基于共晶键合技术的压电能量采集器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着微电子技术、微机械加工技术以及无线传感技术的突飞猛进,诸如嵌入式系统、射频识别系统、无线传感器以及各种可植入微型传感器之类的电子产品已经进入集成化、微型化和低功耗的时代,传统的输电线路和化学电池已经不能满足这些微型电子器件的供能要求。基于MEMS技术的振动能量采集器利用压电材料的压电效应,将周围环境中的振动机械能转化为电能,它可以很好的与各种微电子芯片、微传感器和微执行器集成在一起,为微型电子器件提供持久、稳定和清洁的能源。目前,MEMS压电振动能量采集器已经成为国内外许多研究小组的研究热点,并具有十分重要的科学意义和广阔的应用前景。
     本文围绕基于共晶键合技术的微压电振动能量采集器展开研究,概括了微型压电振动能量采集器的国内外发展现状与趋势,对各种结构的能量采集器进行了分析比较,提出了利用高性能块材PZT和硅片的共晶键合工艺制作高性能微型压电振动能量采集器,这是对高性能微能源设计和制造的一次有益探索,为下一步完善和优化微型压电振动能量采集器提供了很好的理论和实践基础。论文的主要研究内容是:在查阅了大量的中英文文献资料的基础上,探讨能量采集技术的研究背景及意义,系统分析了国内外关于MEMS压电振动能量采集器的研究进展;详细介绍了压电效应的原理和压电材料的分类,深入分析微型压电振动能量采集器的相关理论,推导压电悬臂梁的固有频率及电压、功率输出公式,并探讨悬臂梁的输出与其结构参数和施加加速度之间的关系;使用ANSYS有限元仿真软件对这种压电复合结构进行静态、模态和压电谐响应分析,针对使用环境中振动源频率普遍低于1000Hz的情况,确定其最佳结构尺寸以获得较低的固有频率;着重进行块材PZT与硅片的共晶键合工艺研究,获得了较好的键合结果,即在500℃下键合1h,键合强度可达13.2MPa;采用其他MEMS标准工艺制作微压电振动能量采集器样品,顺利完成了压电悬臂梁的工艺设计和实验,成功地制作出微型压电悬臂梁;搭建了一套完整的测试系统,包括信号发生器、功率放大器、示波器、振动台和加速度仪等,对制作的微压电振动能量采集器样品进行一系列性能测试,测试结果与仿真分析有较好的吻合。所制备的微能量采集器样品的谐振频率为815Hz,在0.5g加速度激励下,峰值输出电压可达632mV;最后,提出进一步改进器件成品率和器件性能的方案。
In recent years, as the rapid development of IC technology, MEMS technology and wireless sensing technology, many electronic products, such as the embedded system, the RF recognition system, wireless sensors as well as other implanted micro-sensors, have entered a new era which is characterized as integration,miniaturization and low power consumption. Therefore, the traditional immovable transmission line and chemical batteries with limited lifespan cannot meet the energy requirements of these electronic micro-devices. The vibration energy harvester based on MEMS technology, which can be well integrated with many micro-electronic chips, micro-sensors and micro-actuators, can convert the omnipresent vibration energy into electric energy by means of piezoelectric effect of piezoelectric materials, thus supply the electronic micro-devices with lasting, stable and clean electric energy. At present, the MEMS piezoelectric energy harvester which is of great scientific significance and has broad application areas has become the research hotspot of many research groups at home and abroad.
     In this thesis, MEMS piezoelectric energy harvester based on eutectic bonding technology is studied; the present status and trend of development is illustrated. Through analysis and comparison of different types of energy harvester, MEMS piezoelectric energy harvester based on eutectic bonding of bulk PZT with high piezoelectric properties to Si wafer is proposed. It is a beneficial explorer of design and fabrication of micro energy resources and makes a good theoretical and experimental basis of further improvement of micro piezoelectric energy harvester.
     The main contents of the thesis are: firstly, the research background and significance of energy harvesting technology is investigated on the basis of reading many Chinese and English papers and information, and the domestic and abroad research development of MEMS piezoelectric energy harvester is listed systemically. Then the principle of piezoelectric effect and classification of piezoelectric materials is introduced. Deeply analyze the theory related to micro piezoelectric energy harvester and derivate the expressions of resonant frequency, output voltage and power of piezoelectric cantilever. The relationship between output and structural parameters and applied acceleration is also discussed. The resonant frequency, output of voltage and power of the piezoelectric cantilever theoretically are analyzed. Given the situation that the frequency of common vibration resources in the operating environment is always below 1000Hz, static analysis, model analysis and harmonic analysis of the piezoelectric cantilever is performed using the finite element software—ANSYS to determine the optimal structure size. The technology of eutectic bonding of bulk PZT to Si is investigated, and the sample of MEMS piezoelectric energy harvester is fabricated using other standard MEMS technologies. The performance is tested with a test system containing a waveform generator, an amplifier, a vibrator, an oscilloscope and an acceleration monitor. The test result is close to the calculation. Other feasible suggestions of advancing the performance of the device are also discussed at the end of the paper.
     Eutectic bonding of bulk PZT ceramics to Si wafers using Au thin film as an intermediate layer was investigated. A bond strength of more than 13MPa was attained at bonding temperature of 500℃and the bonding time is about 1h. Testing of the samples demonstrate that the resonant frequency is 815 Hz and the AC output voltage is around 632 mV at the acceleration of 0.5g.
引文
[1] http://www.janet.ucla.edu/WINS/
    [2] http://robitics.eecs.berkely.edu/~pister/SmartDust
    [3] http://www-mtl.mit.edu/research/icsystems/uamps
    [4] K.A.Cook, N.Thambi and A.M.Sastry, Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems, Smart Mater. Struct, 2008, 17(4), 043001(33pp).
    [5] L.Mateu, F. Moll, Review of energy harvesting techniques and applications for microelectronics, SPIE, 2005, 5837(2), 359-373.
    [6] J.A.Paradiso, T.Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive computing, 2005, 4(1), 18-27.
    [7] N.S. Hudak and G.G. Amatucci, Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. Journal of applied physics, 2008, 103(10), 101301(24pp).
    [8] A.H.Epstein, S.D. Senturia, Power MEMS and Micro engines, Solid state sensors and actuators, 1997, 2, 753-756.
    [9] S. Roundy, Energy Scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, [PhD dissertation], UC Berkeley, USA, 2003
    [10] http://baike.baidu.com/view/174609.htm
    [11] P.Miao, A.S.Holmes, E.MYeatman, et al, Micro-machined variable capacitors for power generation, Proc. Electrostatics’03, Edinburgh, U.K, 2003.
    [12] P.D.Mittcheson, P.Miao, B.H Stark et al, MEMS electrostatic micropower generator for low frequency operation, Sensors and Actuator: A, 2004,115, 523-529.
    [13] S.Roundy, P,K.Wright, and K.S.Pister, Micro-electrostatic vibration to electricity converters, ASME, 2002,10pp.
    [14] R.Tashiro, N.Kabei, K.Katayama, et al, Development of an electrostatic generator that harnesses the motion of a living body, JSME, 2000, 43(4), 916-922.
    [15] S.Shearwood and R.B.Yates, Development of an electro-magnetic micro generator, Electron Lett, 1997, 33, 1883-1884.
    [16] C.B.Williams, S. Shearwood, M.A.Harradine, et al, Development of an electromagneticmicro-generator, IEE Proc. Circuits, Devices and Syst, 2001, 148(6), 337-342.
    [17] T.H.Ng and W.H. Liao, Feasibility study of a self-powered piezoelectric sensor, Proc SPIE, 2004, 5389, 377-389.
    [18] T.H.Ng and W.H. Liao, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor, Journal of intelligent material systems and structures, 2005, 16, 785-797.
    [19] S.R.Platt, S.Farritor and H.Haider, On low-frequency electric power generation with PZT ceramics, IEEE/ASME Trans. Mechatronics, 2005, 10(2), 240-252.
    [20] S. Meninger, A low power controller for a MEMS based energy converter, [Dissertation], Massachusetts Institute of Technology, USA, 1996.
    [21] http://baike.baidu.com/view/40323.htm
    [22] W.J.Li, Z.Y.Wen, P.K.Wong, et al, A micro machined vibration-induced power generator for low power sensors of robotic systems, ISORA, Hawaii, USA, 2000.
    [23] C.T.Pan, Y.M.Hwang, H.L.Hu, et al, Fabrication and analysis of a magnetic self-power microgenerator. Journal of magnetism and magnetic materials, 2006, 304, 394-396.
    [24] M.Mizuno, D.G.Chetwynd, Investigation of a resonance micro generator. Journal of micromechanics and microengineering, 2003,13, 209-216.
    [25] E.Koukharenko, S.P.Beeby, M.J.Tudor, Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications, Microsystem Technology, 2006, 12, 1070-1077.
    [26] H.Kulah,K.Najafi. An electromagnetic micro power generator for low-frequency environmental vibrations. MEMS2004, 2004, 237-240.
    [27]温中泉,微型振动式发电机的基础理论和关键技术研究, [学位论文],重庆大学,重庆,2003.
    [28] http://baike.baidu.com/view/249682.htm
    [29] K.S. Moon, H. Liang, J.G. Yi, et al. Tire tread deformation sensor and energy harvester development for "smart tire" applications. Proc SPIE, 2007, 65290(12pp).
    [30]董璐,基于MEMS的压电型微能量采集器的研究,[学位论文],上海交通大学,上海,2007.
    [31] J.S. Jong, K.M. Soo, S.J. Sung, Two-layered piezoelectric bender device for micro-power generator, Sensors and Actuators: A, 2008, 148(1): 158-167.
    [32] B.S. Lee, S.C. Lin, W.J. Wu, Comparison of the piezoelectric MEMS generators with interdigital electrodes and laminated electrodes, The international Society for optical Engineering, 2008, 6933, 1-8.
    [33] D.N. Shen, J.H. Park, J. Ajitsari, The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting, Journal of Micromechanics and Microengineering, 2008, 18(5), 055017(7PP).
    [34] H. Xue, Y.T. Hu, Q.M. WANG, Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Transactions on ultrasonics ferroelectrics and frequency control, 2008, 55, 2104-2108.
    [35] A.Erturk, J.M. Renno, D.J. Inman. Piezoelectric Energy Harvesting from a L-Shaped beam-mass structure with an application to UAVs. Journal of intelligent material systems and structures, 2009, 20(5), 529-544.
    [36] B.Balachandran, A. Nayfeh, Nonlinear motions of beam-mass structure. Nonlinear Dynamics, 1990, 1(1), 39-61.
    [37] A.Nayfeh, D.Mook. Nonlinear Oscillations. Wiley Classics Library, 1995, 43-65.
    [38] A.Haddow, A.Barr, D.Mook, Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure, Journal of Sound and Vibration, 1984, 97, 451-473.
    [39] K.Ingo, M.Djordje, E.Gerald. A new approach for MEMS power generation based on a piezoelectric diaphragm. Sensors and Actuators, 2008, 142(1), 292-297.
    [40] J.Cho, M. Anderson, R.Richards, Optimization of electromechanical coupling for a thin-film PZT membrane I: Modeling, Journal of micromechanics and microengineering, 2005, 15(10), 1797-1803.
    [41] J.Cho, M. Aderson, R.Richards, Optimization of electromechanical coupling for a thin-film PZT membrane II: Experiment, Journal of micromechanics and microengineering, 2005, 15(10), 1804-1809.
    [42] http://www.memsnet.org/mems/what_is.html
    [43] M.EIwenspoek and H.Jansen, Silicon Micromachining, Cambridge University Press, 2004, 1-3.
    [44]王阳元,武国英,郝一龙,硅基MEMS加工技术及其标准工艺研究,电子学报,2002,30(11),1-8.
    [45] Ken Gilleo, MEMS/MOEMS Packaging:Concepts, Designs, Materials, and Processes, The McGraw-Hill Companies Inc, 2005, 1-6.
    [46]王矜奉,姜祖桐,石瑞大编著,压电振动,科学出版社,1989,30-56.
    [47]张福学,孙慷,现代压电学,科学出版社,2001, 238-254.
    [48]李邓化等著,新型压电复合换能器及其应用,科学出版社,2007,45-52.
    [49] R. Elfrink; T.M. Kamel, M.Goedbloed, Vibration energy harvesting with aluminum nitride-basedpiezoelectric devices, JMM, 19(9), 8pp.
    [50] Y.B. Jeon, R.Sood, J.H. Jeong, et al, MEMS power generator with transverse mode thin film PZT, Senros and Actuators:A, 2005, 122, 16-22.
    [51] B.S.Lee, S.C.Lin, W.J.Wu, et al, Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film, JMM, 2009, 19, 065014(8pp).
    [52] H.P. Hu, C. Zhao, S.Y. Feng, etc, Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structure, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2008, 55(3), 668-674.
    [53]王佳,PZT压电陶瓷制备工艺及性能研究,[学位论文],哈尔滨理工大学, 2009.
    [54]许小红,武海顺,压电薄膜的制备、结构与应用,科学出版社,2002,87-92.
    [55]蒲朝辉,刘洪,徐鹏,PZT厚膜的制备及其热释电性能研究,四川大学学报,2005, 42(2),481-484.
    [56] J.R. Cheng, Z.Y. Meng. Thickness-dependent microstructures and electrical properties of PZT films derived from Sol-gel process. Thin Solid Films, 2001, 385 (1-2), 5-10.
    [57] K.Sood, Piezoelectric micro power generator (PMPG): A MEMS-based energy scavenger, [Dissertation], Massachusetts Institute of Technology, 2003.
    [58] M.J. Ramsay, W. Clarrkw, Piezoelectric energy harvesting for Bio-MEMS applications. Smart Structures and Materials, 2001, 4332, 429-438.
    [59] http://baike.baidu.com/view/467143.htm
    [60] http://knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1873&VerticalID=0
    [61] http://jpkc.nwpu.edu.cn/jp2009/04/wlkc2/dd05/5-7.htm
    [62] J.W. Yi, W.Y. Shih, and W.H. Shih, Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers, Journal of Applied Physics, 2002, 91, 1680-1686.
    [63] C.B. Williams, S. Shearwood, R.B. Yates, et al. Development of an electromagnetic micro generator, IEEE Proc: Circuits, Devices and Syst, 2001, 148, 337-342.
    [64]李炳乾,MEMS谐振器件及相关理论研究,[学位论文],西安交通大学,2000.
    [65] S.Roundy, P.K.Wright, A piezoelectric vibration based generator for wireless electronics,Smart materials and structures, 2004, 13(5), 1131-1142.
    [66]陈精一,ANSYS工程分析实例教程,中国铁道出版社,2007,1-10.
    [67] http://baike.baidu.com/view/70776.htm?func=retitle
    [68]张朝晖,ANSYS12.0结构分析工程应用实例解析(第三版),机械工业出版社,2010,3-4.
    [69] R. Moazzami, C. Shepherd, et al, Electrical characteristics of ferroelectric PZT thin films for DRAM application, Electron devices, 1992, 39, 2044-2049.
    [70] H. Sang, C.N. Hoon, L. Yong, et al, Characteristics of P tSrTiO3 /Pb (Zr,Ti)O3 /SrTiO3 ferroelectric gate oxide structure, Thin Solid Films,1999, 354, 251- 255.
    [71] M.Koch, N. Harris, G.R. Evans, et al, A novel micromachined pump-based on thick film piezoelectric actuation. Sensors and actuators, 1998, 70, 98 -103.
    [72] W.G. Liu, J.S.Ko and W.G. Zhu, Preparation and properties of multilayer Pb(Zr,Ti)O3/PbTzO3 thin films, Thin Solid Films, 2000, 371, 254- 2581.
    [73] X. J. Meng, Dependence of texture development on thickness of single annealed 1ayer in Sol-gel derived PZT thin films, Thin Solid Film, 2000, 368, 22- 251.
    [74] K.Shimomura, T.Tsurumi, Y.Ohba and M.Daimon, Preparation of lead zirconate titanate thin film by hydrothermal method, Jpn. J. Appl. Phys, 1991, 30(9), 2174-2177.
    [75] K. Tanaka, T. Konishi, M. Ide, et al , Wafer bonding of lead zirconate titanate to Si using an intermediate gold layer for microdevice application, JMM, 2006, 16, 815-820.
    [76] K. Tanaka K, E. Takata E and K. Owada, Anodic bonding of lead zirconate titanate ceramics to silicon with intermediate glass layer, Sensors Actuators: A, 1999, 69, 199-203.
    [77] D.C.Roberts, H.Li,J.L.Steyn, et al, A high frequency, high stiffness piezoelectric actuator for micro-hydraulic applications, Sensors and Actuators: A, 2002, 97, 620-631.
    [78] http://www.chem-syn.com/pdf/E-7(高温胶).pdf
    [79] G. Sasaki, H. Fukunaga and T. Suga, et al, Materials science communication mechanism of the anodic bonding between PZT ceramics and silicon wafer, Materials Chemistry and Physics, 1997, 51(2), 174-177.
    [80] A.L. Tiensuu, M. Bexell, J.A. Schweitz, et al, Assembling three-dimensional micro structures using gold-silicon eutectic bonding, Sensors and Actuators: A, 1994, 45, 227-336.
    [81] R.F.Wolffenbuttel and K.D.Wise 1994 Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature, Sensors and Actuators: A, 1994, 43,223-229.
    [82] W.H. Ko, J.T. Suminto, G.J. Yeh. Micromachining and micropackaging of transducers. Elesevier Science Publishers, 1985.
    [83]刘兵武,张兆华,谭智敏等,用于MEMS器件的单面溅金硅共晶键合技术,半导体技术,2006,31(12),896-898.
    [84]陈明祥,易新建,刘胜等,基于共晶的MEMS芯片键合技术及其应用, Semiconductor optoelectronics,2004,25(6),484-488.
    [85] R.Zeto, B.Rod, M.Dubey, et al, Dry etching of sol-gel PZT, Materials Research Society Symp. Proc, 1998, 546, 159-164.
    [86] K.Saito, J.H.Choi, T.Fukuda, et al, Reactive Ion Etching of Sputtered PbZr1-xTixO3 Thin Films, J.Appl.Phys, 1992, 31, 1260-1262.
    [87] K. Zheng, J. Liu, J. Chu, A novel wet etching process of Pb(Zr,Ti)O3 thin films for applications in microelectromechanical system, Journal of applied physics, 2004, 43(6), 3934-3937.
    [88] T.Konishi, M.Ide, K. Tanak, et al, Fabrication of diaphragm actuator using bulk PZT, IEEJ Trans, 2006, 126(7), 302-305.
    [89] J.Baker, S.Roundy,P.Wright, Alternative Geometries for increasing power density in vibration energy scavenging for wireless sensor networks, 3rd International energy conversion engineering conference, 2005, San Francisco, California, USA.
    [90] J.Q. Liu, H.B. Fang, A MEMS-based piezoelectric power generator array for vibration energy harvesting, Microelectronics Journal, 2008, 39, 802-806.
    [91] S.Roundy, E.S.Leland, J. Baker et al, Improving power output for vibration-based energy scavengers. Pervasive computing. 2005, 4(1), 28-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700