结构用透射电镜进行表征,通过TEM清楚的看到改性剂进入分子筛后内部结构的变化。SEM照片清楚的反应了颗粒的表面形貌的变化,因此对三种分子筛进行了SEM表征,通过照片可以清楚的看到颗粒尺寸、形状的变化。运用各种模型,通过氮气吸附/脱附分析定量的计算出三种孔材料比表面积、孔径、孔容的大小,与SBA-15分子筛相比,POSS-COOH改性的分子筛平均孔径变大,孔容变小,比表面积变小,而POSS-SO_3H改性的分子筛平均孔径、孔容、比表面积都变小,定量的证实了POSS改性剂对分子筛的影响。
     合成出的三种分子筛用于饮用水中氨氮的去除。研究了吸附时间、吸附温度、氨氮浓度等因素对吸附量和去除效率的影响,比较了三种分子筛去除氨氮的效果,结果显示吸附时间越长,吸附量越大。吸附温度越高,吸附率越高。起始浓度越大,越有利于吸附。分子筛投加量越大,吸附量越大。同时两种改性分子筛中,POSS-SO_3H改性分子筛去除氨氮的效率更高。
     为了验证实验结果,用MS软件中相应的模块模拟和计算改性分子筛中氨氮吸附和离子交换的过程,结果显示POSS-SO_3H改性的分子筛中氨氮的扩散系数大,交换吸附需要的活化能低,因此更容易处理氨氮,验证了实验结果。
This study is dedicated to synthesis POSS-modified mesoporous molecular sieves to improve the efficiency of ammonia-nitrogen removal from drinking water.
     Based on tetraethoxysilane and P125 template, the original SBA-15 molecular sieve was synthesized using hydrothermal crystallization method. The POSS modifiers, (Me_4N)_8(OSiO_(1.5)_8 (OSA) and (SHC_3H_6)_8(OSiO_(1.5))_8, were prepared using rice husk ash and (3-mercaptopropyl)trimethoxysilane, respectively, through the sol-gel process, and further POSS-COOH and POSS-SO_3H modified SBA-15 molecular sieves
     The SBA-15 molecular sieves before and after the modifications were characterized by standard techniques: mass spectrometry (MS), infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), small angle XRD and nitrogen sorption porosimetry (NSP). The MS spectra shown narrow molecular distributions for the three molecular sieves, and the FT-IR spectra shown the corresponding groups before and after the modifications; the small-angle XRD peaks and TEM images represente micro-pore structures of the three SBA-15 molecular sieves; SEM images give clearly the changes of particle surface morphology (particle size and shape) before and after the modifications; NSP measurement determined the morphology of the SBA-15 molecular sieves before and after the modification, giving surface areas, pore diameters and pore volumes quantitively. Comparing with those of original SBA-15 molecular sieve, the pore diameters and pore volumes of the POSS-COOH modified SBA-15 molecular sieve increased but the surface area decreased; for the POSS-SO_3H modified SBA-15 molecular sieve, all those decreased. Above facts conclude that the POSS-modified SBA-15 molecular sieve can be made and increased in active groups to remove ammonia-nitrogen from drinking water.
     The influence of adsorption time, adsorption temperature and ammonia-nittrogen concentration on adsorption capacity and removal efficiency was investigated. The results shown that the longer adsorption time, the higher adsorption temperature, and higher initial concentration can lead to greater adsorption capacity and adsorption rate. Also, the experimental data shown that the two kinds of POSS-modified SBA-15 molecular sieves had greater ammonia-removing efficiency.
     The mentioned increase tendency was validated using a molecular dynamic simulation program of the Materials Stutio software to calculate the diffusion behavior of ammonia-nitrogen in the pores of three SBA-15 molecular sieve, and to compare transition–state energy of the ammonia-nitrogen removal reaction in the SBA-15 molecular sieve before and after modification.
引文
1.许国强,曾光明,殷志伟等.氨氮废水处理技术现状及发展.湖北有色金属. 2002, 18(2):29~31
    2.汪超,冯晓西,顾印玉,乌锡康.沸石在废水脱氨氮中的应用:(1)沸石离子交换脱氨氮.化学世界. 2002,增刊:60~62
    3.朱南文,高廷耀等.饮用水生物脱氮技术现状闭.水处理技术. 1999,25(4):214~218.
    4. Shijun Liu, Zhonghong Cao. Ammonia Removal from Aqueous Solution Using Natural Chinese Clinoptilolite. Separation and Purification Technology. 2005, 44:229~234
    5.林进条,林涛,刘丽玲.新型生物脱氮工艺的研究和进展.净水技术. 2005, 25(2):48~51
    6. Lu Gang, B.G Anderson, J. van Grondelle. Low Temperature Selective Oxidation of Ammonia to Nitrogen on Silver-based Catalysts. Applied Catalysis B: Environmental. 2003, 40:101~110
    7. J. Soares, Silvas. A. Ammonia Removal in a Pilot-scale Wsp Complex in NortheastBrazil. Wat Sci Tech. 1996, 33(7):165~171
    8.温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术发展.环境科学. 1993, 15(5):88~91
    9.陶红.合成13X沸石及其用于含重金属废水处理的实验研究.中国地质大学博士论文. 1999: 35~37
    10. Y.F. Wang,F. Lin, W.Q. Pang. Ammonium Exchange in Aqueous Solution Using Chinese Natural Clinoptilolite and Modified Zeolite. Journal of Hazardous Materials. 2007, 142:160-164
    11. A. Farkas, M. Rozic, Z. Barbaric-Mikocevic. Ammonium Exchange in Leakage Waters of Waste Dumps Using Natural Zeolite from the Krapina Region. J. Hazard. Mater. 2005, 117:25~33.
    12. Jorgensen. T. C,Weatherley L R. Ammonia Removal from Waste Water by IonExehange in the Presenee of Organiccontaminants. WaterResearch. 2003, 37: 1723~1728
    13王秀春,丁志斌,都的箭.沸石的性能及其在水处理中的应用.解放军理工大学学报. 2001, 2(4):71~74
    14袁俊生,郎宇琪,张林栋等.沸石法工业污水氨氮治理技术研究.环境污染治理技术与设备. 2002, 3(12):60~63
    15 T.C. Jorgensen,L.R. Weatherley. Ammonia Removal from Waste Water by Ion Exchang in the Presence of Organic Contaminants. Water Research. 2003,37:1723~1728
    16张晓丽,严子春.沸石强化过滤的效果及其对水质的影响.重庆大学学报(自然科学版). 2002, 25(2):130~133
    17 A.H.Englert,J. Rubio. Characterization and Environmental Application of a Chilean Natural Zeolite. Int. J. Miner. Process. 2005, 75:21~29
    18张曦,吴为中,温东辉,李文奇.氨氮在天然沸石上的吸附及解吸.环境化学. 2003, 22(2):165~170
    19 M. Rozic,Scerjan Stefanovi C,Kurajica S. Ammoniacal Nitrogen Removal from Water by Treatment with Clays and Zeolites. Water Researeh. 2007,34(14):3675~3681
    20 W. H. O. Guidelines for Drinking-water Quality. Recommendation.1993,1(2):40~43
    21贾雪平,杨春.表面功能介孔分子筛SBA-3的表征.化学学报. 2002,60(9):1596~1600
    22梁延刚,郭超,金国新.酸性条件下纯硅六方介孔分子筛的合成.表征及酸介质的影响.无机化学学报. 2004, 20(7):763~769
    23 J. B. Sung, K. Sang-Wook, H. Taeghwan. Synthesis of Norel Ag Modified MCM-41 Mesoporous Molecular Sieve and Beta Zeolite Catalysts for Ozone Decomposition at Ambient Temperature. Chem.Commun. 2000, (1):31~32
    24 Bouffard.S.C, Duffs. J. B. Uptake of Dehydroabietic Acid Using Organieally- tailored Zeolites. WaterResearch. 2008, 34(9):2469~2476
    25 Ortega E,Cheeseman C,Knight J. Properties of Alkali-activated Clinoptilolite . Cement and Concrete Research. 2006, 30:1641~1646
    26 Melde Poppa. A,Kevan. L. Ethylene Dimerization and Butane Isomerizationin Nikel-eontaining MCM-41 and AI-MCM-41 Mesoporous Molecular Arsieves:An Eleetrons Pinresonanee and Gasehromatography Study. J Physehem. 1996, (100):9906~9910
    27 Inagaki, XuWP,XueD. Role of Poresizeand Surface Properties of Ti-MCM-41 Catalysts in the Hydroxylation of Aromaties in the Liquid Phase. Mieroporous And Mesoporous Materials. 2001, (44-45):581~586
    28徐如人,庞文秦,于吉红.分子筛与多孔材料化学.科学出版社. 2004
    29 Armengol. A, Cano.M. L, Corma A. Spectroscopic Studies on the Properties of Ternary Europium Complexes with Different Ligands. J. Chem. Soc. Chem. Commun. 1995, 22(5):519~520
    30 S. Q. Zeng, J. Blanehard,M. Breysse. Post-synthesis Alumination of SBA-15 in a Queous Solution:A Versatile Tool for the Preparation of Acidic Al-SBA-15 Supports. Micropor Mesopor Mater. 2005, (85):297-304
    31瞿庆洲,王巍,江天肃等.镧对SBA-15分子筛改性研究.无机材料学报. 2004, (19):1212~1216
    32 D. Coutinho, A. O. Aeevedo, G. R. Dieekmann. Molecular Imprinting of Mesoporous SBA-15 with Chiral Ruthenium Complexes. Mieropor Mesopor Mater. 2002, (54):297~302
    33梁延刚,郭超,金国新.介孔分子筛SBA-15负载的二双齿钛烯烃聚合催化剂的合成及催化乙烯聚合反应.无机化学学报. 2004, 20(7):763~769
    34 Jin H X, Wu Q Y, Zhang P. Assembling of Tungstovanadogermanic Heteropoly Acid into Mesoporous Molecular Sieve SBA-15. Solid State Sciences. 2005, (7): 333~337
    35 Wang J, Zhu H O. Alkylation of 1-dodecene with Benzene over H3PW12O40. Catal.Lett. 2004, 93(3):209~212
    36袁兴东,沈健,李国辉等.表面含磺酸基的介孔分子筛SBA-15-SO3H的直接合成.催化学报. 2006, 24(2):83~86.
    37 Reddy, B. D. Raju, V. S. Kumar. Sulfonic Acid Funetionalized Mesoporous SBA-15 for Selective Synthesis of 4-phenyl-1, 3-dioxane. Catal.Conunun. 2007, (8):261~266.
    38 Loy D. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Review. 1995, 95(5):1431~1442
    39 Laine R M, Choi J, Brick C. Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site. J. Am. Chem. Soc. 2001, (123):12416~12417
    40 Schmidt H. New Type of Non-crystalline Solids Between Inorganic and Organic Materials. J Non-cryst Solids. 1985, (73):681~691
    41 Sckare. J. J,Lichtenhan. J. D. Polyhedral Oligomeric Silsesquioxane Based Polymers. Appl. Organometal. Chem. 1998, (12):707~713
    42 Lee Andre. Lichtenhan Viscoelastic Responses of Polyhedral Ligosilsesquioxa- ne Reinforced Epoxy Systems. Macromolecules. 1998, 31(15):4970~4973
    43 Abad M J, Barral L, Fasce D P. Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS). Macromolecules. 2003, (36):3128~3135
    43 Lichtenhan J D, Haddad T S, Schwab J J. The Incorporation of Transition Metals into Polyhedral Oligosilsesquioxane Polymers. Polymer Preprints. 1998, 39(1):489~492
    44 Tsuchida A, Bolln C, Sernet F G. Ethene and Propene Copolymers Containing Silsesquioxane Side. Groups.Macromolecules. 1997, 30(10):2818~2824
    45 Timothy S, Haddah R S, Hong G J. The Next Generation of Silicon-Based Plastics:Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites Polymer Preprints. 1999, 40(1):496~502
    46 Pittman C U, Ni H L. Hybrid Inorganic/organic Crosslinked Resins Containing Polyhedral Oligomeric Silsesquioxane. Macromol. Symp. 2003, (196):301~325
    47 Pellice S A, Fasce D P, Williams R J. Properties of Epoxy Networks Derived from the Reaction of Diglycidyl Ether of Bisphenol A with Polyhedral Oligomeric Silsesquioxanes Bearing OH Organic Substituents. Journal of Polymer Science:Part B:Polymer Physics. 2003, (41):1451~1461
    48 Mather P.T, Chaffee K.P, Haddad T.S. Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems. Polymer Preprints. 1996, 37(1):765~781
    49 Saez I M, Goodby J M, Richardson R M. A Liquid-Crystalline Silsesquioxane Dendrimer Exhibiting Chiral Nematic and Columnar Mesophases. Chem. Eur. J. 2001, 13(7):314~320
    50 Mehl G H, Saez I M, Polyhedral Liquid Crystal Silsesquioxanes. Appl. Organometal. Chem. 1999, (13):261~272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700