碳纳米管复合材料的制备及其在电化学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于碳纳米管复合材料不仅能保留各成分的优良性能,而且在光学、化学及其它性能方面表现出单独材料所没有的性能而引起科技工作者广泛关注。这些材料的合成过程对其在电化学中的催化性能有着重要影响。因此,选择适当的合成途径,改善传统纳米材料制备过程中的不足是十分重要的。本文采用简便高效的方法制备了几种具有代表性的碳纳米管复合材料,如NiO/MWNTs、CeO2/MWNTs、Pt/MWNTs和Pd/MWNTs,其优良的电催化活性表明这些材料在生物传感器和燃料电池中有很广阔的应用前景。开展了以下的研究工作:
     1.采用简单高效的水热合成法制备NiO/MWNTs纳米复合材料,并将其用于蛋白质的固定化和生物传感器件的设计。选用肌红蛋白作为直接电化学研究的模型,该材料固定肌红蛋白后能促进其活性中心与电极表面之间的直接电子传导,并且所构建的传感器对H2O2具有很高的电催化活性。由于所构建的生物传感器具有操作简单、响应迅速、良好稳定性和重现性等特点,使该材料在蛋白质的固定化及制备第三代生物传感器方面有很广泛的应用前景。
     2.本文采用CeO2/MWNTs纳米复合材料固定肌红蛋白并构建了新型电化学生物传感器。紫外-可见吸收光谱及电化学研究表明该材料不仅可以很好地保留肌红蛋白的生物活性,还可加速其与电极表面之间的直接电子传输。低米氏常数(63.3μM)表明该传感器对H2O2有很高的亲和力和电催化活性。该纳米材料在蛋白质的固定化和第三代生物传感器构建等领域具有重要的应用前景。
     3.采用新颖方法把单分散的Pt纳米粒子负载于MWNTs表面,即在三甘醇中高温裂解Pt(acac)2,原位合成单分散的Pt/MWNTs纳米复合材料。采用X射线衍射法、扫描电镜和透射电镜等对复合材料结构进行表征,发现可通过改变Pt(acac)2/MWNTs质量比有效调控Pt纳米颗粒粒径及其在MWNTs表面负载密度。电化学研究表明该材料对甲醇、氧气等有很高的电催化活性,在燃料电池和生物传感器领域展现出广阔的应用前景。
     4.通过在三甘醇中高温裂解Pd(acac)2,在MWNTs表面原位生成单分散Pd纳米粒子。采用X射线衍射法、扫描电镜和能量色谱等对Pd/MWNTs纳米复合材料结构进行表征,结果表明本方法能高效地制备该复合材料。电化学检测表明该材料对甲醇、甲酸和过氧化氢等有很高的电催化活性,可望进一步应用于燃料电池和生物传感器领域。
Canbon nantubes nanocomposites have drawn much attention by scientific researchers because they not only show their unexpected combined properties of the original components, but also cause changes in optical, chemical, or other performances compared with those of the individual components. The synthetic method of these materials has great influences on their electrocatalytic application. Thus, improving the traditional preparation process of nanomaterials is very important. In this thesis, simple and effective methods were developed to synthesize several kinds of representative canbon nantubes nanocomposites including NiO/MWNTs, CeO2/MWNTs, Pt/MWNTs and Pd/MWNTs. The excellent electrocatalytic activity of these materials indicates potential applications in biosensors and fuel cells. The following researches have been carried out.
     1. A novel matrix, multiwalled carbon nanotubes supported nickel oxide nanoparticles composite nanomaterial (NiO/MWNTs), for immobilization of protein and biosensing was designed using a simple and effective hydrothermal method. Using myoglobin (Mb) as a model, the direct electrochemistry of immobilized Mb indicated the matrix could accelerate the electron transfer between protein's active sites and the electrode. The modified electrode shows excellent electrocatalytic activity toward the reduction of H2O2 without the help of an electron mediator. The simple operation, fast response, acceptable stability, and reproducibility of the proposed biosensor indicated its promising application in protein immobilization and preparation of the third generation biosensors.
     2. A novel myoglobin-based electrochemical biosensor was developed. It is based on a nanocomposite prepared from multiwalled carbon nanotubes that were coated with ceria nanoparticles. UV-vis and electrochemical measurements displayed that the nanocomposite provides a biocompatible matrix for the immobilization of myoglobin (Mb) and also facilitates direct electron transfer between its active center and the surface of the electrode. Immobilized Mb exhibits excellent electrocatalytic activity toward the reduction of hydrogen peroxide (HP). The low apparent Michaelis-Menten constant of 63.3μM indicates high bioactivity and enhanced affinity to HP. This study also shows that the nanocomposite is a promising support for immobilization of proteins and for the preparation of third-generation biosensors.
     3. A novel approach to the synthesis of mono-dispersed platinum nanoparticles (Pt NPs) on multiwalled carbon nanotubes (MWNTs) has been proposed. With this method, we successfully assembled mono-dispersed Pt NPs on MWNTs. The method involved the in situ high-temperature decomposition of the precursor, platinum (Ⅱ) acetylacetonate (Pt(acac)2), in liquid polyols. We used X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to characterize the resulting MWNTs covered with Pt NPs (Pt/MWNTs). We found that the size of the Pt NPs and the coverage density on MWNTs could be tuned easily by changing the reaction temperature and the initial mass ratio of Pt(acac)2 to MWNTs. Electrocatalytic measurements showed that the Pt/MWNTs had excellent catalytic activities in the electrooxidation of methanol and in the oxygen reduction reaction. These Pt/MWNTs have potential applications in fuel cells and biosensors.
     4. Nearly monodisperse palladium nanoparticles (Pd NPs) have been successfully decoration of multiwalled carbon nanotubes (MWNTs) by in situ high-temperature decomposition of the precursor Pd(acac)2 and MWNTs in liquid polyols. X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometer were used to characterize the final products, indicating the feasibility of our methods for synthesis of Pd/MWNTs nanocomposite. Electrocatalytic characterization demonstrated that these Pd/MWNTs have excellent catalytic activities in the electrooxidation of methanol, formic acid and hydrogen peroxide. The in situ synthesised Pd/MWNTs system displayed good electrochemical activity, with promising applications in fuel cells and biosensors.
引文
[1]lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [2]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science,1999,286(5442):1127-1129.
    [3]Rubianes M D, Rivas G A. Carbon nanotubes paste electrode [J]. Electrochemistry Communications,2003,5(8):689-694.
    [4]Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors [J]. Analytical Chemistry,2003,75(9):2075-2079.
    [5]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature,1997,386(6623):377-379.
    [6]Valcarcel M, Simonet B M, Cardenas S, et al. present and future applications of carbon nanotubes to analytical science [J]. Analytical and Bioanalytical Chemistry,2005,382(8): 1783-1790.
    [7]Gong K P, Yan Y M, Zhang M N, et al. Electrochemistry and electroanalytical applications of carbon nanotubes:A review [J]. Analytical Sciences,2005,21(12):1383-1393.
    [8]Wang J. Carbon-nanotube based electrochemical biosensors:A review [J]. Electroanalysis, 2005,17(1):7-14.
    [9]Baronas R, Kulys J, Petrauskas K, et al. Modelling carbon nanotube based biosensor [J]. Journal of Mathematical Chemistry,2011,49(5):995-1010.
    [10]Jiang F, Wang S, Lin J J, et al. Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe of glucose [J]. Electrochemistry Communications,2011,13(4): 363-365.
    [11]Liu X Q, Feng H Q, Liu X H, et al. Electrocatalytic detection of phenolic estrogenic compounds at NiTPPS vertical bar carbon nanotube composite electrodes [J]. Analytica Chimica Acta,2011,689(2):212-218.
    [12]Ozoner S K, Yilmaz F, Celik A, et al. A novel poly(glycine methacrylate-co-3-thienylmethyl methacrylate)-polypyrrole-carbon nanotube-horseradish peroxidase composite film electrode for the detection of phenolic compounds [J]. Current Applied Physics,2011,11(3):402-408.
    [13]Ajayan P M, Redlich P, Ruhle M. Structure of carbon nanotube-based nanocomposites [J]. Journal of Microscopy-Oxford,1997,185:275-282.
    [14]Chauvet O, Forro L, Zuppiroli L, et al. Electronic properties of aligned carbon nanotubes [J]. Synthetic Metals,1997,86(1-3):2311-2312.
    [15]Tamura R, Tsukada M. Electronic transport in carbon nanotube junctions [J]. Solid State Communications,1997,101(8):601-605.
    [16]Amelinckx S, Lucas A, Lambin P. Electron diffraction and microscopy of nanotubes [J]. Reports on Progress in Physics,1999,62(11):1471-1524.
    [17]Britto P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine [J]. Bioelectrochemistry and Bioenergetics,1996,41(1):121-125.
    [18]Joseyacaman M, Mikiyoshida M, Rendon L, et al. Catalytic growth of carbon microtubules with fullerene structure [J]. Applied Physics Letters,1993,62(6):657-659.
    [19]Zhang Y, Gu H, Iijima S. Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere [J]. Applied Physics Letters,1998,73(26):3827-3829.
    [20]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science, 1996,273(5274):483-487.
    [21]Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes bylaser vaporiziation [J]. Chemical Physics Letters,1995,243(1-2):49-54.
    [22]Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature,1992, 358(6383):220-222.
    [23]Colbert D T, Zhang J, McClure S M, et al. Growth and Sintering of Fullerene Nanotubes [J]. Science,1994,266(5188):1218-1222.
    [24]Wang X K, Lin X W, Dravid V P, et al. Carbon nanotubes synthesized in a hydrogen arc discharge [J]. Applied Physics Letters,1995,66(18):2430-2432.
    [25]Journet C, Alvarez L, Micholet V, et al. Single wall carbon nanotubes:Two ways of production [J]. Synthetic Metals,1999,103(1-3):2488-2489.
    [26]Choi Y C, Shin Y M, Lee Y H, et al. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition [J]. Applied Physics Letters,2000,76(17):2367-2369.
    [27]Kind H, Bonard J M, Emmenegger C, et al. Patterned films of nanotubes using microcontact printing of catalysts [J]. Advanced Materials,1999,11(15):1285-1289.
    [28]Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process [J]. Biomacromolecules,2006,7(1):208-214.
    [29]Choi J H, Park J H, Moon J S, et al. Fabrication of carbon nanotube emitter on the flexible substrate [J]. Diamond and Related Materials,2006,15(1):44-48.
    [30]Henrard L, Loiseau A, Journet C, et al. Study of the symmetry of single-wall nanotubes by electron diffraction [J]. European Physical Journal B,2000,13(4):661-669.
    [31]Rao A M, Jorio A, Pimenta M A, et al. Polarized Raman study of aligned multiwalled carbon nanotubes [J]. Physical Review Letters,2000,84(8):1820-1823.
    [32]Saito R, Dresselhaus G, Dresselhaus M S. Trigonal warping effect of carbon nanotubes [J]. Physical Review B,2000,61(4):2981-2990.
    [33]Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes [J]. Applied Physics a-Materials Science & Processing,1999,69(3):255-260.
    [34]Ajayan P M. Nanotubes from Carbon [J]. Chemical Reviews,1999,99(7):1787-1800.
    [35]Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes [J]. Advanced Materials,1999,11(2):154-157.
    [36]Ma C H, Li H Y, Lin G D, et al. Ni-decorated carbon nanotube-promoted Ni-Mo-K catalyst for highly efficient synthesis of higher alcohols from syngas [J]. Applied Catalysis B-Environmental,2010,100(1-2):245-253.
    [37]Xu D Y, Wang H Z, Guo Q J. In situ carbon nanotube synthesis by the reduction of NiO/gamma-Al2O3 catalyst in methane [J]. Journal of Natural Gas Chemistry,2010,19(6): 617-621.
    [38]Gao Q A, Guo Y Y, Zhang W Y, et al. An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode [J]. Sensors and Actuators B-Chemical,2011,153(1):219-225.
    [39]Kim J S, Cho S J, Jeong K S, et al. Improved electrical conductivity of very long multi-walled carbon nanotube bundle/poly (methyl methacrylate) composites [J]. Carbon, 2011,49(6):2127-2133.
    [40]Morishita T, Matsushita M, Katagiri Y, et al. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation [J]. Journal of Materials Chemistry,2011,21(15):5610-5614.
    [41]Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature,1995,375(6534):769-772.
    [42]Dujardin E, Ebbesen T W, Hiura H, et al. Capillarity and wetting of carbon nanotubes [J]. Science,1994,265(5180):1850-1852.
    [43]Wen Z H, Wang Q, Li J H. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source:Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts [J]. Advanced Functional Materials,2008,18(6):959-964.
    [44]Okazaki T, Suenaga K, Hirahara K, et al. Real time reaction dynamics in carbon nanotubes [J]. Journal of the American Chemical Society,2001,123(39):9673-9674.
    [45]Wang Q Y, Johnson J K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores [J]. Journal of Chemical Physics,1999, 110(1):577-586.
    [46]Gupta G, Slanac D A, Kumar P, et al. Highly stable Pt/ordered graphitic mesoporous carbon electrocatalysts for oxygen reduction [J]. The Journal of Physical Chemistry C,2010, 114(24):10796-10805.
    [47]Yang W, Wang X L, Yang F, et al. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction [J]. Advanced Materials,2008,20(13):2579-2583.
    [48]Hsu C H, Liao H Y, Kuo P L. Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes [J]. Journal of Physical Chemistry C,2010, 114(17):7933-7939.
    [49]Welna D T, Qu L T, Taylor B E, et al. Vertically aligned carbon nanotube electrodes for lithium-ion batteries [J]. Journal of Power Sources,2011,196(3):1455-1460.
    [50]Dileo R A, Castiglia A, Ganter M J, et al. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries [J]. Acs Nano,2010, 4(10):6121-6131.
    [51]Rong J P, Masarapu C, Ni J, et al. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications [J]. Acs Nano,2010,4(8): 4683-4690.
    [52]Landi B J, Cress C D, Raffaelle R P. High energy density lithium-ion batteries with carbon nanotube anodes [J]. Journal of Materials Research,2010,25(8):1636-1644.
    [53]Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes [J]. Acs Nano,2010,4(4):2233-2241.
    [54]Chen W X, Lee J Y, Liu Z L. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes [J]. Carbon,2003,41(5):959-966.
    [55]Habibi B, Jahanbakhshi M, Pournaghi-Azar M H. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode [J]. Analytical Biochemistry,2011,411(2): 167-175.
    [56]Ding M N, Tang Y F, Gou P P, et al. Chemical sensing with polyaniline coated single-walled carbon nanotubes [J]. Advanced Materials,2011,23(4):536-540.
    [57]Zhang J J, Zheng T T, Cheng F F, et al. Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels [J]. Chemical Communications,2011,47(4):1178-1180.
    [58]Wisitsoraat A, Sritongkham P, Karuwan C, et al. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor [J]. Biosensors & Bioelectronics,2010,26(4):1514-1520.
    [59]Shen R X, Li X Z, Lium G L, et al. Synthesis and characterization of chromium hexacyanoferrate/multiwalled carbon nanotube composite and its biosensing for L-cysteine [J]. Electroanalysis,2010,22(20):2383-2388.
    [60]Qiu J D, Cui S G, Deng M Q, et al. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide [J]. Journal of Applied Electrochemistry,2010,40(9):1651-1657.
    [61]Kumar A S, Barathi P, Pillai K C. In situ precipitation of nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and its selective hydrazine electrocatalysis in physiological pH [J]. Journal of Electroanalytical Chemistry,2011,654(1-2):85-95.
    [62]Lin Y W, Wu T M. Synthesis and characterization of water-soluble polypyrrole/multi-walled carbon nanotube composites [J]. Polymer International,2011,60(3):382-388.
    [63]Li Q A, Liu J H, Zou J H, et al. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors [J]. Journal of Power Sources,2011,196(1):565-572.
    [64]Chen Y P, Bilgen B, Pareta R A, et al. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering [J]. Tissue Engineering Part C-Methods,2010,16(6): 1233-1243.
    [65]Venkatesan J, Kim S K. Chitosan composites for bone tissue engineering-an overview [J]. Marine Drugs,2010,8(8):2252-2266.
    [66]Marsh C P, Stynoski P B, Carlson T A, et al. Experimental demonstration of meso-scale carbon nanotube self-assembled tube structures [J]. Carbon,2011,49(4):1235-1242.
    [67]Unnikrishnan V U, Unnikrishnan G U, Reddy J N. Multiscale analysis of carbon nanotube-reinforced nanofiber scaffolds [J]. Composite Structures,2011,93(2):1008-1014.
    [68]Liao Q L, Zhang Y, Xia L S, et al. High intensity, pulsed electron beam emission from carbon nanotube cathodes [J]. Carbon,2007,45(7):1471-1475.
    [69]Liao Q L, Zhang Y, Qi J J, et al. Field emission properties of a carbon nanotube cathode in different electric field modes [J]. Materials Letters,2008,62(12-13):1941-1944.
    [70]Zhao P, Liu D S. Electron transport properties of boron-doped capped-carbon-nanotube-based molecular junctions [J]. Chinese Science Bulletin,2010, 55(36):4104-4107.
    [71]Clark I T, Rius G, Matsuoka Y, et al. Mechanical and electronic characteristics of scanning probe microscopy probes based on coaxial palladium nanowire/carbon nanotube hybrid structures [J]. Journal of Vacuum Science & Technology B,2010,28(6):1148-1152.
    [72]Marquez-Linares F, Uwakweh O N C, Lopez N, et al. Study of the surface chemistry and morphology of single walled carbon nanotube-magnetite composites [J]. Journal of Solid State Chemistry,2011,184(3):655-666.
    [73]Li Y, Chen C X, Zhang S, et al. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films [J]. Applied Surface Science,2008,254(18):5766-5771.
    [74]Srivastava S K, Vankar V D, Kumar V, et al. Effect of substrate morphology on growth and field emission properties of carbon nanotube films [J]. Nanoscale Research Letters,2008, 3(6):205-212.
    [75]Kumar S, Sun L L, Lively B, et al. Thermal and mechanical enhancements of polyetherimide/multi-walled carbon nanotube composite performance using "solid nano-nectar" assisted melt dispersion [J]. Journal of Nanoscience and Nanotechnology,2011, 11(3):1976-1985.
    [76]Deng M, Ding G F, Wang Y, et al. Room temperature mass production of carbon nanotube field emission micro-cathode arrays using electroplating of a CNT/Ni composite followed by micro-machining [J]. Vacuum,2011,85(8):827-832.
    [77]Gupta V K, Agarwal S, Saleh T A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes [J]. Water Research,2011, 45(6):2207-2212.
    [78]Pieta P, Venukadasula G M, D'Souza F, et al. Preparation and selected properties of an improved composite of the electrophoretically deposited single-wall carbon nanotubes, electrochemically coated with a C-60-Pd and polybithiophene mixed polymer film [J]. Journal of Physical Chemistry C,2009,113(31):14046-14058.
    [79]Sullivan J A, Flanagan K A, Hain H. Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite [J]. Catalysis Today,2009,145(1-2):108-113.
    [80]Xu Y, Zhao K, Zhang X Y, et al. Amperometric glucose biosensor based on palladium nanoparticles combined aligned carbon nanotubes electrode [J]. Chemical Journal of Chinese Universities-Chinese,2010,31(4):672-678.
    [81]Chen L Z, Liu C H, Liu K, et al. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites [J]. Acs Nano,2011,5(3): 1588-1593.
    [82]Park K W, Han D S, Sung Y E. PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells [J]. Journal of Power Sources,2006,163(1):82-86.
    [83]Liang R P, Deng M Q, Cui S G, et al. Direct electrochemistry and electrocatalysis of myoglobin immobilized on zirconia/multi-walled carbon nanotube nanocomposite [J]. Materials Research Bulletin,2010,45(12):1855-1860.
    [84]Ning J W, Zhang J J, Pan Y B, et al. Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2003,357(1-2):392-396.
    [85]Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites [J]. Ceramics International,2000,26(6):677-683.
    [86]Hao T, Jinhua C, Shouzhuo Y, et al. Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation [J]. Materials Chemistry and Physics,2005,92(2-3):548-553.
    [87]Chen J H, Huang Z P, Wang D Z, et al. Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays [J]. Applied Physics a-Materials Science & Processing,2001,73(2):129-131.
    [88]Guoli S, Minghui Y, Jianhui J, et al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors [J]. Biosensors & Bioelectronics,2006,21(9):1791-1797.
    [89]Zheng S F, Hu J S, Zhong L S, et al. In situ one-step method for preparing carbon nanotubes and pt composite catalysts and their performance for methanol oxidation [J]. Journal of Physical Chemistry C,2007,111(30):11174-11179.
    [90]Jia Z J, Wang Z Y, Xu C L, et al. Study on poly(methyl methacrylate)/carbon nanotube composites [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1999,271(1-2):395-400.
    [91]Zhaoxia J, Pramoda K P, Guoqin X, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites [J]. Chemical Physics Letters,2001,337(1-3):43-47.
    [92]Zhaoxia J, Xuan S, Guoqin X, et al. Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites [J]. Chemical Physics Letters Chemical Physics Letters,2000,318(6):505-510.
    [93]Chang H, Kao M J, Huang K D, et al. Application of TiO2 nanoparticles coated multi-wall carbon nanotube to dye-sensitized solar cells [J]. Journal of Nanoscience and Nanotechnology,2010,10(11):7671-7675.
    [94]Didenko V V, Moore V C, Baskin D S, et al. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping [J]. Nano Letters,2005,5(8):1563-1567.
    [95]Young P, Lu Y J, Terrill R, et al. High-sensitivity NO2 detection with carbon nanotube-gold nanoparticle composite films [J]. Journal of Nanoscience and Nanotechnology,2005,5(9): 1509-1513.
    [96]Penner R M. Electrodeposition of nanowires for the detection of hydrogen gas [J]. Mrs Bulletin,2010,35(10):771-777.
    [97]Li M K, Lu M, Wang C W, et al. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates [J]. Science in China Series B-Chemistry,2002,45(4):435-444.
    [98]Dai C L, Chen Y C, Wu C C, et al. Cobalt oxide nanosheet and cnt micro carbon monoxide sensor integrated with readout circuit on chip [J]. Sensors,2010,10(3):1753-1764.
    [99]Gu D F, Baumgart H, Tapily K, et al. Precise control of highly ordered arrays of nested semiconductor/metal nanotubes [J]. Nano Research,2011,4(2):164-170.
    [100]Antunes R A, de Oliveira M C L, Ett G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells:A review of the main challenges to improve electrical performance [J]. Journal of Power Sources,2011,196(6):2945-2961.
    [101]Liang P, Wang H Y, Xia X, et al. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells [J]. Biosensors & Bioelectronics,2011, 26(6):3000-3004.
    [102]Raoof J B, Ojani R, Hosseini S R. Electrochemical fabrication of novel Pt/poly (m-toluidine)/Triton X-100 composite catalyst at the surface of carbon nanotube paste electrode and its application for methanol oxidation [J]. International Journal of Hydrogen Energy,2011,36(1):52-63.
    [103]Samant K M, Joshi V S, Sharma G, et al. Electrodics of methanol oxidation on Pt-f-multiwalled carbon nanotube composite, prepared by gamma-radiolysis [J]. Electrochimica Acta,2011,56(5):2081-2086.
    [104]Yang X A, Zhang Z H, Zhang H B, et al. Preparation and evaluation properties of Pb2+ on-imprinted polymers on chitosan modified multi-walled carbon nanotube [J]. Chinese Journal of Analytical Chemistry,2011,39(1):34-38.
    [105]Tang Q Y, Chan Y C, Zhang K L. Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films [J]. Sensors and Actuators B-Chemical,2011,152(1):99-106.
    [106]汪尔康.21世纪的分析化学[M].科学出版社,1999.
    [107]Frost M C, Meyerhoff M E. Implantable chemical sensors for real-time clinical monitoring: progress and challenges [J]. Current Opinion in Chemical Biology,2002,6(5):633-641.
    [108]Ahuja T, Kumar D, Singh N, et al. Potentiometric urea biosensor based on multi-walled carbon nanotubes (MWCNTs)/silica composite material [J]. Materials Science & Engineering C-Materials for Biological Applications,2011,31(2):90-94.
    [109]Liu X G, Peng Y H, Qu X J, et al. Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid [J]. Journal of Electroanalytical Chemistry,2011,654(1-2):72-78.
    [110]Periasamy A P, Chang Y J, Chen S M. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode [J]. Bioelectrochemistry,2011,80(2):114-120.
    [111]Ebrahimi B, Shojaosadati S A, Mousavi S M. Evaluation and optimization of factors affecting the performance of a flow-through system based on immobilized acetylcholineesterase as a biosensor [J]. Biotechnology and Bioprocess Engineering,2010, 15(3):383-391.
    [112]Kim B S, Lee S W, Yoon H, et al. Pattern transfer printing of multiwalled carbon nanotube multilayers and application in biosensors [J]. Chemistry of Materials,2010,22(16): 4791-4797.
    [113]Shim J H, Lee J S, Cha G S, et al. Electroanalytical applications based on carbon nanotube/prussian blue screen-printable composite [J]. Bulletin of the Korean Chemical Society,2010,31(6):1583-1588.
    [114]Xuan Z W, Sun X Y, Jiao G S, et al. Ionic liquid-hemoglobin-carbon paste composite bioelectrode and its electrocatalytic activity [J]. Journal of the Chinese Chemical Society, 2010,57(6B):1262-1267.
    [115]Chen S H, Ynan R, Chai Y Q, et al. Multilayer assembly of hemoglobin and colloidal gold nanoparticles on multiwall carbon nanotubes/chitosan composite for detecting hydrogen peroxide [J]. Electroanalysis,2008,20(19):2141-2147.
    [116]Xiao M W, Wang L S, Wu Y D, et al. Electrochemical study of methylene blue/titanate nanotubes nanocomposite and its layer-by-layer assembly multilayer films [J]. Journal of Solid State Electrochemistry,2008,12(9):1159-1166.
    [117]Li F H, Wang Z H, Shan C S, et al. Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application [J]. Biosensors & Bioelectronics,2009,24(6):1765-1770.
    [118]Ivnitski D, Branch B, Atanassov P, et al. Glucose oxidase anode for biofuel cell based on direct electron transfer [J]. Electrochemistry Communications,2006,8(8):1204-1210.
    [119]Riklin A, Katz E, Willner 1, et al. Improving enzyme-electrode contacts by redox modification of cofactors [J]. Nature,1995,376(6542):672-675.
    [120]Bao S J, Li C M, Zang J F, et al. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications [J]. Advanced Functional Materials,2008,18(4):591-599.
    [121]Saha S, Arya S K, Singh S P, et al. Nanoporous cerium oxide thin film for glucose biosensor [J]. Biosensors & Bioelectronics,2009,24(7):2040-2045.
    [122]Guilbaul.Gg, Montalvo J G. Urea-specific enzyme electrode [J]. Analytical Letters,1969, 2(5):283-287.
    [123]Paredes P A, Parellada J, Fernandez V M, et al. Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis [J]. Biosensors & Bioelectronics,1997,12(12):1233-1243.
    [124]Changqing L, Nijuan S, Jiangfeng N, et ai. Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes [J]. Journal of Solid State Chemistry,2008:2620-5.
    [125]Zhang L, Tian D B, Zhu J J. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode [J]. Bioelectrochemistry,2008,74(1):157-163.
    [126]Brusova Z, Gorton L, Magner E. Comment on "Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids" [J]. Langmuir,2006,22(26):11453-11455.
    [127]Zhao X J, Mai Z B, Kang X H, et al. Clay-chitosan-gold nanoparticle nanohybrid: Preparation and application for assembly and direct electrochemistry of myoglobin [J]. Electrochimica Acta,2008,53(14):4732-4739.
    [128]Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode [J]. Analytical Biochemistry,2007,363(1):143-150.
    [129]Chen X M, Lin Z J, Chen D J, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes [J]. Biosensors & Bioelectronics,2010,25(7):1803-1808.
    [130]Shi J, Ci P L, Wang F, et al. Nonenzymatic glucose sensor based on over-oxidized polypyrrole modified Pd/Si microchannel plate electrode [J]. Biosensors & Bioelectronics, 2011,26(5):2579-2584.
    [131]Jiang L C, Zhang W D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode [J]. Biosensors & Bioelectronics,2010, 25(6):1402-1407.
    [132]Huang H Y, Chen P Y. PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media [J]. Talanta,2010,83(2):379-385.
    [133]Su C, Zhang C, Lu G Q, et al. Nonenzymatic electrochemical glucose sensor based on pt nanoparticles/mesoporous carbon matrix [J]. Electroanalysis,2010,22(16):1901-1905.
    [134]Sun F, Li L, Liu P, et al. Nonenzymatic electrochemical glucose sensor based on novel copper film [J]. Electroanalysis,2011,23(2):395-401.
    [135]Wang G X, Liu Y, Hu N F. Comparative electrochemical study of myoglobin loaded in different types of layer-by-layer assembly films [J]. Electrochimica Acta,2007,53(4): 2071-2079.
    [136]Nannan W, Xin X, Jiangyan D, et al. A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film [J]. Biosensors & Bioelectronics, 2011:3602-3607.
    [137]Zhang H M, Li N Q. The direct electrochemistry of myoglobin at a DL-homocysteine self-assembled gold electrode [J]. Bioelectrochemistry,2001,53(1):97-101.
    [138]Du D, Ye X X, Cai J, et al. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates [J]. Biosensors & Bioelectronics,2010,25(11):2503-2508.
    [139]Heli H, Majdi S, Jabbari A, et al. Electrooxidation of dextromethorphan on a carbon nanotube-carbon microparticle-ionic liquid composite:applied to determination in pharmaceutical forms [J]. Journal of Solid State Electrochemistry,2010,14(8):1515-1523.
    [140]Sun X, Wang X Y, Zhao W P. Multiwall carbon nanotube-based acetylcholinesterase biosensor for detecting organophosphorous pesticides [J]. Sensor Letters,2010,8(2): 247-252.
    [141]Zhao H Y, Xu X X, Zhang J X, et al. Carbon nanotube-hydroxyapatite-hemoglobin nanocomposites with high bioelectrocatalytic activity [J]. Bioelectrochemistry,2010,78(2): 124-129.
    [142]Zhou K F, Zhu Y H, Yang X L, et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites [J]. Electrochimica Acta,2010,55(9): 3055-3060.
    [143]Zamfir L G, Rotariu L, Bala C. A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel [J]. Biosensors & Bioelectronics,2011, 26(8):3692-3695.
    [144]Perez-Lopez B, Merkoci A. Magnetic nanoparticles modified with carbon nanotubes for electrocatalytic magnetoswitchable biosensing applications [J]. Advanced Functional Materials,2011,21(2):255-260.
    [145]Saleh F S, Rahman M R, Kitamura F, et al. A simple and effective way to integrate nile blue covalently onto functionalized swcnts modified gc electrodes for sensitive and selective electroanalysis of NADH [J]. Electroanalysis,2011,23(2):409-416.
    [146]Qiu J D, Cui S G, Liang R P. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubes by a hydrothermal synthetic method [J]. Microchimica Acta,2010, 171(3-4):333-339.
    [147]Zhang Y Y, Yuan R, Chai Y Q, et al. An amperometric hydrogen peroxide biosensor based on the immobilization of HRP on multi-walled carbon nanotubes/electro-copolymerized nano-Pt-poly(neutral red) composite membrane [J]. Biochemical Engineering Journal,2010, 51(3):102-109.
    [148]Park H, Park T J, Huh Y S, et al. Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms [J]. Journal of Colloid and Interface Science,2010,350(2):453-458.
    [149]Maiyalagan T. Pt-Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation [J]. Journal of Solid State Electrochemistry,2009,13(10):1561-1566.
    [150]Kim Y H, Lee H K, Park Y, et al. Preparation and characterization of an oxidized mwcnt-reinforced nafion (R) nanocomposite membrane for direct methanol fuel cell [J]. Journal of Nanoelectronics and Optoelectronics,2010,5(2):208-211.
    [151]Zhu Z Z, Wang J L, Munir A, et al. Electrocatalytic activity of Pt nanoparticles on bamboo shaped carbon nanotubes for ethanol oxidation [J]. Electrochimica Acta,2010,55(28): 8517-8520.
    [152]衣保廉.燃料电池--高效、环境友好的发电方式[M].化学工业出版社,2000.
    [153]Joo S H, Pak C, Kim E A, et al. Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance [J]. Journal of Power Sources,2008,180(1):63-70.
    [154]Liu P, Yin G P, Du C Y. Composite anode catalyst layer for direct methanol fuel cell [J]. Electrochemistry Communications,2008,10(10):1471-1473.
    [155]Sun C L, Chen L C, Su M C, et al. Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity [J]. Chemistry of Materials, 2005,17(14):3749-3753.
    [156]Wu G, Xu B Q. Carbon nanotube supported Pt electrodes for methanol oxidation:A comparison between multi-and single-walled carbon nanotubes [J]. Journal of Power Sources,2007,174(1):148-158.
    [157]Emets V V, Tarasevich M R, Busev S A. Developing a membrane-electrode assembly with reduced Pt content for a hydrogen-air fuel cell based on a PtCoCr catalyst and F-950 membrane [J]. Russian Journal of Electrochemistry,2011,47(3):345-356.
    [158]Huang Y F, Kannan A M, Chang C S, et al. Development of gas diffusion electrodes for low relative humidity proton exchange membrane fuel cells [J]. International Journal of Hydrogen Energy,2011,36(3):2213-2220.
    [159]Mazin P V, Kapustina N A, Tarasevich M R. Direct ethanol oxidation fuel cell with anionite membrane and alkaline electrolyte [J]. Russian Journal of Electrochemistry,2011,47(3): 275-281.
    [160]Wang X D, Xie X F, Wang M, et al. Critical Materials and Technology in Direct Methanol Fuel Cells [J]. Progress in Chemistry,2011,23(2-3):509-519.
    [161]Hu F P, Cui G F, Wei Z D, et al. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes [J]. Electrochemistry Communications, 2008,10(9):1303-1306.
    [162]McNicol B D, Rand D A J, Williams K R. Direct methanol-air fuel cells for road transportation [J]. Journal of Power Sources,1999,83(1-2):15-31.
    [163]Koffi R C, Coutanceau C, Gamier E, et al. Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR) [J]. Electrochimica Acta,2005,50(20):4117-4127.
    [164]Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells [J]. Journal of Power Sources,1999,84(1):70-74.
    [165]Jiang R Z, Chu D. Power management of a direct methanol fuel cell system [J]. Journal of Power Sources,2006,161(2):1192-1197.
    [166]Dohle H, Mergel J, Stolten D. Heat and power management of a direct-methanol-fuel-cell (DMFC) system [J]. Journal of Power Sources,2002,111(2):268-282.
    [167]Wang X Y, Zhang J C, Zhu H. Pt-Au/CNT@TiO2 as a High-Performance Anode Catalyst for Direct Methanol Fuel Cells [J]. Chinese Journal of Catalysis,2011,32(1):74-79.
    [168]Jang I Y, Park K C, Jung Y C, et al. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells [J]. Journal of Nanoscience and Nanotechnology,2011,11(1):675-680.
    [169]Sakthivel M, Schlange A, Kunz U, et al. Microwave assisted synthesis of surfactant stabilized platinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications [J]. Journal of Power Sources,2010,195(20):7083-7089.
    [170]Sun S H, Zhang G X, Geng D S, et al. Direct growth of Single-crystal Pt nanowires on sn@cnt nanocable:3D electrodes for highly active electrocatalysts [J]. Chemistry-a European Journal,2010,16(3):829-835.
    [171]Wu B H, Hu D, Kuang Y J, et al. Functionalization of carbon nanotubes by an ionic-liquid polymer:dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol [J]. Angewandte Chemie-International Edition,2009, 48(26):4751-4754.
    [172]Prabhuram J, Zhao T S, Tang Z K, et al. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells [J]. Journal of Physical Chemistry B,2006,110(11): 5245-5252.
    [173]Gorton L, Lindgren A, Larsson T, et al. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors [J]. Analytica Chimica Acta, 1999,400:91-108.
    [174]Armstrong F A, Wilson G S. Recent developments in faradaic bioelectrochemistry [J]. Electrochimica Acta,2000,45(15-16):2623-2645.
    [175]Armstrong F A, Hill H A O, Walton N J. Direct electrochemistry of redox proteins [J]. Accounts of Chemical Research,1988,21(11):407-413.
    [176]Kong Y T, Boopathi M, Shim Y B. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode [J]. Biosensors & Bioelectronics,2003,19(3):227-232.
    [177]Sun Z Y, Li Y Q, Zhou T S, et al. Direct electron transfer and electrocatalysis of hemoglobin in layer-by-layer films assembled with Al-MSU-S particles [J]. Talanta,2008,74(5): 1692-1698.
    [178]Zhang Y, Zheng J B. Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film [J]. Electrochemistry Communications,2008,10(9):1400-1403.
    [179]Li Q W, Luo G A, Feng J. Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film [J]. Electroanalysis,2001,13(5):359-363.
    [180]Zhang W J, Li G X. Third-generation biosensors based on the direct electron transfer of proteins [J]. Analytical Sciences,2004,20(4):603-609.
    [181]Lu X B, Wen Z H, Li J H. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors [J]. Biomaterials,2006,27(33):5740-5747.
    [182]Feng K J, Yang Y H, Wang Z J, et al. A nano-porous CeO2/chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor [J]. Talanta,2006,70(3):561-565.
    [183]Deng Z F, Tian Y, Yin X, et al. Physical vapor deposited zinc oxide nanoparticles for direct electron transfer of superoxide dismutase [J]. Electrochemistry Communications,2008, 10(5):818-820.
    [184]Zhu X L, Yuri I, Gan X, et al. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation [J]. Biosensors & Bioelectronics,2007,22(8):1600-1604.
    [185]Umar A, Rahman M M, Vaseem M, et al. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles [J]. Electrochemistry Communications,2009, 11(1):118-121.
    [186]Liu S Q, Dai Z H, Chen H Y, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor [J]. Biosensors & Bioelectronics,2004,19(9):963-969.
    [187]Zong S Z, Cao Y, Zhou Y M, et al. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix [J]. Biosensors & Bioelectronics,2007,22(8):1776-1782.
    [188]Yu J J, Ma J R, Zhao F Q, et al. Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3 [J]. Electrochimica Acta,2007,53(4): 1995-2001.
    [189]Zhao G, Xu J J, Chen H Y Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin [J]. Electrochemistry Communications,2006,8(1):148-154.
    [190]Salimi A, Sharifi E, Noorbakhsh A, et al. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles [J]. Electrochemistry Communications,2006,8(9):1499-1508.
    [191]Salimi A, Sharifi E, Noorbakhsh A, et al. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles:Direct electron transfer and electrocatalytic activity [J]. Biosensors & Bioelectronics,2007,22(12):3146-3153.
    [192]Salimi A, Sharifi E, Noorbakhsh A, et al. Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide [J]. Biophysical Chemistry,2007,125(2-3):540-548.
    [193]Xiang C L, Zou Y J, Sun L X, et al. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode [J]. Talanta,2007,74(2):206-211.
    [194]Wang Z, Li M, Su P, et al. Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube/thionine/gold composites [J]. Electrochemistry Communications,2008,10(2):306-310.
    [195]Qiu J D, Zhou W M, Guo J, et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose [J]. Analytical Biochemistry,2009,385(2):264-269.
    [196]Besteman K, Lee J O, Wiertz F G M, et al. Enzyme-coated carbon nanotubes as single-molecule biosensors [J]. Nano Letters,2003,3(6):727-730.
    [197]Zhang Y, He P L, Hu N F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis [J]. Electrochimica Acta,2004,49(12):1981-1988.
    [198]Zheng Y Z, Zhang M L, Gao P. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors [J]. Materials Research Bulletin,2007,42(9):1740-1747.
    [199]Ji Yeong L, Kui L, Kay Hyeok A, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance [J]. Synthetic Metals,2005,150(2):153-157.
    [200]Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372(6502):159-162.
    [201]Liu X M, Zhang X G, Fu S Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors [J]. Materials Research Bulletin,2006,41(3): 620-627.
    [202]Kim H J, Jeon K K, An K H, et al. Exfoliation of single-walled carbon nanotubes by electrochemical treatment in a nitric acid [J]. Advanced Materials,2003,15(20): 1757-1759.
    [203]George P, Hanania G. A spectrophotometric study of ionizations in methaemoglobin [J]. Biochemical Journal,1953,55(2):236-243.
    [204]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry,1979, 101(1):19-28.
    [205]Laviron E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. Journal of Electroanalytical. Chemistry,1979,100(1-2):263-270.
    [206]Yamazaki I, Araiso T, Hayashi Y, et al. Analysis of acid-base properties of peroxidase and myoglobin [J]. Adv Biophys,1978,11:249-81.
    [207]Zhou Y L, Hu N F, Zeng Y H, et al. Heme protein-clay films:Direct electrochemistry and electrochemical catalysis [J]. Langmuir,2002,18(1):211-219.
    [208]Nassar A E F, Zhang Z, Hu N F, et al. Proton-coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like films [J]. Journal of Physical Chemistry B,1997, 101(12):2224-2231.
    [209]Zhou Y L H N F, Zeng Y H,. Heme protein-clay films:direct electrochemistry and electrochemical catalysis. [J]. Langmuir,2002,18(1):211-219.
    [210]Wang S F C T, Zhang Z L. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. [J]. Langmuir,2005, 21(20):9260-9266.
    [211]Sun Y X, Wang S F. Direct electrochemistry and electrocatalytic characteristic of heme proteins immobilized in a new sol-gel polymer film [J]. Bioelectrochemistry,2007,71(2): 172-179.
    [212]Zhang L Z Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. [J]. Advanced Functional Materials,2007,17(12):1958-1965.
    [213]Zhang L Z G C, Wei X W,. A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes. [J]. Electroanalysis,2005,17(7):630-634.
    [214]Yang W W, Li Y C, Bai Y, et al. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film [J]. Sensors and Actuators B-Chemical,2006,115(1):42-48.
    [215]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Analytical Chemistry, 1980,52(8):1198-1205.
    [216]Gan X, Liu T, Zhong J, et al. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin [J]. ChemBioChem,2004,5(12):1686-1691.
    [217]Guo C X, Hu F P, Li C M, et al. Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor [J]. Biosensors & Bioelectronics,2008,24(4):819-824.
    [218]Chen X, Fu C L, Wang Y, et al. Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets [J]. Biosensors & Bioelectronics,2008,24(3):356-361.
    [219]Riklin A, Katz E, Willner I, et al. Improving enzyme- electrode contacts by redox modification of cofactors [J]. Nature,1995,376(6542):672-675.
    [220]McKenzie K J, Marken F. Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate [J]. Langmuir,2003,19(10):4327-4331.
    [221]Liu Q, Lu X B, Li J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes [J]. Biosensors & Bioelectronics,2007,22(12):3203-3209.
    [222]Kerman K, Saito M, Yamamura S, et al. Nanomaterial-based electrochemical biosensors for medical applications [J]. Trac-Trends in Analytical Chemistry,2008,27(7):585-592.
    [223]Liao C W, Chou J C, Sun T P, et al. Preliminary investigations on a new disposable potentiometric biosensor for uric acid [J]. Ieee Transactions on Biomedical Engineering, 2006,53(7):1401-1408.
    [224]Ansari A A, Kaushik A, Solanki P R, et al. Sol-gel derived nanoporous cerium oxide film for application to cholesterol biosensor [J]. Electrochemistry Communications,2008,10(9): 1246-1249.
    [225]Ansari A A, Solanki P R, Malhotra B D. Sol-gel derived nanostructured cerium oxide film for glucose sensor [J]. Applied Physics Letters,2008,92(26).
    [226]Cheng Y X, Liu Y J, Huang J J, et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms [J]. Electrochimica Acta,2009,54(9):2588-2594.
    [227]Zhao Y, Fan L Z, Zhong H Z, et al. Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes:Electrodeposition and enhanced electrocatalytic activity for methanol oxidation [J]. Advanced Functional Materials,2007,17(9):1537-1541.
    [228]Jurewicz K, Babel K, Pietrzak R, et al. Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation [J]. Carbon,2006,44(12):2368-2375.
    [229]Zhang D S, Pan C S, Zhang J P, et al. Solvothermal synthesis of necklace-like carbon nanotube/ceria composites [J]. Materials Letters,2008,62(23):3821-3823.
    [230]Zhang Y, Chen X, Yang W. Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film [J]. Sensors and Actuators B: Chemical,2008,130(2):682-688.
    [231]Fan C H, Pang J T, Shen P P, et al. Nitric oxide biosensors based on Hb/phosphatidylcholine films [J]. Analytical Sciences,2002,18(2):129-132.
    [232]Service R F. Nanotechnology-Calls rise for more research on toxicology of nanomateriais [J]. Science,2005,310(5754):1609-1609.
    [233]Isobe H, Tanaka T, Maeda R, et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates [J]. Angewandte Chemie-International Edition,2006,45(40):6676-6680.
    [234]Liu Y, Wu D C, Zhang W D, et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA [J]. Angewandte Chemie-International Edition,2005,44(30):4782-4785.
    [235]Day T M, Unwin P R, Wilson N R, et al. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks [J]. Journal of the American Chemical Society,2005,127(30):10639-10647.
    [236]Ye C F, Gao H X, Boatz J A, et al. Polyazidopyrimidines:High-energy compounds and precursors to carbon nanotubes [J]. Angewandte Chemie-International Edition,2006, 45(43):7262-7265.
    [237]Wildoer J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes [J]. Nature,1998,391(6662):59-62.
    [238]O'Connell M J, Bachilo S M, Huffman C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes [J]. Science,2002,297(5581):593-596.
    [239]Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature,1996,382(6586):54-56.
    [240]Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381(6584):678-680.
    [241]Xing Y C. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes [J]. Journal of Physical Chemistry B,2004,108(50):19255-19259.
    [242]Lin Y H, Cui X L, Yen C, et al. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells [J]. Journal of Physical Chemistry B,2005,109(30):14410-14415.
    [243]Sanles-Sobrido M, Correa-Duarte M A, Carregal-Romero S, et al. Highly catalytic single-crystal dendritic pt nanostructures supported on carbon nanotubes [J]. Chemistry of Materials,2009,21(8):1531-1535.
    [244]Onoe T, Iwamoto S, Inoue M. Synthesis and activity of the Pt catalyst supported on CNT [J]. Catalysis Communications,2007,8(4):701-706.
    [245]Hsu C-H, Liao H-Y, Kuo P-L. Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes [J]. The Journal of Physical Chemistry C, 2010,114(17):7933-7939.
    [246]Mackiewicz N, Surendran G, Remita H, et al. Supramolecular self-assembly of amphiphiles on carbon nanotubes:A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis [J]. Journal of the American Chemical Society,2008,130(26): 8110-8111.
    [247]Liu Z L, Lin X H, Lee J Y, et al. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells [J]. Langmuir,2002,18(10):4054-4060.
    [248]Yu P, Qian Q, Lin Y Q, et al. In situ formation of three-dimensional uniform pt/carbon nanotube nanocomposites from ionic liquid/carbon nanotube gel matrix with enhanced electrocatalytic activity toward methanol oxidation [J]. Journal of Physical Chemistry C, 2010,114(8):3575-3579.
    [249]Li W Z, Liang C H, Zhou W J, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. Journal of Physical Chemistry B,2003,107(26):6292-6299.
    [250]Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production [J]. Nature,1998,393(6683):346-349.
    [251]Halder A, Sharma S, Hegde M S, et al. Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation [J]. Journal of Physical Chemistry C,2009,113(4):1466-1473.
    [252]Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chemistry of Materials,1998,10(3):718-722.
    [253]Hsin Y L, Hwang K C, Yeh C T. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells [J]. Journal of the American Chemical Society,2007,129(32):9999-10010.
    [254]Wang S, Wang X, Jiang S P. PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation [J]. Langmuir,2008,24(18):10505-10512.
    [255]Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays [J]. Carbon,2004,42(1):191-197.
    [256]Planeix J M, Coustel N, Coq B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis [J]. Journal of the American Chemical Society,1994,116(17): 7935-7936.
    [257]Ang L M, Hor T S A, Xu G Q, et al. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method [J]. Chemistry of Materials,1999,11(8): 2115-2118.
    [258]Mu Y Y, Liang H P, Hu J S, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells [J]. Journal of Physical Chemistry B,2005,109(47):22212-22216.
    [259]Wan J Q, Cai W, Feng J T, et al. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols [J]. Journal of Materials Chemistry, 2007,17(12):1188-1192.
    [260]Waychunas G A Z H Z. Structure, chemistry, and properties of mineral nanoparticles [J]. Elements,2008,4(6):381-387.
    [261]Balan B K, Unni S M, Kurungot S. Carbon nanofiber with selectively decorated pt both on inner and outer walls as an efficient electrocatalyst for fuel cell applications [J]. Journal of Physical Chemistry C,2009,113(40):17572-17578.
    [262]Schmidt T J, Gasteiger H A, Stab G D, et al. Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration [J]. Journal of the Electrochemical Society,1998,145(7):2354-2358.
    [263]Wang S Y, Jiang S P, White T J, et al. Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells [J]. Journal of Physical Chemistry C,2009,113(43):18935-18945.
    [264]Lee C L, Chiou H P, Chang K C, et al. Carbon nanotubes-supported colloidal Ag-Pd nanoparticles as electrocatalysts toward oxygen reduction reaction in alkaline electrolyte [J]. International Journal of Hydrogen Energy,2011,36(4):2759-2764.
    [265]Moreira J, del Angel P, Ocampo A L, et al. Synthesis, characterization and application of a Pd/Vulcan and Pd/C catalyst in a PEM fuel cell [J]. International Journal of Hydrogen Energy,2004,29(9):915-920.
    [266]Zhou W J, Li W Z, Song S Q, et al. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells [J]. Journal of Power Sources,2004,131(1-2):217-223.
    [267]Won Suk J, Jonghee H, Sung Pil Y, et al. Performance degradation of direct formic acid fuel cell incorporating a Pd anode catalyst [J]. Journal of Power Sources,2011,196(10): 4573-4578.
    [268]Yongfu T, Huamin Z, Ting X, et al. Carbon-supported Pd-Pt cathode electrocatalysts for proton exchange membrane fuel cells [J]. Journal of Power Sources,2011,196(7): 3523-3529.
    [269]Sha Y, Yu T H, Merinov B V, et al. Oxygen hydration mechanism for the oxygen reduction reaction at Pt and Pd fuel cell catalysts [J]. Journal of Physical Chemistry Letters,2011, 2(6):572-576.
    [270]Kim Y J, Choi W C, Woo S I, et al. Evaluation of a palladinized Nafion (TM) for direct methanol fuel cell application [J]. Electrochimica Acta,2004,49(19):3227-3234.
    [271]Bretthauer C, Mu uml Her C, Reinecke H. A precious-metal free micro fuel cell accumulator [J]. Journal of Power Sources,2011,196(10):4729-4734.
    [272]Ye X R, Lin Y, Wai C M. Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide [J]. Chemical Communications,2003, (5):642-643.
    [273]Choi H C, Shim M, Bangsaruntip S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J]. Journal of the American Chemical Society,2002,124(31): 9058-9059.
    [274]Xue B, Chen P, Hong Q, et al. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes [J]. Journal of Materials Chemistry,2001,11(9):2378-2381.
    [275]Karousis N, Tsotsou G E, Evangelista F, et al. Carbon nanotubes decorated with palladium nanoparticles:synthesis, characterization, and catalytic activity [J]. The Journal of Physical Chemistry C,2008,112(35):13463-13469.
    [276]Guo D j, Li H 1. Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces [J]. Electrochemistry Communications,2004,6(10):999-1003.
    [277]He J, Ichinose I, Kunitake T, et al. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films:Nanoparticle morphology and catalytic activity [J]. Journal of the American Chemical Society,2003,125(36):11034-11040.
    [278]Hara M, Linke U, Wandlowski T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HC1O4:Part I. Low-index phases [J]. Electrochimica Acta,2007,52(18):5733-5748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700