锂离子电池高容量硅基薄膜负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅因具有很高的嵌锂比容量,被认为是最具应用潜力的新一代高能锂离子电池负极材料。论文研究了磁控溅射法制备的硅薄膜负极材料的结构特征和电化学性能,为进一步提高硅薄膜的电化学性能,采用共溅射法制备了硅—铝和硅—镍复合薄膜。
     论文制备的硅薄膜负极材料是非晶态的结构,具有良好的电化学性能。300nm硅薄膜的可逆比容量高达3134.4mAh/g,首次库仑效率为87.1%;0.5C倍率下充放电,硅薄膜500次循环的容量保持率为61.3%;而且具有较好的倍率性能,10.0C放电容量为0.5C放电容量的41.4%。
     论文重点研究了硅薄膜负极材料表面SEI膜的形成机制。硅薄膜SEI膜的主要成分是电解液的还原产物ROCO_2Li、Li_2CO_3、LiF和有机聚合物,同时在硅薄膜的SEI膜中发现了少量的SiO_x。SiO_x是由Li_xSi与渗透SEI膜的电解液反应形成的。详细研究了电解液添加剂VC对硅薄膜SEI膜性能的改善作用。在含有VC添加剂的功能电解液中,首次循环后硅薄膜表面形成了稳定的SEI膜,SEI膜表面没有出现结晶的LiF;随着循环次数的增加,SEI膜的阻抗基本保持不变。VC添加剂大大提高了硅薄膜的循环性能,硅薄膜的200次循环容量保持率在常规电解液中为25.6%,在功能电解液中提高到78.5%。
     研究了薄膜厚度、集流体表面粗糙度和热处理对硅薄膜负极材料电化学性能的影响。随着薄膜厚度的增加,硅薄膜的比容量下降,倍率性能逐渐恶化;集流体表面粗糙度增大对硅薄膜负极材料的循环性能具有积极的影响;热处理改善了硅薄膜的循环性能。
     为提高薄膜电极的导电性和减小薄膜的体积效应,论文采用共溅射法制备了硅—铝和硅—镍复合薄膜。硅—铝复合薄膜的比容量略低于相近厚度的硅薄膜,但循环性能和倍率性能明显优于硅薄膜;硅—镍复合薄膜的比容量和循环性能都低于相近厚度的硅薄膜,但具有良好的倍率性能。
     硅基薄膜负极材料的锂离子扩散系数是决定其电化学动力学性能的主要因素,采用循环伏安法测定了硅基薄膜负极材料的锂离子扩算系数。硅薄膜的锂离子扩散系数为1.815×10~(-9)cm~2/s,硅—铝复合薄膜的锂离子扩散系数为2.38×10~(-7)cm~2/s,硅—镍复合薄膜的锂离子扩散系数为1.79×10~(-8)cm~2/s。
Si has been proposed as a promising anode material for the next generation high energy lithium ion batteries due to its highest specific capacity. We investigated the structure characteristics and electrochemical performance of Si film anode prepared by magnetron sputtering. To further improve the electrochemical performance of Si film, the Si-Al and Si-Ni films were fabricated by co-sputtering technique.
     Si film was amorphous and exhibited excellent electrochemical performance. The 300 ran Si film showed a reversible capacity of 3134.4 mAh/g and the initial coulomb efficiency of 87.1%. The capacity retention of Si film was 61.3% after 500 cycles at 0.5C rate. Si film exhibited good rate performance. The discharge capacity at 10C rate was 41.4% of the discharge capacity at 0.5C rate.
     The formation mechanism of SEI layer on the surface of Si film anode was studied. The major components of SEI layer of Si film anode were ROCO_2Li, Li_2CO_3, LiF and polycarbonate. It was also found that a small quantity of silicon oxide was formed in the SEI layer due to the reaction of lithiated silicon with permeated electrolyte. The effect of electrolyte additive of vinylene carbonate (VC) on the SEI layer properties was investigated in details. The perfect SEI layer was formed in VC-containing electrolyte and no LiF crystals appeared on the SEI layer after the first cycle. And the impedance of SEI layer kept almost invariant upon cycling. Especially, the cycling performance of Si film was greatly improved by the presence of VC in electrolyte. The capacity retention of Si film increased from 25.6% in VC-free electrolyte to 78.5% in VC-containing electrolyte after 200 cycles.
     To enhance the conductivity and decrease volumetric change of Si film, Si-Al and Si-Ni films were prepared by co-sputtering technique. The capacity of Si-Al film was lower than that of Si film with the similar thickness, but the cycling performance and rate performance were better than that of Si film. The capacity and cycling performance of Si-Ni film were lower than that of Si film. However, the Si-Ni film showed excellent rate performance.
     The diffusion coefficient of lithium ion is a key factor to decide the electrochemical kinetic property of Si-based film. The lithium ion diffusion coefficient of Si-based film was measured by cyclic voltammetry. The diffusion coefficient of lithium ion is 1.815×10~(-9) cm/s in Si film, 2.38×10~(-7) cm/s in Si-Al film and 1.79×10~(-8) cm/s in Si-Ni film.
引文
[1] T. Nagaura. 4th International Rechargeable Battery Seminar, Deerfield Beach, Florida, 1990.
    [2] Hideo Takeshita. Worldwide market update on NiMH, Li ion and Polymer batteries or portable applications and HEVS. The 23rd International Battery Seminar & Exhibit. Fort Lauderdale, Florida, 2006.
    [3] Hiroshi Inoue. High capacity negative-electrode materials next to carbon: nexelion. International Meeting on Lithium Batteries. Biarritz, France, 2006: Abstract #228.
    [4] 郭炳焜,徐徽,王先友编著.锂离子电池.湖南:中南工业大学出版社,2002:p36.
    [5] 汪继强.锂离子电池技术进展及市场.电源技术,1996,20(4):147-151.
    [6] 赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料.化学研究与应用,1998,10(1):21-26.
    [7] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B.Goodenough. Li_xCoO_2 (0<x<1): A new cathode material for batteries of high energy density. Mat. Res. Bull., 1980, 15(6): 783-789.
    [8] S Hossain. Rechargeable lithium batteries ambient temperature. Handbook of batteries, 2nd ED, Linden D., New York: Mograw-Hill, 1995: p36.
    [9] J.M. Paulsen, J. R. Muller-Nehaus, J. R. Dahn. Layered LiCoO_2 with a different oxygen stacking (O_2 structure) as a cathode material for rechargeable lithium batteries. J. Electrochem. Soc., 2000, 147(2): 508-516.
    [10] A.G. Ritchie. Recent development and future prospects for lithium rechargeable batteries. J. Power Sources, 2001, 96(1): 1-4.
    [11] M. Inaba, Z. Ogumi. Up-to-date development of lithium-ion battery in Japan. IEEE Electrical Insulation Magazine, 2001, 17(6): 6-20.
    [12] J.D. Perkins, C. S. Bahn, P. A. Parilla, J. M. McGraw, M. L. Fu, M. Duncan, H. Yu, D. S. Ginley. LiCoO_2 and LiCo_(1-x)Al_xO_2 thin film cathodes grown by pulsed laser ablation. J Power Sources, 1999, 81-82(9): 675-679.
    [13] M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev. Effect of Mg Doping and MgO-surface modification on cycling stability of LiCoO_2 electrodes. Electrochem. Commun., 2001, 3(8): 410-416.
    [14] S. Oh, J. K. Lee, D. Byun, W. I. Cho, W. C. Byung. Effect of Al_2O_3 coating on electrochemical performance of LiCoO_2 as cathode materials for secondary lithium batteries. J Power Sources, 2004, 132(1/2): 249-255.
    [15] W. Huang, R. Frech. Vibrational spectroscopic and electrochemical studies of the low and high temperature phase of LiCo_(1-x)M_xO_2(M=Ni or Ti). Solid State Ionics, 1996, 86-88(1): 395-400.
    [16] J.R. Dahn, U. Sacken, M. W. Juzkow, H. Al-Janaby. Rechargeable LiNiO_2/Carbon Cells. J. Electrochem. Soc., 1991, 138(8): 2207-2212.
    [17] A.G. Ritchie, C. O. Giwa, J. C. Lee, P. Bowles, A. Gilmour, J. Allan, D. A. Rice, F. Brady. Future cathode materials for lithium rechargeable batteries. J. Power Soures, 1999, 80(1): 98-102.
    [18] E. Zhecheva, R. Stoyanova. Stabilization of the layered crystal structure of LiNiO_2 by Co-substitution. Solid State Ionics, 1993, 66(1-2): 143-149.
    [19] G. T.K. Fey, R. F. Shiu, V. Subramanian, J. G. Chen. LiNi_(0.8)Co_(0.2)O_2 cathode materials synthesized by the maleic acid assisted sol-gel method for lithium batteries. J. Power Sources, 2002, 103 (2): 265-272.
    [20] Y. Fujita, K. Amine, J. Maruta. LiNi_(1-x)Co_xO_2 prepared at low temperature using β-Ni_(1-x)CO_xOOH and either LiNO_3 or LiOH. J. Power Sources, 1997, 68 (1): 126-130.
    [20] H. J. Kweon, S. S. Kim, G. B. Kim. Syntheses of LiMn_2O_4, LiCoO_2 and LiNi_(0.8)Co_(0.2)O_2 by the PVA & hyphen precursor method and their use as a cathode in the lithium & hyphen;ion rechargeable battery. J. Mater. Sci. Lett., 1998, 17(20): 1697-1701.
    [22] M.M. Thackeray, W. I. F. David, R G. Bruce. Lithium insertion into manganese spinels. Mater. Res. Bull., 1983, 18: 461-472.
    [23] S.H. Chang. K. S. Ryu. Electrochemical properties of cobalt-exchanged spinel lithium manganese oxide. J. Power Sources, 1999, 84:134-137.
    [14] Sun Y. K., Kim D. W., Choi Y. M. Synthesis and characterization of spinel LiMn_(2-x)Ni_xO_4 for lithium/polymer battery application. J. Power Sources, 1999, 79: 231-237.
    [25] Robertson A. D., Lu S. H., Averill W. F., et al. M~(3+)-modified LiMn_2O_4 spinel intercalation cathodes Ⅱ: electrochemical stabilization by Cr~(3+). J. Electrochem. Soc., 1997, 144(10): 3505-3512.
    [26] Lee Y. S., Kumada N., Yoshio M. Synthesis and characterization of lithium aluminum doped spinel (LiAl_xMn_(2-x)O_4) for lithium secondary Batteries. J. Power Sources, 2001, 96: 376-384.
    [27] Toshihide Tsuji, Hideaki Umakoshi, Yasuhisa Yamamura. Thermodynamic properties of undoped and Fe-doped LiMn_2O_4 at high temperature. J. Phys. Chem. Solids., 2005, 66: 283-287.
    [28] Guiming Song, Wenjiang Li, Yu Zhou. Synthesis of Mg-doped LiMn_2O_4 powders fro lithium-ion batteries by rotary heating. Mater. Chem. Phys., 2004, 87:162-167.
    [29] J.T. Son, K. S. Park, H. G. Kim, H. T. Chung. Surface-modification of LiMn_2O_4 with a silver-metal coating. J. Power Sources, 2004, 126: 182-185.
    [30] T.H. Cho, S. M. Park, M. Yoshio. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 prepared by carbonate co-precipitation method. J. Power Sources, 2005, 142:306-312.
    [31] Hui Cao, Yao Zhang, Jian Zhang, Baojia Xia. Synthesis and electrochemical characteristics of layered LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2 cathode material for lithium ion batteries, Solid State Ionics, 2005, 176: 1207- 1211.
    [32] Decheng Li, Yuki Sasaki, Koichi Kobayakawa. Impact or cobalt substitution for manganese on the structural and electrochemical properties of LiNi_(0.5)Mn_(0.5)O_2. Electrochimica Acta, 2006, 51 : 3809-3813.
    [33] Ching-Hsing Chen, Chih-Jen Wang, Bing-Joe Hwang. Electrochemical performance of layered Li[Ni_xCo_(1-2x)Mn_x]O_2 cathode materials synthesized by a sol-gel method. J. Power Sources, 2005, 146: 626-629.
    [34] Yanko Marinov Todorov, Koichi Numata. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn_(1/3)Co_(1/3)Ni_(1/3)O_2 cathode material. Electrochimica Acta, 2004, 50: 495-499.
    [35] S. H. Park, H. S. Shin, S. T. Myung. Synthesis of nanostructured Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via a modified carbonate process. Chem. Mater., 2005, 17(1): 6-8.
    [36] A. K. Padhi, K. S. Nanjiundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc., 1997, 144(4): 1188-1192.
    [37] A.K. Padhi, K. S. Nanjundawamy, C. Masquelier, S. Okada, J. B. Goodenough. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphate. J Electrochem. Soc., 1997, 144(5): 1609-1613.
    [38] F. Sauvage, E. Baudrin, M. Morcrette, J. M. Tarascon. Pulsed laser deposition and electrochemical properties of LiFePO_4 thin film. Electrochem. Solid-State Letters, 2004, 7(1): A15-A18.
    [39] 徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性.电源技术,2000,5:295-301.
    [40] 陈德均.锂离子电池的有机电解液.电池工业,1998,4:149-153.
    [41] V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics. 2004, 170: 83-91.
    [42] K. Kanamura, H. Tamura, S. Shiraishi. Morphology and chemical compositions of surface films of lithium deposite on a Ni substrate in a nonaqueous solution. J. Electroanal. Chem., 1995, 49: 394-401.
    [43] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochem. Acta, 2002, 47: 1423-1439.
    [44] Hitoshi Ota, Yuuichi Sakata, Atsuyoshi Inoue, Shoji Yamaguchi. Analysis of vinylene carbonate derived SEI layers on graphite anode. J. Electrochem. Soc., 2004, 151(10): A1659-A1669.
    [45] M. Herstedt, A. M. Andersson, H. Rensmo, H. Siegbahn, K. Edstrom.Characterisation of the SEI formed on natural graphite in PC-based electrolytes.Electrochimica Acta, 2004, 49: 4939-4947.
    [46] Koji Abe, Hideya Yoshitake, T. Kitakura, Takayuki Hattori, Hongyu Wang, Masaki Yoshio. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta, 2004, 49: 4613-4622.
    [47] Yongsheng Hu, Weihe Kong, Hong Li, Xuejie Huang, Liquan Chen. Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochem. Commun., 2004, 6: 126-131.
    [48] Hiroshi Nakahara, Sang-Young Yoon, Steven Nutt. Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode. J.Power Sources, 2006,158: 600-607.
    [49] Y. Ein-Eli, S. R. Thomas, V. R. Koch. The Role of SO_2 as an additive to organic Li-ion battery electrolytes. J. Electrochem. Soc, 1997, 144: 1159-1165.
    [50] Gerhard H. Wrodnigg, Jurgen O. Besenhared, Martin Winter. Ethylene sulfite as electrolyte additives for lithium-ion cells with graphitic anodes. J. Electrochem. Soc,1999, 46: 470-472.
    [51] Abe Koji, Matsumori Yasuo, Ueki Akira. Nonaqueous electrolytic solution and lithium secondary batteries. WO: 02059999, 2002.
    [52] Takahashi Masatoshi, Yasutake Zensaku, Abe Koji. Lithium secondary battery. EP:1065744,2001.
    [53] Abe Koji, Matsumori Yasuo, Ueki Akira. Lithium secondary battery and nonaqueous electrolyte for the same. JP: 2002298910, 2002.
    [54] Okahara Kenji, Shima Noriko, Suzuki Hitoshi. Nonaqueous electrolytic solution and secondary battery containing the same. EP1286409, 2003.
    [55] J. Arai. A novel non-flammable electrolyte containing methyl nonafluobutyl ether for lithium ion secondary batteries. J. Applied Electrochemistry, 2002, 32:1071-1079.
    [56] Hitoshi Ota, Asao Kominato, Wang-Jae Chun, Eiki Yasukawa, Shigeake Kasuya. Effect of cyclic phosphate additive in non-flammable electrolyte. J. Power Sources, 2003, 119-121: 393-398.
    [57] E. Roth, D. Doughty. The effect of additives on the thermal stability of Li-ion cells. The 12th International meeting on lithium batteries. Nara, Japan, 2004, Abstract 55.
    [58] S.S. Zhang, K. Xu, Y. R. Jow. Tris(2,2,2-trifluoethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J. Power Sources 2003, 113:166-172.
    [59] J.R. Dahn. Phase diagram of Li_xC_6. Phys. Rev., 1991, 44: 9170-9177.
    [60] Gholam-Abbas Nazri, Gianfranco Pistoia, Lithium Batteries Science and Technology, Kluwer Academic Publishers, Boston, 2004:155.
    [61] M. Jean, A. Tranchant, R. Messina. Reactivity of lithium intercalated into petroleum coke in carbonate electrolytes. J. Electrochemical. Soc., 1996, 143(2): 391-394.
    [62] Kuniaki Tatsumi, Karim Zaghib, Yoshihiro Sawada. Anode performance of vapor grown carbon fibers in secondary lithium-ion batteries. J. Electrochem. Soc., 1995, 142(4): 1090-1096.
    [63] O. Yamamoto, N. Imanishi, Y. Takeda, H. Kashiwagi. Rechargeable carbon anode. J. Power Sources, 1995, 54(1): 72-75.
    [64] H. Tanaka, M. Kurihara, J. Y. Xu, N. Ohashi, S. Maruyama, Y. Moriyoshi, T. Ishigaki. Influence of Ar-H2-SF6 thermal plasma treatment of MCMB powders on the anode properties of a lithium ion rechargeable battery. Thin Solid Films, 2006, 506-507: 311-315.
    [65] Jane Yao, G. X. Wang, Jung-ho Ahn, H. K. Liu, S. X. Dou. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. J. Power Sources, 2003, 114: 292-297.
    [66] Xiaoyan Cao, Ji Hyun Kim, Seung Mo Oh. The effects of oxidation on the surface properties of MCMB-6-28. Electrohimica Acta, 2002, 47: 4085-4089.
    [67] Yu Shiang Wu, Yi Hsiung Wang, Yuan Hanu Lee. Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries. J. Alloy. Compd., 2006, 426: 218-222.
    [68] 王国平,张伯兰,瞿美臻,岳敏,许晓落,于作龙.改性球形石墨锂离子电池负 极材料的研究.合成化学,2005,13:249.253.
    [69] J. S. Kim, W. Y. Yoon, Yoon Kwang Soo. Charge-discharge properties of surface-modified carbon by resin coating in Li-ion battery. J. Power Sources, 2002, 104: 175-180.
    [70] Masaki Yoshio, Hongyu Wang, Kenji Fukuda. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium ion battery anode material. J. Electrochem. Soc., 2000, 147 (4): 1245-1250.
    [71] Young-Soo Han, Jai-Young Lee. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition. Electrochimica Acta, 2003, 48:1073-1079.
    [72] Hongli Zhang, Shuhe Liu, Feng Li, Shuo Bai, Chang Liu, Jun Tan, Huiming Cheng. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon, 2006, 44: 2212-2218.
    [73] Wenqu Mao, Jianming Wang, Zhihua Xu, Zhaoxia Niu, Jianqing Zhang. Effects of the oxidation treatment with K_2FeO_4 on the physical properties and electrochemical performance of a natural graphite as electrode material for lithium ion batteries. Electrochem. Commun., 2006, 8: 1326-1330.
    [74] Kazuhiko Matsumoto, Jianling Li, Yoshimi Ohzawa, Tsuyoshi Nakajima, Zoran Mazej, Boris Zemva. Surface structure and electrochemical characteristics of natural graphite fluorinated by ClF_3. J. Fluorine Chem., 2006, 127:1393-1389.
    [75] Joongpyo Shim, Kathryn A. Striebel. Electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries. J. Power Sources, in press.
    [76] Qing Wang, Hong Li, Liquan Chen, Xuejie Huang. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics, 2002, 152-153: 43-50.
    [76] Weibing Xing, J. S. Xue, J. R. Dahn. Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries, J. Electrochem. Soc., 1996, 143(10): 3046-3052.
    [77] Qing Wang, Hong Li, Liquan Chen, Xuejie Huang. Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39: 2211-2214.
    [78] Kenji Sato, Minoru Noguchi, Atsushi Demachi. A mechanism of lithium storage in disordered carbons. Science, 1994, 264: 556-558.
    [79] J. R. Dahn, W. Xing, Y. Gao. The "falling cards model" for the structure of micro-porous carbons. Carbon, 1997, 35(6): 825-830.
    [80] Edward Buiel, J. R. Dahn. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries. J. Electrochem. Soc., 1998, 145(6): 1977-1981.
    [81] Yinghu Liu, J. S. Xue, Tao Zheng. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon, 1996, 34(2): 193-200.
    [82] Tao Zheng, W. R. McKinnon, J. R. Dahn. Hysteresis during lithium insertion in hydrogen-containing carbons. J. Electrochem. Soc., 1996, 143(7): 2137-2145.
    [83] 刘宇.先进嵌锂材料的研究与应用.中科院上海微系统与信息技术研究所博士学位论文,上海,2003.
    [84] M. Winter, J. O. Besenhard. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimca Acta, 1999, 45(1-2): 31-50.
    [85] 王可.含氮族元素嵌锂材料的合成与电化学研究.中科院上海微系统与信息技术研究所博士学位论文,上海,2003.
    [86] J. Yang, M. Winter, J. O. Besenhard. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries. Solid State Ionics, 1996, 90(1-4): 281-287.
    [87] J.O. Besenhard, J. Yang, M. Winter. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87-89.
    [88] G.A. Roberts, E. J. Cairns, J. A. Reimer. Magnesium silicide as a negative electrode material for lithium-ion batteries. J. Power Sources, 2002, 110(2): 424-429.
    [89] G.X. Wang, L. Sun, D. H. Bradhurst. Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sources, 2000, 88(2): 278-281.
    [90] Hansu Kim, Byungwoo Park, Hun-Joon Sohn. Electrochemical characteristics of Mg-Ni alloys as anode materials forsecondary Li batteries. J. Power Sources, 2000, 90(1): 59-63.
    [91] J. T. Vaugheya, L. Franssonb, H. A. Swingera. Alternative anode materials for lithium-ion batteries: a study of Ag_3Sb. J. Power Sources, 2003, 119-121: 64-68.
    [92] Young-Lae Kim, Heon-Young Lee, Serk-Won Jang. Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries. Electrochimica Acta, 2003, 48(18): 2593-2597.
    [93] O. Mao, R. A. Dunlap, J. R. Dahn. Mechanically Alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries: Ⅰ. The Sn_2Fe-C system. J. Electrochem. Soc., 1999, 146(2): 405-413.
    [94] J.T. Vaughey, K. D. Kepler, R. Benedek. NiAs-versus zinc-blende-type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li_2CuSn. Electrochem. Commun. 1999, 1(11): 517-521.
    [95] R. Alcantara, F. J. F. Madrigal, P. Lavela, J. L. Tirado, J. C. Jumas, J. O. Fourcade. Electrochemical reaction of lithium with the CoSb_3 skutterudite. J. Mater. Chem., 1999, 9(10): 2517-2521.
    [96] F. J. F. Madrigal, P. Lavela, C. P. Vicente. Electrochemical reactions of polycrystalline CrSb_2 in lithium batteries. J. Electroanal. Chem. 2001, 501(1-2): 205-209.
    [97] F. Croce, S. Passerini, B. Scrosati. Ambient temperature lithium polymer rocking-chair batteries, J. Electrochem. Soc., 1994, 141 (6): 1405-1409.
    [98] T. Ohzuku, A. Ueda. Why transition metal (di)oxides are the most attractive materials for batteries. Solid State Ionics, 1994, 69(3-4): 201-211.
    [99] Y. Idota, M. Nishima, Y. Miyaki. Can. Pat. Appl. No. 2,134,053, 1994.
    [100] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material, Science, 1997, 276:1395-1397.
    [101] I. A. Courtney, J. R. Dahn. Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc., 1997, 144(6): 2045 -2052.
    [102] R Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium ion batteries. Nature, 2000, 407: 496-499.
    [103] S. Grugeon, S. Laruelle, R. tterrera-Urbina. Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 2001, 148(4): A285-A292.
    [104] A. S. Laruelle, S. Grugeon, R Poizot. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc., 2002, 149(5): A627-A634.
    [105] M. Nishijima, N. Tadokoro, Y. Takeda. Li deintercalation-intercalation reaction and structural change in lithium transition metal nitride Li_7MnN_4. J. Electrochem. Soc., 1994, 141(11): 2966-2971.
    [106] S. Suzuki, T. Shodai. Electronic structure and electrochemical properties of electrode material Li_(7-x)MnN_4, Solid State Ionics, 1999, 116: 1-9.
    [107] M. Nishijima, T. Kagohashi, M. Imanishi. Synthesis and electrochemical studies of a new anode material Li_(3-x)Co_xN. Solid State Ionics, 1996, 83(1-2): 107-111.
    [108] D. H. Gregory, R M. O'Meara, A. G. Gordon. Layered ternary transition metal nitrides synthesis, structure and physical properties. J. Alloy. Compd., 2001, 317-318: 237-244.
    [109] M. Nishijima, T. Kagohashi, Y. Takeda. Electrochemical studies of a new anode material Li_(3-x)M_xN(M=Co,Ni,Cu). J. Power Sources, 1997, 68(2): 510-514.
    [110] Y. Takeda, M. Nishijima, M. Yamahata. Lithium secondary batteries using a lithium cobalt nitride Li_(2.6)Co_(0.4)N as the anode. Solid State Ionics, 2000, 130(1-2): 61-69.
    [111] Jun Yang, Ke Wang, Jingying Xie. Ballmilling synthesis and electrochemical characterization of ternary lithium nitrides. J. Electrochem. Soc., 2003, 150(1): A140-A142.
    [112] D. C. S. Souza, V. Pralong, A. J. Jacobson. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science, 2002, 296(14): 2012-2015.
    [113] V. Pralong, D. C. S. Souza, K. T. Leung. Reversible lithium uptake by CoP_3 at low potential role of the anion. Electrochem. Commun., 2002, 4(6): 516-520.
    [114] Alcantara, J. L. Tirado, J. C. Jumas. Electrochemical reaction of lithium with COP_3. J. Power Sources, 2002, 109(2): 308-312.
    [115] L. Monconduit, F. Gillot, M. L. Doublet. The Li_xM'P_4(M'=Ti, Mn) phosphides: new negative electrode materials for Li-ion rechargeable batteries, 11th international meeting on lithium batteries. Monterey, California, 2002, Abstract 61.
    [115] Hong Li, Xuejie Huang, Liquan Chen, Zhengang Wu, Yong Liang. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett., 1999, 2: 547-549.
    [116] Hong Li, Xuejie Huang, Liquan Chen, Guangwen Zhou, Ze Zhang, Dapeng Yu, Yu Jun Mo, Ning Pei. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000, 135: 181-191.
    [117] Masake Yoshio, Hongyu Wang, Kenji Fukuda, Tatsuo Umeno, Nikolay Dimov, Zempachi Ogumi. Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc., 2002, 149(12): A1598-A1603.
    [118] Nikolay Dimov, Satoshi Kugino, Masake Yoshio. Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Eclectrochimica Acta, 2003, 48: 1579-1587.
    [119] Nikolay Dimov, Kenji Fukuda, Tatsuo Umeno, Satoshi Kugino, Masake Yoshio. Characterization of carbon-coated silicon structural evolution and possible limitations. J. Power Sources, 2003, 114: 88-95.
    [120] Jianjun Niu, Jim Yang Lee. Improvement of usable capacity and cyclability of silicon-based anode materials for lithium batteries by sol-gel graphite matrix. Electrochem. Solid-State Lett., 2002, 5 (6): A107-A110.
    [121] N. Dimov, S. Kugino, M. Yoshio. Mixed silicon-graphite as anode material for lithium ion batteries influence of preparation conditions on the properties of the material. J. Power Sources, 2004, 136: 108-114.
    [122] G. X. Wang, Jane Yao, H. K. Liu. Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochem. Solid-State Lett., 2004, 7(8): A250-A253.
    [123] Heon-Young Lee, Sung-Man Lee. Carbon-coated dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun., 2004, 6: 465-469.
    [124] Xiang-Wu Zhang, Prashanth K. Patil, Chunsheng Wang, A. John Appleby, Frank. E. Little, David L. Cocke. Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J. Power Sources, 2004, 125: 206-213.
    [125] Ⅱ-Seok Kim, Prashant N. Kumta. Hith capacity Si/C nanocomposite anodes for Li-ion batteries. J. Power Sources, 2004, 136: 145-149.
    [126] Moni Kanchan Datta, Prashant N. Kumta. Silicon and carbon based composite anodes for lithium ion batteries. J. Power Sources, 2006, 150:557-563.
    [127] Z. P. Guo, J. Z. Wang, H. K. Liu, S. X. Dou. Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J. Power Sources, 2005, 146:448-451.
    [128] P. Patel, Ⅱ-Seok Kim, E N. Kumta. Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries. Materials Science and Engineering B, 2005, 116: 347-352.
    [129] Z. P. Guo, Z. W. Zhao, H. K. Liu, S. X. Dou. Lithium insertion in Si-TiC nanocomposite by high-energy mechanical milling. J. Power Sources, 2005, 146: 190-194.
    [130] Ⅱ-seok Kim, G. E. Blomgren, P. N. Kumta. Nanostructured Si/TiB_2 composite anodes for Li-ion batteries. Electrochem. Solid-State Lett., 2003, 6 (8): A157-A161.
    [131] Ⅱ-seok Kim, P. N. Kumta, G. E. Blomgren. Si/TiN nanocomposites novel anode materials for Li-ion batteries. Electrochem. Solid-State Lett., 2000, 3 (11): 493-496.
    [132] Sung-Min Hwang, Heon-Young Lee, Serk-Won Jang, Sung-Man Lee, Seung-Joo Lee, Hong-Koo Baik, Jai-Young Lee. Lithium insertion in SiAg powders produced by mechanical alloying. Electrochem. Solid-State Letters, 2001, 4 (7): A97-A100.
    [133] H. Dong, X. P. Ai, H. X. Yang. Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun., 2003, 5: 952-957.
    [134] Heon Young Lee, Sung-Man Lee. Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Sources, 2002, 112: 649-654.
    [135] Min-Sik Park, Yong-Ju Lee, S. Rajendran, Min-Sang Song. Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries. Electrochem. Acta., 2005, 50:5561-5567.
    [136] Min-Sik Park, S. Rajendran, Yong-Mook Kang, Kyu-Sung Han, Young-Soo Han, Jai-Young Lee. Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries. J. Power Sources, 2006, 158: 650-653.
    [137] Heon-Yong Lee, Young-Lae Kim, Moon-Ki Hong, Sung-Man Lee. Carbon-coated Ni_(20)Si_(80) alloy-graphite composite as an anode material for lithium-ion batteries. J. Power Sources, 2005. 141: 159-162.
    [138] Y. Liu, K. Hanai, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda. Novel composites based on ultrafine silicon, carbonaceous matrix, and the introduced Co-milling components as anode host materials for Li-ion batteries. Electrochem. Solid-State Lett., 2004, 7 (12): A492-495.
    [139] Jae-Hun Kim, Hansu Kim, Hun-Joon Sohn. Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries. Electrochem. Commun., 2005, 7: 557-561.
    [140] J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, Z. S. Wen. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett., 2003, 6(8): A154-A156.
    [141] Baofeng Wang, Jun Yang, Jingying Xie, Ke Wang, Zhongsheng Wen. Electrochemical characteristics of silicon/carbon composite anodes for rechargeable lithium batteries. Journal of the Ceramic Society of Japan. 2004, 112(5): S649-S652.
    [142] Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, Y. Takeda. Morphology-stable silicon-based composite for Li-intercalation. Solid State Ionics, 2004, 168: 61-68.
    [143] Libao Chen, Xiaohua Xie, Baofeng Wang, Jingying Xie, Jun Yang. Binder effect on cycling performance of silicon/carbon composite anode for lithium ion batteries. J. Appl. Electrochem., 2006, 36: 1099-1104.
    [144] Z. S. Wen, J. Yang. B. F. Wang, K. Wang, Y. Liu. High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem. Commun., 2003, 5: 165-168.
    [145] G. X. Wang, J. H. Ahn, Jane Yao, Steve Bewlay, H. K. Liu. Nanostructured Si-C composite anodes for lithium-ion batteries. Elecetrochem. Commun., 2004, 6: 689-692.
    [146] Libao Chen, Xiaohua Xie, Baofeng Wang, Ke Wang and Jingying Xie. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode. Materials Science and Engineering: B, 2006, 131: 186-190.
    [147] D. Larcher, C. Mudalige, A. E. George. Si-containing disordered carbons prepared by pyrolysis of pitch/polysilane blends: effect of oxygen and sulfur. Solid State Ionics, 1999, 122: 71-83.
    [148] Weibing Xing, A. M. Wilson, K. Eguchi, G. Zank, and J. R. Dahn. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc., 1997, 144 (7): 2410-2416.
    [149] A. M. Wilson, G. Zank, K. Eguchi, W. Xing, J. R. Dahn. Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries. J. Power Sources, 1997, 68: 195-200.
    [150] A. M. Wilson, Weibing Xing, G. Zank, B. Yates, J. R. Dahn. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries Ⅱ: the effect of oxygen. Solid State Ionics, 1997, 100: 259-266.
    [151] G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou, H. K. Liu. Innovative nanosize lithium storage alloys with silica as active center. J. Power Sources, 2000, 88: 278-281.
    [152] G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou, H. K. Liu. Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. J. Alloy. Compd., 2000, 306: 249-252.
    [153] Yoo-Sung Lee, Jong-Hyuk Lee, Yeon-Wook Kim, Yang-Kook Sun, Sung-Man Lee. Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta, 2006, 52:1523-1526.
    [154] Pengjian Zuo, Geping Yin. Si-Mn composite anodes for lithium ion batteries. J. Alloy. Compd., 2006: 414: 265-268.
    [155] Pengjian Zuo, Geping Yin, Jun Zhao, Yulin Ma, Xinqun Cheng, Pengfei Shi, Tsutomu Takamura. Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries. Electrochimica Acta, 2006, 52:1527-1531.
    [155] Yanna NuLi, Baofeng Wang, Jun Yang, Xianxia Yuan, Zifeng Ma. Cu_5Si-Si/C composites for lithium-ion battery anodes. J. Power Sources, 2005, 153: 371-374.
    [157] G. A. Roberts, E. J. Cairns, J. A. Reimer. Magnesium silicide as a negative electrode material for lithium-ion batteries. J. Power Sources, 2002, 110: 424-429.
    [158] Ikuo Yonezu, Hisaki Tarui, Seiji Yoshimura, Shin Fujitani, Toshiyuki Nohma. Development of new electrode materials for lithium ion batteries at SANYO. 12th International Meeting on Lithium Batteries. Nara Japan, 2004, Abstract 58.
    [159] S. Bourderau, T. Brousse, D. M. Schleich. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources, 1999, 81-82: 233-236.
    [160] Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources, 2004, 136: 303-306.
    [161] Tsutomu Takamura, Shigeki Ohara, Makiko Uehara, Junji Suzuki, Kyoichi Sekine. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources, 2004, 129: 96-100.
    [162] Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Yakamura. Li insertion/extraction reaction at a Si film evaporated on a Ni foil. J. Power Sources, 2003, 119-121: 591-596.
    [163] Kazutaka Yoshimura, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura. Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode. J. Power Sources, 2005, 146: 445-447.
    [164] Hunjoon Jung, Min Park, Yeo-Geon Yoon, Gi-Bum Kim, Seung-Ki Joo. Amorphous silicon anode for lithium-ion rechargeable batteries. J. Power Sources, 2003, 115: 346-351.
    [165] Hunjoon Jung, Min Park, Shin Hee Han, Hyuck Lira, Seung-Ki Joo. Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries. Solid State Commun., 2003, 125: 387-390.
    [166] Ki-Lyoung Lee, Ju-Young Jung, Seung-Won Lee, Hee-Soo Moon, Jong-Wan Park. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources, 2004, 129: 270-274.
    [167] Taeho Moon, Chunjoong Kim, Yungwoo Park. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. J. Power Sources, 2006, 155: 391-394.
    [168] J. P. Maranchi, F. Hepp, P. N. Kumta. High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries. Electrochem. Solid-State Lett., 2003, 6(9): A198-A201.
    [169] T. D. Hatchard, J. R. Dahn. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc., 2004, 151 : A838-A842.
    [170] L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc., 2003, 150: A1457-A1464.
    [171] Seung-Joo Lee, Jong-Ki Lee, Sang-Hun Chung, Heon-Young Lee, Sung-Man Lee, Hong-Koo Baik. Stress effect on cycle properties of the silicon thin-film anode. J. Power Sources. 2001, 97-98: 191-193.
    [172] Seung-Wan Song, Kathryn A. Striebel, Ronald P. Reade. Electrochemical Studies of Nanoncrystalline Mg_2Si Thin Film Electrodes Prepared by Pulsed Laser Deposition. J. Electrochem. Soc., 2003, 150(1): A121-A127.
    [173] Seung-Wan Song, Kathryn A. Striebel, Xiangyun Song, Elton J. Cairns. Amorphous and nanocrystalline Mg_2Si thin-film electrodes. J. Power Sources, 2003, 119-121: 110-112.
    [174] Y. D. Hatchard, J. M. Topple, M. D. Fleischauer, J. R. Dahn. Electrochemical Performance of SiA1Sn Films Prepared by Combinatorial Sputtering. Electrochem. Solid-State Lett., 2003, 6-7: A129-A132.
    [175] L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, A. Bonakdarpour, A. A. Abdo, L. Christensen, K. W. Eberman, L. J. Krause, J. R. Dahn. The electrochemical reaction of Li with amorphous Si-Sn alloys. J. Electrochem. Soc., 2003, 150: A149-A156.
    [176] T. D. Hatchard, J. R. Dahn. Study of the electrochemical performance of sputtered SiAl_xSn_x films. J. Electrochem. Soc., 2004, 151: A1628-A1635.
    [177] Motohisa Suzuki, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura. Li insertion/extraction characteristics of a vacuum-deposited Si-Sn two-component film. J. Power Sources, 2005, 146: 452-456.
    [178] Seung-Joo Lee, Heon-Young Lee, Hong-Koo Baik, Sung-Man Lee. Si-Zr alloy thin-film anodes for microbatteries. J. Power Sources, 2003, 119-121:113-116.
    [179] Kwan-Soo Lee, Young-Lae Kim, Sung-Man Lee. Silver alloying effect on the electrochemical behavior of Si-Zr thin film anodes. J. Power Sources, 2005, 146: 464-468.
    [180] Seung-Joo Lee, Heon-Young Lee, Youngsin Park Hong-Koo Baik, Sung-Man Lee. Si (-Zr)/Ag multilayer thin-film anodes for microbatteries. J. Power Sources 2003,119-121: 117-120.
    [181] Jae-Bum Kim, Heon-Young Lee, Kawn-Soo Lee. Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochem. Commun., 2003, 5: 544-548.
    [182] Young-Lae Kim, Heon-Young Lee, Serk-Won Jang, Sung-Hwan Lim, Seung-Joo Lee, Hong-Koo Baik, Young-Soo Yoon, Sung-Man Lee. Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries. Electrochimica Acta, 2003, 48: 2593-2597.
    [183] Jae-Bum Kim, Bong-Suk Jun, Sung-Man Lee. Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries. Electrochimica Acta, 2005, 50: 3390-3394.
    [184] 李树堂.X射线衍射.北京:冶金工业出版社,1993.
    [185] 魏全金.材料电子显微分析.北京:冶金工业出版社,1997.
    [186] 殷敬华等.现代高分子物理学(第一版).北京:科学出版社,2003:569-570.
    [187] 王华馥,吴自勤.固体物理实验方法.北京:高等教育出版社,1990.
    [188] 王宗明等.实用红外光谱学(第二版).北京:石油工业出版社,1990.
    [189] 伍越寰.有机结构分析.合肥:中国科学技术大学出版社,1993.
    [190] 杨军,解晶莹,王久林.化学电源测试原理与技术.北京:化学工业出版社,2006:20-21.
    [191] 查全性等.电极过程动力学导论(第三版).北京:科学出版社,2002:104-107.
    [192] 曹楚南,张鉴清.电化学阻抗谱导论(第一版).北京:科学出版社,2002.
    [193] Hong Guo, Hailei Zhao, Chaoli Yin, Weihua Qiu. A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries. Materials Science and Engineering B, 2006, 131: 173-176.
    [194] 黄胜涛著.非晶态材料的结构和结构分析.北京:科学出版社,1987:181.
    [195] 刘金声.离子束沉积薄膜技术及应用,北京:国防工业出版社,2002:155-159.
    [196] Pimpa Limthongkul, Young-Ⅱ Jang, Nancy J. Dudney, Yet-Ming Chiang. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia, 2003, 51: 1103-1113.
    [197] Yongsheng Hu, Weihe Kong, Hong Li, Xuejie Huang, Liquan Chen. Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochemistry Communications 6 (2004) 126-131.
    [198] Koji Abe, Hideya Yoshitake, T. Kitakura, Takayuki Hattori, Hongyu Wang, Masaki Yoshio. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta 49 (2004) 4613-4622.
    [199] A. M. Andersson, K. Edstrom. Chemical composition and morphology of the elevated temperature SEI on graphite. J. Electrochem. Soc., 148, A1100 (2001).
    [200] K. Dokko, Y. Fujita, M. Mohamedi, M. Umeda, I. Uchida, J. R. Selman. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part Ⅱ. Disordered carbon. Electrochimica Acta 47 (2001) 933-938.
    [201] Deng-Tswen Shieh, Jingtian Yin, Koichi Yamamoto, Masashi Wade, Shigeo Tanase, Tetsuo Sakai. Surface characterization on lithium insertion/deinsertion process for sputter-deposited AgSn thin-film electrodes by XPS. J. Electrochem. Soc. 153 (2006) A106-A112.
    [202] Y. Hmon, T. Brousse, F Jousse, P.Topart, P.Buvat, D. M. Schleich. Aluminum negative electrode in lithium ion batteries. J. Power Sources. 97-98 (2001) 185-187.
    [203] Macdonald D. D., Transient techniques in electrochemistry. New York: Plenum Press, 1977.
    [204] Uchina T., Marikauay Y. Ikuta H., Chemical diffusion coefficient of lithium in carbon fiber. J. Electrochem. Soc., 1996, 143 (8): 2606.
    [205] Weppener W. Huggins R.A., Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li_3Sb. J Electrochem. Soc., 1977, 124 (10):1569.
    [206] F. Bellenger, C. Chemarin, D. Deroo, S. Maximovitch, A. Surca Vuk, B. Orel. Insertion of lithium in vanadium and mixed vanadium-titanium oxide films. Electrochimica Acta 46 (2001) 2263-2268.
    [207] Bohnke C. Bohnke O. Fourquet J. L., Electrochemical intercalation of lithium into LiLaNb207. J Electrochem. Soc., 1997, 144(4): 1151.
    [208] Mao-Sung Wu, Pin-Chi Julia Chiang. Electrochemically deposited nanowires of manganese oxide as an anode maerial for lithium-ion batteries. Electrochemistry Communications 8 (2006) 383-388.
    [209] Mikhail D. Levi, Doron Aurbach. The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J. Electroanalytical Chenmistry 421 (1997) 79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700