塞来昔布对卵巢癌细胞SKOV3生长、侵袭和化疗敏感性的影响及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是严重威胁广大妇女生命的常见恶性疾病,其发病率有逐年上升的趋势,死亡率高居女性生殖系统恶性肿瘤之首。本病起病隐匿,早期诊断困难,一经发现多为晚期,目前尚无预防卵巢癌的有效方法。尽管已广泛开展肿瘤细胞减灭术以及术后联合铂类为基础的化疗的方案,但卵巢癌患者的5年存活率仍徘徊在25-30%[1],85%-90%的患者最终仍难免复发和转移,其重要原因是化疗耐药以及化疗毒副反应大,患者难以承受[2; 3]。因此,探讨肿瘤细胞化疗耐药机制和开发新型辅助化疗药物以增强铂类药的化疗效果、减少其毒副作用成为近年来妇科肿瘤学者研究的热点。
     环氧化酶(COX)是花生四烯酸生物合成前列腺素的限速酶,有COX-1和COX-2两种同工酶。其中COX-2(环氧化酶-2)的过度表达参与了肿瘤的发生和生长[4-8],同时参与多种肿瘤的侵袭和转移[9-11],而且与肿瘤的化疗耐药相关[12; 13]。研究发现COX-2抑制剂能够抑制多种实体肿瘤的生长、侵袭和转移,而且可增加多种化疗药物对肿瘤的细胞毒性[14-18]。已有研究发现在卵巢癌中存在COX-2的稳定表达,而在正常组织中无表达[19; 20]。目前仅有少量关于COX-2抑制剂单独应用于卵巢癌的研究报道,但结果存在争议,机制不明[21-23],塞莱昔布作为COX-2的选择性抑制剂,其与化疗药物联合作用于卵巢癌细胞的研究尚未见报道。
     研究目的
     本实验主要研究塞来昔布对卵巢癌细胞SKOV3生长、侵袭和对顺铂药物敏感性的影响,并探讨其可能的分子机制。
     研究方法
     第一部分塞来昔布对卵巢癌细胞SKOV3生长的抑制作用及作用途径研究
     本实验通过Proliferation Assay、流式细胞仪细胞周期分析、流式细胞仪细胞凋亡检测等方法研究塞来昔布对卵巢癌细胞SKOV3的增殖、凋亡的影响,同时与siRNA介导的COX-2沉默对SKOV3细胞的上述影响进行比较,探讨COX-2在其中是否起作用,并通过Western blot技术检测相关蛋白(Caspase-9, Caspase-3, PARP, Bcl-2, Bax, Cyclin D1)的变化情况。
     第二部分塞来昔布对卵巢癌细胞SKOV3对顺铂化疗敏感性的增强作用及作用途径研究
     本研究通过Proliferation Assay法检测低浓度(10μM,临床可达到的血药浓度)塞莱昔布对卵巢癌SKOV3细胞顺铂敏感性的增强作用,同时以特异性沉默COX-2表达的SKOV3/COX-2i细胞作为COX-2的阴性对照组细胞,探讨COX-2在其中是否起作用,并通过Western blot技术检测相关蛋白(Caspase-9, Caspase-3, PARP, Bcl-2, Bax, P-gp)的变化情况。
     第三部分塞来昔布对卵巢癌细胞SKOV3侵袭能力的抑制作用及作用途径研究
     本研究通过细胞基质粘附实验检测各组细胞间的粘附能力,利用transwell小室实验及划痕实验检测各组细胞的侵袭和迁移能力,同时与siRNA介导的COX-2沉默对SKOV3的引起的上述影响进行比较,明胶酶谱法(Zymography)检测MMP-2、MMP-9的活性,Western blot技术检测MMP-2、MMP-9、E-cadherin蛋白的变化情况。
     研究结果
     1. Proliferation Assay结果显示:24h、48h、72h时,高浓度Celecoxib(50μM)和特异性沉默COX-2表达后可明显抑制卵巢癌细胞SKOV3生长,而低浓度(2μM,10μM)效果不明显;接着流式细胞仪检测细胞周期和细胞凋亡情况,细胞周期结果显示:50μM Celecoxib作用24h和特异性沉默COX-2表达的SKOV3/COX-2i,两组细胞G0/G1期细胞比例增加,S期及G2/M期下降,G1峰之前出现典型的亚二倍体峰;流式细胞仪凋亡检测结果显示:凋亡早期细胞簇群,Annexin V(+)PI(-)和凋亡晚期细胞或死亡细胞簇群,Annexin V(+)PI(+)的细胞明显高于空白对照组和10μM Celecoxib组; Western blot结果显示50μM Celecoxib作用24h和特异性沉默COX-2表达后,SKOV3细胞的细胞周期蛋白Cyclin D1表达量减少,而与凋亡执行密切相关的Caspase-3、Caspas-9和PARP均出现了活化的片段,而Bcl-2家族的Bcl-2和Bax表达无明显变化。10μM Celecoxib作用24h后上述蛋白无相应变化。
     2.与正常对照组细胞相比,10μM Celecoxib与10μM Cisplatin联合作用SKOV3细胞24h后能明显抑制SKOV3细胞的生长(p<0.05),而单独用10μM Cisplatin未见明显的生长抑制作用(p>0.05)。两者联合作用于COX-2表达阴性的SKOV3/COX-2细胞后,观察到类似的生长抑制效果。Western blot结果显示联合用药组细胞出现Caspase-9、Caspase-3和PARP的活化片段,Bcl-2、Bax表达无明显变化,而单独用10μM Cisplatin后上述蛋白无明显变化;正常SKOV3细胞几乎不表达多药耐药基因MDR1编码的P-gp蛋白,经10μM Cisplatin作用24h后,P-gp蛋白表达增加,而10μM Celecoxib与10μM Cisplatin联合用药能抑制由Cisplatin引起的P-gp表达增加。
     3.细胞基质粘附实验结果显示:10μM Celecoxib作用24h后,粘附于Matrigel胶上的SKOV3细胞数明显多于未经Celecoxib处理的SKOV3细胞(p<0.05);侵袭实验结果显示:经10μM Celecoxib作用24h后,SKOV3细胞穿过人工基底膜的细胞数明显少于未经Celecoxib处理的SKOV3细胞(p<0.05);划痕实验结果提示:经10μM Celecoxib作用24h后,SKOV3细胞迁移至损伤区的细胞数明显少于未经Celecoxib处理的SKOV3细胞(p<0.05);转染COX-2 siRNA的SKOV3/COX-2i在上述3个实验中较之正常对照组细胞组无明显差异(p>0.05)。凝胶酶谱实验和Western blot结果显示:经10μM Celecoxib作用24h后,SKOV3细胞MMP-2、MMP-9的活性和表达量受到明显抑制;Western blot结果显示E-cadherin的表达经Celecoxib作用24h后,细胞较之正常对照组和特异性沉默COX-2的SKOV3/COX-2i,E-cadherin表达明显增强。
     结论
     1.高浓度的Celecoxib(50μM)可以通过抑制细胞周期蛋白Cyclin D1的表达,活化“Caspase/PARP”通路,实现抑制SKOV3细胞增殖和促进细胞凋亡的作用;通过RNAi技术特异性沉默SKOV3细胞COX-2的表达也可通过上述途径抑制SKOV3细胞的增殖和促进细胞凋亡,但作用要弱于50μM Celecoxib;该作用途径存在COX-2依赖和COX-2非依赖途径,而整个过程是Bcl-2非依赖的。
     2.小剂量Celecoxib(10μM)与Cisplatin联合用药可抑制SKOV3细胞中由Cisplatin引起的多药耐药基因MDR1编码的P-gp表达增加,活化“Caspase/PARP”通路,增强SKOV3对化疗药Cisplatin的敏感性;通过RNAi技术特异性沉默SKOV3细胞COX-2的表达不能增加SKOV3细胞对Cisplatin的敏感性;小剂量Celecoxib(10μM)对SKOV3细胞对Cisplatin的增敏作用是COX-2非依赖的。
     3.小剂量Celecoxib(10μM)通过增加E-cadherin的表达,抑制MMP-2、MMP-9的表达和活性,增强SKOV3细胞的粘附力,抑制其侵袭和迁移力;通过RNAi技术特异性沉默SKOV3细胞COX-2的表达不能引起上述变化;小剂量Celecoxib对SKOV3细胞侵袭的抑制作用是COX-2非依赖的。
     4.Celecoxib具有良好的抗肿瘤作用,其有效浓度10μM是临床作为非甾体抗炎药应用时可达到的,其有望成为新的化疗辅助药,具有很好的临床应用前景。
Ovarian cancer is one of the most common life-threatening malignant tumors among women and it is the first leading cause of death from gynecologic cancers. Due to the lack of effective screening strategies and the absence of symptoms in early-stage of disease, majority of cases have progressed to an advanced stage at the time of primary diagnosis. Although most patients will undergo an attempt at surgical debulking followed by 6 cycles of chemotherapy with a platinum-based regimen, the 5-year survival remains 25-30%[1] and 85-90% patients will develope tumor recurrence or metastasis. Cisplatin as the critical component in the chemotherapy regimens, its usage has been limited because of its cumulative toxicities, especially the toxicity to the kidney and the intrinsic or acquired resistance to cisplatin in some patients[2; 3]. In recent years, the interests of combining cisplatin and new active chemotherapeutic agents to treat ovarian cancer have arisen for promoting the effectiveness and reducing the side effect of cisplatin.
     Cyclooxygenase (COX) is an important speed-limited enzyme in the conversion of arachidonic acid to prostaglandins. Two isoenzymes of COX, COX-1 and COX-2, have been idendified. Overexpression of COX-2 is known to be closely associated with tumor growth[4-8], metastasis[9-11] and chemotherapy resistance[12; 13] in several kinds of human tumors. The selective inhibitor of COX-2 has been shown to suppress tumor growth, invastion and metastasis in solid tumors, and increase the cytotoxicity of chemotherapy drugs to tumor cells[14-18]. It has been found that COX-2 is stably expressed in ovarian cancer tissue, but not in normal tissues[19; 20]. Although there are several reports about COX-2 inhibitors used in ovarian cancer, the results are debatable and the mechanism is unclear. There is no report about the combination of celecoxib with chemotherapy drug in ovarian cancer cells nowaday.
     Objective
     1. To investigate the effect and mechanism of COX-2 selective inhibitor Celecoxib on cell proliferation in human ovarian cancer cell line SKOV3.
     2. To investigate the effect and mechanism of Celecoxib on cell sensitivity to Cisplatin in human ovarian cancer cell line SKOV3.
     3. To investigate the effect and mechanism of Celecoxib on cell ivasion in human ovarian cancer cell line SKOV3.
     Methods
     Part One the effect and mechanism of COX-2 selective inhibitor Celecoxib on cell proliferation in human ovarian cancer cell line SKOV3
     The proliferation assay and flow cytometry were carried out to investigate the effect of Celecoxib on cell proliferation and apoptosis in ovarian cancer cell line SKOV3. As a comparison, the same work was done in SKOV3 cells in which the COX-2 expression was inhibited by COX-2 siRNA. Western blot was carried out to assess the changes of the expression of related proteins (Caspase-9, Caspase-3, PARP, Bcl-2, Bax, Cyclin D1).
     Part Two the effect and mechanism of COX-2 selective inhibitor Celecoxib on cell sensitivity to Cisplatin in human ovarian cancer cell line SKOV3.
     The proliferation assay was carried out to assess the enhancement effect of 10μM Celecoxib (clinical available) on cell sensitivity to Cisplain. The SKOV3/COX-2i cell, in which the COX-2 protein expression was inhibited by COX-2 siRNA, was used as the COX-2 negtive control to observe whether the COX-2 expression is dependent in the enhancement effect of Celecoxib on cell sensitivity to Cisplain. Western blot was carried out to assess the changes of the expression of related proteins (Caspase-9, Caspase-3, PARP, Bcl-2, Bax, P-gp).
     Part Three the effect and mechanism of COX-2 selective inhibitor Celecoxib on cell invasion in human ovarian cancer cell line SKOV3.
     The cell adhesion assay, transwell chamber and scratch wound assay were carried out to detect the abilities of adhesion, invasion and migration in SKOV3. The activity of MMP-2 and MMP-9 were examined by Zymography, the protein expression of COX-2, MMP-2, MMP-9 and E-cadherin was analyzed by Western blot. The same work was done in SKOV3/COX-2i to investigate the potential role of COX-2 in the changes caused by Celecoxib.
     Reults
     1. The cell growth was inhibited obviously in SKOV3 cells with high concentration of Celecoxib(50μM) at 24h, 48h and 72h, or in SKOV3/COX-2i in which the COX-2 protein expression was inhibited by COX-2 siRNA, but not in SKOV3 cells with low concentration of Celecoxib(2μM,10μM). Compared with the control and SKOV3 with Celecoxib 10μM , the SKOV3 with 50μM Celecoxib at 24h and SKOV3/COX-2i were retarded in G0/G1 phase and percentage of them in G0/G1 phase increased significantly and G1 subpeak before G1 phase peak(apoptosis peak) was shown. Compared with the control and SKOV3 with 10μM Celecoxib, the early apoptosis cells ( Annexin V(+)PI(-) ) and late apoptosis cells ( Annexin V(+)PI(+) ) were increased significantly. Western blot results showed that the expression of cell cycle protein Cyclin D1 was decreased and the amount of the active subunit of caspase-9 , caspase-3 and the cleaved subunit of PARP was increased, however, neither Bcl-2 nor Bax. Compared with the control, no significant changes of above-mentioned proteins were observed in SKOV3 with 10μM Celecoxib.
     2. Our data indicated that a remarkable increase of growth inhibition was observed in SKOV3 with the combination of 10μM Celecoxib with 10μM Cisplatin(p<0.05), nevertheless the treatment with 10μM Celecoxib or 10μM Cisplatin alone had little effect to induce growth inhibition(p>0.05). The same result was shown in SKOV3/COX-2i in which the COX-2 expression was inhibited specifically by COX-2 siRNA. In combination treatment groups, Western blot results showed that the amount of the active subunit of caspase-9 , caspase-3 and the cleaved subunit of PARP was increased, however, neither Bcl-2 nor Bax. Compared with the control, no significant changes of above-mentioned proteins were observed in SKOV3 with 10μM Cisplatin. Western blot results showed that MDR1 gene coded P-gp protein was hardly expressed in SKOV3 and SKOV3 with the combination of 10μM Celecoxib with 10μM Cisplatin for 24h, but increased in SKOV3 with 10μM Cisplatin for 24h.
     3. Treated with 10μM Celecoxib for 24 hours, cell adhesive assay, transwell chamber assay and scratch wound assay indicated that the adhesive, invasive and migratory ability of SKOV3 cells was inhibited significantly(P<0.05). Zymography results showed the descended activity of MMP-2 and MMP-9 and Western blot results showed the unchanged protein expression of COX-2 and decreased protein expression of MMP-2, MMP-9 and E-cadherin in SKOV3 cells treated with 10μM Celecoxib for 24 hours. But the same changes were not observed in SKOV3/COX-2i .
     Conclusions
     1. High concentration of COX-2 selective inhibitor Celecoxib (50μM) could inhibit the cell proliferation and increase the cell apoptosis of human ovarian cancer cell SKOV3 by inhibiting the cell cycle protein Cyclin D1 and activating the "Caspase/PARP" pathway. Specifical inhibition of COX-2 by COX-2 siRNA could inhibit the cell proliferation and increase the cell apoptosis of SKOV3, but the effect was no as good as Celecoxib (50μM). The effect mentioned above of Celecoxib might be through both COX-2 dependent and independent way, but Bcl-2 independent way.
     2. The combination of low concentration of Celecoxib (10μM) with Cisplatin (10μM) could enhance the sensitivity of SKOV3 to Cisplatin by inhibiting the expression of MDR1 gene coded P-gp increased by Cisplatin and activating the "Caspase/PARP" pathway. But the sensitivity of SKOV3 to Cisplatin could not be enhanced by specifical inhibition of COX-2 by COX-2 siRNA. The enhancement of sensitivity of SKOV3 to Cisplatin by low concentration of Celecoxib (10μM) might be COX-2 independent.
     3. Low concentration of Celecoxib (10μM) could increase the adhension and inhibit invasion and migration of SKOV3 by increasing the expression of E-cadherin and inhibiting the expression and activation of MMP-2 and MMP-9. Specifical inhibition of COX-2 by COX-2 siRNA could not cause the changes mentioned above. The inhibition of invasion of SKOV3 caused by low Celecoxib might be COX-2 independent.
     4. Celecoxib has a positive antitumor effect and the effective concentration of 10μM is clinical available when it is used as NSAIDs. It might be a new chemotherapy adjunctive drug and has a potential clinical prospect.
引文
[1] 乐杰. 妇产科学[M]. 人民卫生出版社, 2004.
    [2] McGuire W. P., Hoskins W. J., Brady M. F., Kucera P. R., Partridge E. E., Look K. Y., Clarke-Pearson D. L., Davidson M. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer[J]. N Engl J Med, 1996 334(1): 1-6.
    [3] Ozols R. F., Bundy B. N., Greer B. E., Fowler J. M., Clarke-Pearson D., Burger R. A., Mannel R. S., DeGeest K., Hartenbach E. M., Baergen R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study[J]. J Clin Oncol, 2003 21(17): 3194-200.
    [4] Wolff H., Saukkonen K., Anttila S., Karjalainen A., Vainio H., Ristimaki A. Expression of cyclooxygenase-2 in human lung carcinoma[J]. Cancer Res, 1998 58(22): 4997-5001.
    [5] Chan G., Boyle J. O., Yang E. K., Zhang F., Sacks P. G., Shah J. P., Edelstein D., Soslow R. A., Koki A. T., Woerner B. M., Masferrer J. L., Dannenberg A. J. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck[J]. Cancer Res, 1999 59(5): 991-4.
    [6] Tucker O. N., Dannenberg A. J., Yang E. K., Zhang F., Teng L., Daly J. M., Soslow R. A., Masferrer J. L., Woerner B. M., Koki A. T., Fahey T. J., 3rd. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer[J]. Cancer Res, 1999 59(5): 987-90.
    [7] Zimmermann K. C., Sarbia M., Weber A. A., Borchard F., Gabbert H. E., Schror K. Cyclooxygenase-2 expression in human esophageal carcinoma[J]. Cancer Res, 1999 59(1): 198-204.
    [8] Gupta S., Srivastava M., Ahmad N., Bostwick D. G., Mukhtar H. Over-expression ofcyclooxygenase-2 in human prostate adenocarcinoma[J]. Prostate, 2000 42(1): 73-8.
    [9] Kinugasa Y., Hatori M., Ito H., Kurihara Y., Ito D., Nagumo M. Inhibition of cyclooxygenase-2 suppresses invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 and CD44[J]. Clin Exp Metastasis, 2004 21(8): 737-45.
    [10] Abiru S., Nakao K., Ichikawa T., Migita K., Shigeno M., Sakamoto M., Ishikawa H., Hamasaki K., Nakata K., Eguchi K. Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells[J]. Hepatology, 2002 35(5): 1117-24.
    [11] Leung W. K., To K. F., Go M. Y., Chan K. K., Chan F. K., Ng E. K., Chung S. C., Sung J. J. Cyclooxygenase-2 upregulates vascular endothelial growth factor expression and angiogenesis in human gastric carcinoma[J]. Int J Oncol, 2003 23(5): 1317-22.
    [12] Ferrandina G., Lauriola L., Zannoni G. F., Fagotti A., Fanfani F., Legge F., Maggiano N., Gessi M., Mancuso S., Ranelletti F. O., Scambia G. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients[J]. Ann Oncol, 2002 13(8): 1205-11.
    [13] Raspollini M. R., Amunni G., Villanucci A., Boddi V., Taddei G. L. Increased cyclooxygenase-2 (COX-2) and P-glycoprotein-170 (MDR1) expression is associated with chemotherapy resistance and poor prognosis. Analysis in ovarian carcinoma patients with low and high survival[J]. Int J Gynecol Cancer, 2005 15(2): 255-60.
    [14] Masferrer J. L., Leahy K. M., Koki A. T., Zweifel B. S., Settle S. L., Woerner B. M., Edwards D. A., Flickinger A. G., Moore R. J., Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors[J]. Cancer Res, 2000 60(5): 1306-11.
    [15] Rozic J. G., Chakraborty C., Lala P. K. Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis[J]. Int J Cancer, 2001 93(4): 497-506.
    [16] Sumitani K., Kamijo R., Toyoshima T., Nakanishi Y., Takizawa K., Hatori M., Nagumo M. Specific inhibition of cyclooxygenase-2 results in inhibition of proliferation of oral cancer cell lines via suppression of prostaglandin E2 production[J]. J Oral Pathol Med, 2001 30(1): 41-7.
    [17] Okami J., Nakamori S., Hiraoka N., Tsujie M., Hayashi N., Yamamoto H., Fujiwara Y., Nagano H., Dono K., Umeshita K., Sakon M., Monden M. Suppression of pancreatic cancer cell invasion by a cyclooxygenase-2-specific inhibitor[J]. Clin Exp Metastasis, 2003 20(7): 577-84.
    [18] Hida T., Kozaki K., Muramatsu H., Masuda A., Shimizu S., Mitsudomi T., Sugiura T., Ogawa M., Takahashi T. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines[J]. Clin Cancer Res, 2000 6(5): 2006-11.
    [19] Khalifeh I., Munkarah A. R., Lonardo F., Malone J. M., Morris R., Lawrence W. D., Ali-Fehmi R. Expression of Cox-2, CD34, Bcl-2, and p53 and survival in patients with primary peritoneal serous carcinoma and primary ovarian serous carcinoma[J]. Int J Gynecol Pathol, 2004 23(2): 162-9.
    [20] Seo S. S., Song Y. S., Kang D. H., Park I. A., Bang Y. J., Kang S. B., Lee H. P. Expression of cyclooxygenase-2 in association with clinicopathological prognostic factors and molecular markers in epithelial ovarian cancer[J]. Gynecol Oncol, 2004 92(3): 927-35.
    [21] Munkarah A. R., Genhai Z., Morris R., Baker V. V., Deppe G., Diamond M. P., Saed G. M. Inhibition of paclitaxel-induced apoptosis by the specific COX-2 inhibitor, NS398, in epithelial ovarian cancer cells[J]. Gynecol Oncol, 2003 88(3): 429-33.
    [22] Denkert C., Furstenberg A., Daniel P. T., Koch I., Kobel M., Weichert W., SiegertA., Hauptmann S. Induction of G0/G1 cell cycle arrest in ovarian carcinoma cells by the anti-inflammatory drug NS-398, but not by COX-2-specific RNA interference[J]. Oncogene, 2003 22(54): 8653-61.
    [23] Barnes A. P., Miller B. E., Kucera G. L. Cyclooxygenase inhibition and hyperthermia for the potentiation of the cytotoxic response in ovarian cancer cells[J]. Gynecol Oncol, 2007 104(2): 443-50.
    [24] Thun M. J., Namboodiri M. M., Heath C. W., Jr. Aspirin use and reduced risk of fatal colon cancer[J]. N Engl J Med, 1991 325(23): 1593-6.
    [25] Giovannucci E., Rimm E. B., Stampfer M. J., Colditz G. A., Ascherio A., Willett W. C. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals[J]. Ann Intern Med, 1994 121(4): 241-6.
    [26] Giovannucci E., Egan K. M., Hunter D. J., Stampfer M. J., Colditz G. A., Willett W. C., Speizer F. E. Aspirin and the risk of colorectal cancer in women[J]. N Engl J Med, 1995 333(10): 609-14.
    [27] Smalley W. E., DuBois R. N. Colorectal cancer and nonsteroidal anti-inflammatory drugs[J]. Adv Pharmacol, 1997 39: 1-20.
    [28] Barnes C. J., Lee M. Chemoprevention of spontaneous intestinal adenomas in the adenomatous polyposis coli Min mouse model with aspirin[J]. Gastroenterology, 1998 114(5): 873-7.
    [29] Taketo M. M. Cyclooxygenase-2 inhibitors in tumorigenesis (part I)[J]. J Natl Cancer Inst, 1998 90(20): 1529-36.
    [30] Pereg D., Lishner M. Non-steroidal anti-inflammatory drugs for the prevention and treatment of cancer[J]. J Intern Med, 2005 258(2): 115-23.
    [31] Vane J. Towards a better aspirin[J]. Nature, 1994 367(6460): 215-6.
    [32] Xie W. L., Chipman J. G., Robertson D. L., Erikson R. L., Simmons D. L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing[J]. Proc Natl Acad Sci U S A, 1991 88(7): 2692-6.
    [33] Hla T., Neilson K. Human cyclooxygenase-2 cDNA[J]. Proc Natl Acad Sci U S A,1992 89(16): 7384-8.
    [34] Pairet M., Engelhardt G. Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications[J]. Fundam Clin Pharmacol, 1996 10(1): 1-17.
    [35] Kam P. C., See A. U. Cyclo-oxygenase isoenzymes: physiological and pharmacological role[J]. Anaesthesia, 2000 55(5): 442-9.
    [36] Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia[J]. Ann Clin Lab Sci, 2000 30(1): 3-21.
    [37] Williams C. S., Tsujii M., Reese J., Dey S. K., DuBois R. N. Host cyclooxygenase-2 modulates carcinoma growth[J]. J Clin Invest, 2000 105(11): 1589-94.
    [38] DeWitt D. L., Smith W. L. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence[J]. Proc Natl Acad Sci U S A, 1988 85(5): 1412-6.
    [39] Kosaka T., Miyata A., Ihara H., Hara S., Sugimoto T., Takeda O., Takahashi E., Tanabe T. Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2[J]. Eur J Biochem, 1994 221(3): 889-97.
    [40] Inoue H., Yokoyama C., Hara S., Tone Y., Tanabe T. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element[J]. J Biol Chem, 1995 270(42): 24965-71.
    [41] Ali-Fehmi R., Che M., Khalifeh I., Malone J. M., Morris R., Lawrence W. D., Munkarah A. R. The effect of cyclooxygenase-2 expression on tumor vascularity in advanced stage ovarian serous carcinoma[J]. Cancer, 2003 98(7): 1423-9.
    [42] Gupta R. A., Tejada L. V., Tong B. J., Das S. K., Morrow J. D., Dey S. K., DuBois R. N. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer[J]. Cancer Res, 2003 63(5): 906-11.
    [43] Appleby S. B., Ristimaki A., Neilson K., Narko K., Hla T. Structure of the human cyclo-oxygenase-2 gene[J]. Biochem J, 1994 302 ( Pt 3): 723-7.
    [44] Sano H., Kawahito Y., Wilder R. L., Hashiramoto A., Mukai S., Asai K., Kimura S., Kato H., Kondo M., Hla T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer[J]. Cancer Res, 1995 55(17): 3785-9.
    [45] Lim H. Y., Joo H. J., Choi J. H., Yi J. W., Yang M. S., Cho D. Y., Kim H. S., Nam D. K., Lee K. B., Kim H. C. Increased expression of cyclooxygenase-2 protein in human gastric carcinoma[J]. Clin Cancer Res, 2000 6(2): 519-25.
    [46] Uefuji K., Ichikura T., Mochizuki H., Shinomiya N. Expression of cyclooxygenase-2 protein in gastric adenocarcinoma[J]. J Surg Oncol, 1998 69(3): 168-72.
    [47] Koga H., Sakisaka S., Ohishi M., Kawaguchi T., Taniguchi E., Sasatomi K., Harada M., Kusaba T., Tanaka M., Kimura R., Nakashima Y., Nakashima O., Kojiro M., Kurohiji T., Sata M. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation[J]. Hepatology, 1999 29(3): 688-96.
    [48] Chen W. S., Wei S. J., Liu J. M., Hsiao M., Kou-Lin J., Yang W. K. Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac[J]. Int J Cancer, 2001 91(6): 894-9.
    [49] Sheehan K. M., Sheahan K., O'Donoghue D. P., MacSweeney F., Conroy R. M., Fitzgerald D. J., Murray F. E. The relationship between cyclooxygenase-2 expression and colorectal cancer[J]. Jama, 1999 282(13): 1254-7.
    [50] Eligini S., Brambilla M., Banfi C., Camera M., Sironi L., Barbieri S. S., Auwerx J., Tremoli E., Colli S. Oxidized phospholipids inhibit cyclooxygenase-2 in human macrophages via nuclear factor-kappaB/IkappaB- and ERK2-dependent mechanisms[J]. Cardiovasc Res, 2002 55(2): 406-15.
    [51] Reddy S. T., Wadleigh D. J., Herschman H. R. Transcriptional regulation of thecyclooxygenase-2 gene in activated mast cells[J]. J Biol Chem, 2000 275(5): 3107-13.
    [52] Inoue H., Takamori M., Nagata N., Nishikawa T., Oda H., Yamamoto S., Koshihara Y. An investigation of cell proliferation and soluble mediators induced by interleukin 1beta in human synovial fibroblasts: comparative response in osteoarthritis and rheumatoid arthritis[J]. Inflamm Res, 2001 50(2): 65-72.
    [53] Tsujii M., DuBois R. N. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2[J]. Cell, 1995 83(3): 493-501.
    [54] Jones M. K., Wang H., Peskar B. M., Levin E., Itani R. M., Sarfeh I. J., Tarnawski A. S. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing[J]. Nat Med, 1999 5(12): 1418-23.
    [55] McGinty A., Chang Y. W., Sorokin A., Bokemeyer D., Dunn M. J. Cyclooxygenase-2 expression inhibits trophic withdrawal apoptosis in nerve growth factor-differentiated PC12 cells[J]. J Biol Chem, 2000 275(16): 12095-101.
    [56] Sheng H., Shao J., Hooton E. B., Tsujii M., DuBois R. N., Beauchamp R. D. Cyclooxygenase-2 induction and transforming growth factor beta growth inhibition in rat intestinal epithelial cells[J]. Cell Growth Differ, 1997 8(4): 463-70.
    [57] Oshima M., Dinchuk J. E., Kargman S. L., Oshima H., Hancock B., Kwong E., Trzaskos J. M., Evans J. F., Taketo M. M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2)[J]. Cell, 1996 87(5): 803-9.
    [58] Kishimoto Y., Yashima K., Morisawa T., Shiota G., Kawasaki H., Hasegawa J. Effects of cyclooxygenase-2 inhibitor NS-398 on APC and c-myc expression in rat colon carcinogenesis induced by azoxymethane[J]. J Gastroenterol, 2002 37(3):186-93.
    [59] Rudnick D. A., Perlmutter D. H., Muglia L. J. Prostaglandins are required for CREB activation and cellular proliferation during liver regeneration[J]. Proc Natl Acad Sci U S A, 2001 98(15): 8885-90.
    [60] Kambayashi T., Alexander H. R., Fong M., Strassmann G. Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10[J]. J Immunol, 1995 154(7): 3383-90.
    [61] Folkman J. What is the evidence that tumors are angiogenesis dependent?[J]. J Natl Cancer Inst, 1990 82(1): 4-6.
    [62] Tsujii M., Kawano S., Tsuji S., Sawaoka H., Hori M., DuBois R. N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells[J]. Cell, 1998 93(5): 705-16.
    [63] Kakiuchi Y., Tsuji S., Tsujii M., Murata H., Kawai N., Yasumaru M., Kimura A., Komori M., Irie T., Miyoshi E., Sasaki Y., Hayashi N., Kawano S., Hori M. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis[J]. Cancer Res, 2002 62(5): 1567-72.
    [64] Tsujii M., Kawano S., DuBois R. N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential[J]. Proc Natl Acad Sci U S A, 1997 94(7): 3336-40.
    [65] Bailey T., Biddlestone L., Shepherd N., Barr H., Warner P., Jankowski J. Altered cadherin and catenin complexes in the Barrett's esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation[J]. Am J Pathol, 1998 152(1): 135-44.
    [66] Li S., Miner K., Fannin R., Carl Barrett J., Davis B. J. Cyclooxygenase-1 and 2 in normal and malignant human ovarian epithelium[J]. Gynecol Oncol, 2004 92(2): 622-7.
    [67] Landen C. N., Jr., Mathur S. P., Richardson M. S., Creasman W. T. Expression ofcyclooxygenase-2 in cervical, endometrial, and ovarian malignancies[J]. Am J Obstet Gynecol, 2003 188(5): 1174-6.
    [68] Singhal P. K., Spiegel G., Driscoll D., Odunsi K., Lele S., Rodabaugh K. J. Cyclooxygenase 2 expression in serous tumors of the ovary[J]. Int J Gynecol Pathol, 2005 24(1): 62-6.
    [69] DiSaia P. J., Bloss J. D. Treatment of ovarian cancer: new strategies[J]. Gynecol Oncol, 2003 90(2 Pt 2): S24-32.
    [70] 唐丽霞, 王敏, 马坚伟. 环氧合酶-2 蛋白及前列腺素类物质与卵巢浆液性癌生物学行为的关系[J]. 中华妇产科杂志, 2002 37(11): 687-90.
    [71] Denkert C., Kobel M., Pest S., Koch I., Berger S., Schwabe M., Siegert A., Reles A., Klosterhalfen B., Hauptmann S. Expression of cyclooxygenase 2 is an independent prognostic factor in human ovarian carcinoma[J]. Am J Pathol, 2002 160(3): 893-903.
    [72] Subbaramaiah K., Marmo T. P., Dixon D. A., Dannenberg A. J. Regulation of cyclooxgenase-2 mRNA stability by taxanes: evidence for involvement of p38, MAPKAPK-2, and HuR[J]. J Biol Chem, 2003 278(39): 37637-47.
    [73] Ferrandina G., Ranelletti F. O., Martinelli E., Paglia A., Zannoni G. F., Scambia G. Cyclo-oxygenase-2 (Cox-2) expression and resistance to platinum versus platinum/paclitaxel containing chemotherapy in advanced ovarian cancer[J]. BMC Cancer, 2006 6: 182.
    [74] Raspollini M. R., Amunni G., Villanucci A., Boddi V., Taddei G. L. COX-2 and preoperative CA-125 level are strongly correlated with survival and clinical responsiveness to chemotherapy in ovarian cancer[J]. Acta Obstet Gynecol Scand, 2006 85(4): 493-8.
    [75] 潘珊, 吴绪峰, 陈惠祯. 上皮性卵巢癌组织中环氧化酶-2 的表达与化疗耐药的相关性研究[J]. 现代肿瘤医学, 2006 14(6): 727-30.
    [76] Symowicz J., Adley B. P., Woo M. M., Auersperg N., Hudson L. G., Stack M. S. Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acidto promote aggressive behavior in ovarian carcinoma cells[J]. Cancer Res, 2005 65(6): 2234-42.
    [77] 楼伟珍, 沈铿, 张羽, 朗景和. 卵巢上皮性癌组织中环氧合酶-2 的表达与治疗反应和预后的相关性研究[J]. 中华妇产科杂志, 2004 39(8): 529-32.
    [78] Ali-Fehmi R., Morris R. T., Bandyopadhyay S., Che M., Schimp V., Malone J. M., Jr., Munkarah A. R. Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival[J]. Am J Obstet Gynecol, 2005 192(3): 819-25.
    [79] Hochberg M. C. What have we learned from the large outcomes trials of COX-2 selective inhibitors? The rheumatologist's perspective[J]. Clin Exp Rheumatol, 2001 19(6 Suppl 25): S15-22.
    [80] Jacoby R. F., Marshall D. J., Newton M. A., Novakovic K., Tutsch K., Cole C. E., Lubet R. A., Kelloff G. J., Verma A., Moser A. R., Dove W. F. Chemoprevention of spontaneous intestinal adenomas in the Apc Min mouse model by the nonsteroidal anti-inflammatory drug piroxicam[J]. Cancer Res, 1996 56(4): 710-4.
    [81] Chell S., Kaidi A., Williams A. C., Paraskeva C. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer[J]. Biochim Biophys Acta, 2006 1766(1): 104-19.
    [82] Kokawa A., Kondo H., Gotoda T., Ono H., Saito D., Nakadaira S., Kosuge T., Yoshida S. Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors[J]. Cancer, 2001 91(2): 333-8.
    [83] 余琴, 刘南植, 龚建平. 幽门螺杆菌对胃上皮细胞 Cox-2 表达与凋亡的影响[J]. 世界华人消化杂志, 2004 12(3): 630-4.
    [84] Fu Y. G., Sung J. J., Wu K. C., Wu H. P., Yu J., Chan M., Chan V. Y., Chan K. K., Fan D. M., Leung W. K. Inhibition of gastric cancer-associated angiogenesis byantisense COX-2 transfectants[J]. Cancer Lett, 2005 224(2): 243-52.
    [85] Ueno T., Chow L. W., Toi M. Increases in circulating VEGF levels during COX-2 inhibitor treatment in breast cancer patients[J]. Biomed Pharmacother, 2006 60(6): 277-9.
    [86] Shin Y. K., Park J. S., Kim H. S., Jun H. J., Kim G. E., Suh C. O., Yun Y. S., Pyo H. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels[J]. Cancer Res, 2005 65(20): 9501-9.
    [87] Yip-Schneider M. T., Sweeney C. J., Jung S. H., Crowell P. L., Marshall M. S. Cell cycle effects of nonsteroidal anti-inflammatory drugs and enhanced growth inhibition in combination with gemcitabine in pancreatic carcinoma cells[J]. J Pharmacol Exp Ther, 2001 298(3): 976-85.
    [88] Canney P. A., Machin M. A., Curto J. A feasibility study of the efficacy and tolerability of the combination of Exemestane with the COX-2 inhibitor Celecoxib in post-menopausal patients with advanced breast cancer[J]. Eur J Cancer, 2006 42(16): 2751-6.
    [89] Chan T. A., Morin P. J., Vogelstein B., Kinzler K. W. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis[J]. Proc Natl Acad Sci U S A, 1998 95(2): 681-6.
    [90] Hsu A. L., Ching T. T., Wang D. S., Song X., Rangnekar V. M., Chen C. S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2[J]. J Biol Chem, 2000 275(15): 11397-403.
    [91] Yamamoto Y., Yin M. J., Lin K. M., Gaynor R. B. Sulindac inhibits activation of the NF-kappaB pathway[J]. J Biol Chem, 1999 274(38): 27307-14.
    [92] Liu X. H., Yao S., Kirschenbaum A., Levine A. C. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells[J]. Cancer Res, 1998 58(19): 4245-9.
    [93] Sheng H., Shao J., Morrow J. D., Beauchamp R. D., DuBois R. N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells[J]. Cancer Res, 1998 58(2): 362-6.
    [94] Gao J., Niwa K., Sun W., Takemura M., Lian Z., Onogi K., Seishima M., Mori H., Tamaya T. Non-steroidal anti-inflammatory drugs inhibit cellular proliferation and upregulate cyclooxygenase-2 protein expression in endometrial cancer cells[J]. Cancer Sci, 2004 95(11): 901-7.
    [95] Sinha-Datta U., Taylor J. M., Brown M., Nicot C. Celecoxib disrupts the canonical apoptotic network in HTLV-I cells through activation of Bax and inhibition of PKB/Akt[J]. Apoptosis, 2007.
    [96] Sun Y., Tang X. M., Half E., Kuo M. T., Sinicrope F. A. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells[J]. Cancer Res, 2002 62(21): 6323-8.
    [97] Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997 91(4): 479-89.
    [98] Huang Y., He Q., Hillman M. J., Rong R., Sheikh M. S. Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells[J]. Cancer Res, 2001 61(18): 6918-24.
    [99] Johnson G. L., Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science, 2002 298(5600): 1911-2.
    [100] Elder D. J., Halton D. E., Playle L. C., Paraskeva C. The MEK/ERK pathway mediates COX-2-selective NSAID-induced apoptosis and induced COX-2 protein expression in colorectal carcinoma cells[J]. Int J Cancer, 2002 99(3): 323-7.
    [101] Piazza G. A., Alberts D. S., Hixson L. J., Paranka N. S., Li H., Finn T., Bogert C., Guillen J. M., Brendel K., Gross P. H., Sperl G., Ritchie J., Burt R. W., Ellsworth L., Ahnen D. J., Pamukcu R. Sulindac sulfone inhibits azoxymethane-induced -98-colon carcinogenesis in rats without reducing prostaglandin levels[J]. Cancer Res, 1997 57(14): 2909-15.
    [102] Richter M., Weiss M., Weinberger I., Furstenberger G., Marian B. Growth inhibition and induction of apoptosis in colorectal tumor cells by cyclooxygenase inhibitors[J]. Carcinogenesis, 2001 22(1): 17-25.
    [103] Grosch S., Tegeder I., Niederberger E., Brautigam L., Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib[J]. Faseb J, 2001 15(14): 2742-4.
    [104] Maier T. J., Schilling K., Schmidt R., Geisslinger G., Grosch S. Cyclooxygenase-2 (COX-2)-dependent and -independent anticarcinogenic effects of celecoxib in human colon carcinoma cells[J]. Biochem Pharmacol, 2004 67(8): 1469-78.
    [105] Han C., Leng J., Demetris A. J., Wu T. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest[J]. Cancer Res, 2004 64(4): 1369-76.
    [106] Patel M. I., Subbaramaiah K., Du B., Chang M., Yang P., Newman R. A., Cordon-Cardo C., Thaler H. T., Dannenberg A. J. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism[J]. Clin Cancer Res, 2005 11(5): 1999-2007.
    [107] Grosch S., Maier T. J., Schiffmann S., Geisslinger G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors[J]. J Natl Cancer Inst, 2006 98(11): 736-47.
    [108] Tindall E. 塞来昔布治疗疼痛及炎症临床前期及临床研究[J]. 中国新药杂志, 2000 9(8): 574-77.
    [109] Celecoxib (Celecoxib capsules): Clinical Monograph. Skokie, 1999, [1]: G.D. Searle & Co [J].
    [110] van Ryn J., Pairet M. Selective cyclooxygenase-2 inhibitors: pharmacology,clinical effects and therapeutic potential[J]. Expert Opin Investig Drugs, 1997 6(5): 609-14.
    [111] Goldstein J. L., Silverstein F. E., Agrawal N. M., Hubbard R. C., Kaiser J., Maurath C. J., Verburg K. M., Geis G. S. Reduced risk of upper gastrointestinal ulcer complications with celecoxib, a novel COX-2 inhibitor[J]. Am J Gastroenterol, 2000 95(7): 1681-90.
    [112] Steinbach G., Lynch P. M., Phillips R. K., Wallace M. H., Hawk E., Gordon G. B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L. K., Levin B. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis[J]. N Engl J Med, 2000 342(26): 1946-52.
    [113] 赵丽琴. Celecoxib 用于治疗息肉在美国批准上市[J]. 国外医学药学分册, 2000 27(5): 319-20.
    [114] Sorensen H. T., Friis S., Norgard B., Mellemkjaer L., Blot W. J., McLaughlin J. K., Ekbom A., Baron J. A. Risk of cancer in a large cohort of nonaspirin NSAID users: a population-based study[J]. Br J Cancer, 2003 88(11): 1687-92.
    [115] Lipton A., Harvey H., Witters L., Kerr S., Legore K., Campbell C. Gemcitabine/Irinotecan/celecoxib in pancreatic cancer[J]. Oncology (Williston Park), 2004 18(14 Suppl 14): 43-5.
    [116] Lin E., Morris J. S., Ayers G. D. Effect of celecoxib on capecitabine-induced hand-foot syndrome and antitumor activity[J]. Oncology (Williston Park), 2002 16(12 Suppl No 14): 31-7.
    [117] Elder D. J., Halton D. E., Hague A., Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression[J]. Clin Cancer Res, 1997 3(10): 1679-83.
    [118] Elder D. J., Halton D. E., Crew T. E., Paraskeva C. Apoptosis induction and cyclooxygenase-2 regulation in human colorectal adenoma and carcinoma cell lines by the cyclooxygenase-2-selective non-steroidal anti-inflammatory drugNS-398[J]. Int J Cancer, 2000 86(4): 553-60.
    [119] Farrow D. C., Vaughan T. L., Hansten P. D., Stanford J. L., Risch H. A., Gammon M. D., Chow W. H., Dubrow R., Ahsan H., Mayne S. T., Schoenberg J. B., West A. B., Rotterdam H., Fraumeni J. F., Jr., Blot W. J. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer[J]. Cancer Epidemiol Biomarkers Prev, 1998 7(2): 97-102.
    [120] Li M., Lotan R., Levin B., Tahara E., Lippman S. M., Xu X. C. Aspirin induction of apoptosis in esophageal cancer: a potential for chemoprevention[J]. Cancer Epidemiol Biomarkers Prev, 2000 9(6): 545-9.
    [121] Zhang G., Tu C., Zhang G., Zhou G., Zheng W. Indomethacin induces apoptosis and inhibits proliferation in chronic myeloid leukemia cells[J]. Leuk Res, 2000 24(5): 385-92.
    [122] Giardiello F. M., Hamilton S. R., Krush A. J., Piantadosi S., Hylind L. M., Celano P., Booker S. V., Robinson C. R., Offerhaus G. J. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis[J]. N Engl J Med, 1993 328(18): 1313-6.
    [123] Niederberger E., Tegeder I., Vetter G., Schmidtko A., Schmidt H., Euchenhofer C., Brautigam L., Grosch S., Geisslinger G. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB[J]. Faseb J, 2001 15(9): 1622-4.
    [124] Li J. Y., Wang X. Z., Chen F. L., Yu J. P., Luo H. S. Nimesulide inhibits proliferation via induction of apoptosis and cell cycle arrest in human gastric adenocarcinoma cell line[J]. World J Gastroenterol, 2003 9(5): 915-20.
    [125] Detjen K. M., Welzel M., Wiedenmann B., Rosewicz S. Nonsteroidal anti-inflammatory drugs inhibit growth of human neuroendocrine tumor cells via G1 cell-cycle arrest[J]. Int J Cancer, 2003 107(5): 844-53.
    [126] Takuwa N., Takuwa Y. Regulation of cell cycle molecules by the Ras effector system[J]. Mol Cell Endocrinol, 2001 177(1-2): 25-33.
    [127] Yan S., Wenner C. E. Modulation of cyclin D1 and its signaling components by the phorbol ester TPA and the tyrosine phosphatase inhibitor vanadate[J]. J Cell Physiol, 2001 186(3): 338-49.
    [128] Motokura T., Bloom T., Kim H. G., Juppner H., Ruderman J. V., Kronenberg H. M., Arnold A. A novel cyclin encoded by a bcl1-linked candidate oncogene[J]. Nature, 1991 350(6318): 512-5.
    [129] Baliga B. C., Kumar S. Role of Bcl-2 family of proteins in malignancy[J]. Hematol Oncol, 2002 20(2): 63-74.
    [130] Uefuji K., Ichikura T., Shinomiya N., Mochizuki H. Induction of apoptosis by JTE-522, a specific cyclooxygenase-2 inhibitor, in human gastric cancer cell lines[J]. Anticancer Res, 2000 20(6B): 4279-84.
    [131] Fantappie O., Solazzo M., Lasagna N., Platini F., Tessitore L., Mazzanti R. P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines[J]. Cancer Res, 2007 67(10): 4915-23.
    [132] Nagai N., Kinoshita M., Ogata H., Tsujino D., Wada Y., Someya K., Ohno T., Masuhara K., Tanaka Y., Kato K., Nagai H., Yokoyama A., Kurita Y. Relationship between pharmacokinetics of unchanged cisplatin and nephrotoxicity after intravenous infusions of cisplatin to cancer patients[J]. Cancer Chemother Pharmacol, 1996 39(1-2): 131-7.
    [133] Nagai N., Ogata H., Wada Y., Tsujino D., Someya K., Ohno T., Masuhara K., Tanaka Y., Takahashi H., Nagai H., Kato K., Koshiba Y., Igarashi T., Yokoyama A., Kinameri K., Kato T., Kurita Y. Population pharmacokinetics and pharmacodynamics of cisplatin in patients with cancer: analysis with the NONMEM program[J]. J Clin Pharmacol, 1998 38(11): 1025-34.
    [134] Takano M., Kudo K., Goto T., Yamamoto K., Kita T., Kikuchi Y. Analyses by comparative genomic hybridization of genes relating with cisplatin-resistance in ovarian cancer[J]. Hum Cell, 2001 14(4): 267-71.
    [135] Sakamoto M., Kondo A., Kawasaki K., Goto T., Sakamoto H., Miyake K.,Koyamatsu Y., Akiya T., Iwabuchi H., Muroya T., Ochiai K., Tanaka T., Kikuchi Y., Tenjin Y. Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray[J]. Hum Cell, 2001 14(4): 305-15.
    [136] Mansouri A., Zhang Q., Ridgway L. D., Tian L., Claret F. X. Cisplatin resistance in an ovarian carcinoma is associated with a defect in programmed cell death control through XIAP regulation[J]. Oncol Res, 2003 13(6-10): 399-404.
    [137] Katano K., Kondo A., Safaei R., Holzer A., Samimi G., Mishima M., Kuo Y. M., Rochdi M., Howell S. B. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper[J]. Cancer Res, 2002 62(22): 6559-65.
    [138] Harris R. E., Alshafie G. A., Abou-Issa H., Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor[J]. Cancer Res, 2000 60(8): 2101-3.
    [139] Saikawa Y., Sugiura T., Toriumi F., Kubota T., Suganuma K., Isshiki S., Otani Y., Kumai K., Kitajima M. Cyclooxygenase-2 gene induction causes CDDP resistance in colon cancer cell line, HCT-15[J]. Anticancer Res, 2004 24(5A): 2723-8.
    [140] 辛刚, 刘培淑, 杜鹃. 上皮性卵巢癌组织中 COX-2 表达及塞来昔布对卵巢癌细胞株生长抑制作用的研究[J]. 山东大学学报(医学版), 2006 44(1): 49-53.
    [141] Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line[J]. Science, 1992 258(5088): 1650-4.
    [142] Petriz J., Gottesman M. M., Aran J. M. An MDR-EGFP gene fusion allows for direct cellular localization, function and stability assessment of P-glycoprotein[J]. Curr Drug Deliv, 2004 1(1): 43-56.
    [143] Leung W. K., To K. F., Ng Y. P., Lee T. L., Lau J. Y., Chan F. K., Ng E. K., ChungS. C., Sung J. J. Association between cyclo-oxygenase-2 overexpression and missense p53 mutations in gastric cancer[J]. Br J Cancer, 2001 84(3): 335-9.
    [144] Sankhasard S., Lertprasertsuk N., Vinitketkumnuen U., Cressey R. Expression of cyclooxygenase-1 and -2 and clinicopathologic features of colorectal cancer in northern Thailand[J]. Asian Pac J Cancer Prev, 2004 5(1): 44-9.
    [145] Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion[J]. Cell, 1992 69(1): 11-25.
    [146] Nikkola J., Vihinen P., Vlaykova T., Hahka-Kemppinen M., Heino J., Pyrhonen S. Integrin chains beta1 and alphav as prognostic factors in human metastatic melanoma[J]. Melanoma Res, 2004 14(1): 29-37.
    [147] Nathke I. S., Hinck L. E., Nelson W. J. Epithelial cell adhesion and development of cell surface polarity: possible mechanisms for modulation of cadherin function, organization and distribution[J]. J Cell Sci Suppl, 1993 17: 139-45.
    [148] Charalabopoulos K., Gogali A., Kostoula O. K., Constantopoulos S. H. Cadherin superfamily of adhesion molecules in primary lung cancer[J]. Exp Oncol, 2004 26(4): 256-60.
    [149] McCarty O. J., Mousa S. A., Bray P. F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions[J]. Blood, 2000 96(5): 1789-97.
    [150] Qian F., Hanahan D., Weissman I. L. L-selectin can facilitate metastasis to lymph nodes in a transgenic mouse model of carcinogenesis[J]. Proc Natl Acad Sci U S A, 2001 98(7): 3976-81.
    [151] Lengyel E., Schmalfeldt B., Konik E., Spathe K., Harting K., Fenn A., Berger U., Fridman R., Schmitt M., Prechtel D., Kuhn W. Expression of latent matrix metalloproteinase 9 (MMP-9) predicts survival in advanced ovarian cancer[J]. Gynecol Oncol, 2001 82(2): 291-8.
    [152] Manenti L., Paganoni P., Floriani I., Landoni F., Torri V., Buda A., Taraboletti G., Labianca R., Belotti D., Giavazzi R. Expression levels of vascular endothelialgrowth factor, matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 and 2 in the plasma of patients with ovarian carcinoma[J]. Eur J Cancer, 2003 39(13): 1948-56.
    [153] de Vicente J. C., Fresno M. F., Villalain L., Vega J. A., Hernandez Vallejo G. Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma[J]. Oral Oncol, 2005 41(3): 283-93.
    [154] Mook O. R., Frederiks W. M., Van Noorden C. J. The role of gelatinases in colorectal cancer progression and metastasis[J]. Biochim Biophys Acta, 2004 1705(2): 69-89.
    [155] Yang C., Zeisberg M., Mosterman B., Sudhakar A., Yerramalla U., Holthaus K., Xu L., Eng F., Afdhal N., Kalluri R. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors[J]. Gastroenterology, 2003 124(1): 147-59.
    [156] Tanimura S., Asato K., Fujishiro S. H., Kohno M. Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down-regulation of matrix metalloproteinase-3/-9/-14 and CD44[J]. Biochem Biophys Res Commun, 2003 304(4): 801-6.
    [157] Margulis A., Zhang W., Alt-Holland A., Crawford H. C., Fusenig N. E., Garlick J. A. E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs[J]. Cancer Res, 2005 65(5): 1783-91.
    [158] Hofmann U. B., Houben R., Brocker E. B., Becker J. C. Role of matrix metalloproteinases in melanoma cell invasion[J]. Biochimie, 2005 87(3-4): 307-14.
    [159] Yan M., Schneider J., Gear R., Lu F., LaDow K., Warshawsky D., Heffelfinger S. C. Expression of angiogenic factors is upregulated in DMBA-induced rat mammary pathologies[J]. Pathobiology, 2004 71(5): 253-60.
    [160] Tang Y., Nakada M. T., Kesavan P., McCabe F., Millar H., Rafferty P., Bugelski P.,Yan L. Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases[J]. Cancer Res, 2005 65(8): 3193-9.
    [161] Shi L. Z., Zheng W. Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study[J]. Brain Res, 2005 1057(1-2): 37-48.
    [162] Hugh T. J., Dillon S. A., Taylor B. A., Pignatelli M., Poston G. J., Kinsella A. R. Cadherin-catenin expression in primary colorectal cancer: a survival analysis[J]. Br J Cancer, 1999 80(7): 1046-51.
    [163] Sato F., Shimada Y., Watanabe G., Uchida S., Makino T., Imamura M. Expression of vascular endothelial growth factor, matrix metalloproteinase-9 and E-cadherin in the process of lymph node metastasis in oesophageal cancer[J]. Br J Cancer, 1999 80(9): 1366-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700