一步法合成氮化硼超薄纳米片自组装的三维多级结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,由于单壁碳纳米管和石墨烯研究的快速发展,具有超薄结构特性的六方氮化硼纳米材料也得到了科学家们的广泛关注。本文在中热固相反应方法的基础上,通过调控实验参数和利用自主设计的可控体积热压反应釜合成了由超薄氮化硼纳米片(BNNSs)自组装而成的具有三维多级结构的纳米材料,并考察了这种材料的性质及应用。首先,我们在普通反应釜中合成了由BNNSs自组装而成的三维多级结构,分析了这种材料的物相和形貌及基本的性质,并探索了反应机理。其次,我们向反应体系中加入了催化剂硫和通过调控反应体系的压力的方法将BN纳米片的厚度降低到超薄的尺度,并且通过HRTEM照片分析了这种材料的特殊边缘结构。再次,我们利用超薄BNNSs自组装三维多级结构吸附性良好的性质将其用在废水处理中,通过接触角测试考察了超薄BNNSs自组装三维多级结构自身的超疏水性。最后将超薄BNNSs自组装具有三维多级结构的材料与高分子材料复合考察了复合材料的热学性质。具体结果如下:
     首先利用中热固相反应,在50mL反应釜中大产率的合成了三维BN纳米材料。这种材料为纳米BN薄片呈放射状排列方式自组装而成的三维纳米多级结构,大小在200~300nm左右,并且BN薄片的厚度在8~10nm左右。通过改变反应恒温时间,我们发现了这种三维材料从纳米碎片到表面突起状结构再到放射状纳米片的演变过程,并提出了一种气-固和气-气结合的缓释反应机理。
     其次为了减薄BN纳米片的厚度,我们加入了催化剂硫。加入硫后我们减少了反应时间和降低了纳米片的厚度。硫主要有两个作用:一个是在反应初期与叠氮钠反应释放大量的热量,为后续反应提供能量;另一个作用是催化反应中间产物叠氮氨的分解,促使产物BN的生成及减小纳米片的厚度。接着通过调控反应釜的体积达到调控反应体系的压力,从而使组成三维BN纳米材料的薄片由厚度8nm左右减小到3nm左右,实现了超薄BN纳米片的可控合成。分析了不同体系压力对实验结果的影响,并且通过TEM和HRTEM照片详细研究了超薄BN纳米片的形状和边缘结构,发现BN纳米片的形状基本为正三角形,其边缘为zigzag结构。
     最后,在可控合成的基础上,我们考察了超薄BNNSs自组装具有三维多级结构材料的一些性质。通过测试其在不同pH值水溶液中的zeta电势值,并以亚甲基蓝(MB)为例考察了其在不同pH下对MB的吸附量大小,发现了吸附量随负电势增大而增大的规律且在pH=11时吸附量达到最大。接着在pH=11的条件下,测试了这种三维材料对MB的吸附速率曲线,发现超薄BNNSs自组装具有三维多级结构材料对MB的吸附为快速吸附过程。测试了不同样品的比表面积和对MB的吸附平衡曲线,我们发现样品对MB的吸附能力随着比表面积的提高而增大。
     在超薄BNNSs自组装三维材料的纳米粗糙结构的基础上,我们研究了超薄BNNSs自组装三维多级结构涂层的超疏水性。首先重复测试了超薄BNNSs自组装三维多级结构涂层的同一点的接触角,并记录了水滴在其表面的移动过程,说明了超薄BNNSs自组装三维多级结构的疏水性能很稳定。然后测试了样品在不同pH值下的接触角大小,发现了样品的疏水性能不随水的酸碱度变化而变化。最后通过测试超薄BNNSs自组装三维多级结构的不同样品,发现了当BN薄片厚度为3nm时接触角大于150°,说明了我们制备的BN样品自身就具有超疏水性。
     利用BN的导热率高的性质,我们将所制备的超薄BNNSs自组装三维多级结构材料与高分子材料进行了复合:将超薄BNNSs自组装三维多级结构材料添加进结构性电子封装材料PA66中,得到了高导热率的和低热膨胀系数的BNNSs/PA66复合材料;我们也把超薄BNNSs自组装三维多级结构材料与PVA进行了复合得到了导热率高的复合薄膜材料,当添加量为3wt.%时其导热率为纯PVA薄膜的3.44倍。
Recently, hexagonal boron nitride (hBN) with ultrathin layer structure has attracted extensive interest in the past few years owing the development of graphene and single-walled carbon nanotube. Herein, with the foundation of middle temperature solid phase reaction method, we have seccessfully fabricated3D hierarchical structure self-assembled by ultrathin BN nanosheets (BNNSs) using middle temperature solid state reaction method. These3D hierarchical structures are composed of radialy aligned ultrathin nanosheets. First, we synthesized3D hierarchical structure self-assembled by BNNSs and analyzed the phase and morphology of the material. Second, we reduced the thickness of nanosheet to ultrathin through adding initiater sulfur and regulating the pressure of reaction system. We also discussed the shape and special edge structures of BNNSs. Then we used3D hierarchical structure self-assembled by ultrathin BNNSs in wastewater treatment for its good adsorption property, and investigated the superhydrophobicity of themselves by contact angle tests. Finally, we synthesized BNNSs/polymer composite materials, which have good thermal properties. The results are as follows.
     Using midle-temperature solid reaction, we successfully synsethsized3D hierarchical structure self-assembled by BNNSs in50mL reaction kettle with a big yield. These structures are self-assembled by radialy aligned nanosheets and about200-300nm. The thicknesses of these nanosheets are about8nm. By changing the time of constant temperature, we found the evolution process of3D hierarchical structure from nanodebris to bump structure and then to radial nanosheets. Then we put forward a gas-solid and gas-gas combined reaction mechanism with slow-release process.
     For reducing the thickness of BN nanosheet, we added the sulfur into the reaction as an initiater, which reduced the reaction time and the thickness of BN nanosheets. One main function of sulfur is generating a lot of heat by reacting with NaN3at initial stage. The other main function is catalyzing the decomposition of azide ammonia, prompting the production of BN and reducing the thickness of nanosheet. Then we regulated the volume of the autoclave for getting different pressures of the reaction system. And through the regulating of pressure, we successfully achieved the controllable synthesis of ultrathin BNNSs with the thickness of nanosheet reducing from8nm to3nm. Finally, through investigating the TEM and HRTEM images, we found that the nanosheets were regular triangle and the edges of BN nanosheets were zigzag structure.
     On the basis of controllable synthesis, we investigated the properties of3D hierarchical structure self-assembled by BNNSs. First, by testing the zeta potential value and the adsorbing capacity of3D hierarchical structure self-assembled by ultrathin BNNSs for MB in aqueous solution with different pH value, we found the adsorption quantity increased with the adding of absolute value of the negative potential and reached the maximum at pH=11. Then under the condition of pH=11, we tested the rate curves of adsorption of3D hierarchical structure self-assembled by ultrathin BNNSs for MB and found the process of the the adsorption on BNNSs was a rapid adsorption process. Finally, we investigated the specific surface area of3D hierarchical structure self-assembled by ultrathin BNNSs and the adsorption equilibrium curves for MB. we found the adsorption capacity of3D hierarchical structure self-assembled by ultrathin BNNSs for MB increased with the increase of specific surface area.
     Knowing the special rough structure, we investigated the super hydrophobicity of3D hierarchical structure ultrathin BNNSs coatings. We first retested the the contact angle of water on3D hierarchical structure ultrathin BNNSs coatings at the same point and recorded the moving process of water droplet on the surface of the coating, which prove that the hydrophobic performance of3D hierarchical structure ultrathin BNNSs coating is very stable. Then we tested the size of the contact angle of sample under different pH value, and we found the hydrophobic performance had nothing to do with the pH value of water. At last, we investigated the contact angles of different samples and found the contact angle was more than150°when the thickness of BN nanosheet was3nm, which illustrates that3D hierarchical structure BNNSs have the super hydrophobic performance itself.
     Using the high thermal conductivity of BN, we prepared BNNSs/polymer composite by3D hierarchical structure self-assembled by ultrathin BNNSs. We first added3D hierarchical structure self-assembled by ultrathin BNNSs into PA66, which is the structural and electronic packaging material. And we achieved the BNNSs/PA66composite with high thermal conductivity and low thermal expansion coefficient. We also got the BNNSs/PVA film composite by putting3D hierarchical structure self-assembled by ultrathin BNNSs into PVA. When the the quantity of BNNSs is3wt.%, the thermal conductivity of composite is3.44times of pure PVA membrane.
引文
[1]T. Ishii, T. Sato, Y. Sekikawa, Growth of whiskers of hexagonal boron nitride, Journal of Crystal Growth,1981,52(1),285-289.
    [2]L. Pauling, The Structure and Properties of Graphite and Boron Nitride, Proceedings of the National Academy of Sciences of the United States of America, 1966,56,1646-1652.
    [3]K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials, 2004,3,404-409.
    [4]New high purity boron nitride powders for lubrication, Additives for Polymers, 1999,1999,2.
    [5]T. Ugurlu, M. Turkoglu, Hexagonal boron nitride as a tablet lubricant and a comparison with conventional lubricants, International Journal of Pharmaceutics, 2008,353,45-51.
    [6]J. Li, R. Dahal, S. Majety, J. Y. Lin and H. X. Jiang, Hexagonal boron nitride epitaxial layers as neutron detector materials, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2011,654,417-420.
    [7]B. T. Kelly, The thermal conductivity of hexagonal boron nitride parallel to the basal planes, Journal of Nuclear Materials,1977,68,9-12.
    [8]M. A. Chaudhry, A. Jonscher, Dielectric properties of hexagonal boron nitride parallel to the cleavage planes, Journal of Materials Science Letters,1989,8, 1260-1261.
    [9]U. Buchner, Wave-Vector Dependence of the Electron Energy Losses of Boron Nitride and Graphite, physica status solidi (b),1977,81,227-234.
    [10]D. J. Qiu, Investigation on the microstructure and optical properties of c-axis oriented nanocrystalline hexagonal BN films fabricated by hot-filament chemical vapor deposition, Thin Solid Films,2005,484,90-93.
    [11]Zhu, Y. Bando, L. Yin, D. Golberg, Field Nanoemitters:Ultrathin BN Nanosheets Protruding from Si3N4 Nanowires, Nano Letters,2006,6,2982-2986.
    [12]M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong and P. J. Kelly, Electrostatic Doping of Graphene through Ultrathin Hexagonal Boron Nitride Films, Nano Letters,2011,11,4631-4635.
    [13]Z. G. Chen, J. Zou, Field emitters:ultrathin BN nanosheets protruded from BN fibers, Journal of Materials Chemistry,2011,21,1191-1195.
    [14]R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim and P. Blake, Hunting for Monolayer Boron Nitride:Optical and Raman Signatures, Small,2011,7, 465-468.
    [15]A. Lipp, K. A. Schwetz, K. Hunold, Hexagonal boron nitride:Fabrication, properties and applications, Journal of the European Ceramic Society,1989,5, 3-9.
    [16]苏勉曾,固体化学导论[M],北京:北京大学出版社,1987.
    [17]日本化学会编,董万堂,董绍俊译,无机固态反应[M],群学出版社,1985.
    [18]赖芝,忻新泉,周衡南,固相配位化学反应研究LXXIV.固相化学反应中的晶态-非晶态-晶态的变化,无机化学学报,1997,94-99.
    [19]景苏,忻新泉,固相配位化学反应研究LIX.反应截面移动法研究氢氧化铜与α-alaH的固相反应,化学学报,1995,26-30.
    [20]F. Toda, Solid State Organic Chemistry:Efficient Reactions, Remarkable Yields, and Stereoselectivity, Accounts of Chemical Research,1995,28,480-486.
    [21]缪强,忻新泉,胡澄,固相配位化学反应研究LXV.成核过程的Monte Carlo研究,化学物理学报,1994,118-123.
    [22]L. Lei, X. Xin, Solid state synthesis of a new compound Cu(HQ)Cl2 and its formation reaction, Thermochimica Acta,1996,273,61-67.
    [23]周益明,忻新泉,低热固相合成化学,无机化学学报,1999,5-24.
    [24]贾殿赠,俞建群,夏熙,一步室温固相化学反应法合成CuO纳米粉体,科学通报,1998,172-174.
    [25]王疆瑛,贾殿赠,陶明德,固相配位化学反应法合成ZnO纳米粉体,功能材料,1998,598-599+603.
    [26]俞建群,贾殿赠,张慧,周蓉,夏熙,CdS纳米粉体的合成新方法一步室温固相化学反应法,化学通报,1998,36-38.
    [27]俞建群,贾殿赠,张校刚,夏熙,郑毓峰,纳米PbS的合成新方法一步室温固相化学反应法,分子科学学报,1998,64-65.
    [28]L. Dan, Master dissertation of Nanjing Science & Technology University,1995.
    [29]Z. Hu, Y. Fan, F. Chen, Y. Chen, Amorphous Iron-Boron Powders prepared by Chemical Reduction of Mixed-metalCation Solutions:Dependence of Composition upon Reaction Temperature, Journal of the Chemical Society Chemical Communications,1996,2,247.
    [30]M. Li, L. Xu, L. Yang, Z. Bai and Y. Qian, Growth of cubic and hexagonal BN particles by using BBr3, NH4Br and metallic Na as reactants, Diamond and Related Materials,2009,18,1421-1425.
    [31]J. Dai, L. Xu, Z. Fang, D. Sheng, Q. Guo, Z. Ren, K. Wang and Y. Qian, A convenient catalytic approach to synthesize straight boron nitride nanotubes using synergic nitrogen source, Chemical Physics Letters,2007,440,253-258.
    [32]L. Wang, L. Xu, C. Sun, Y. Qian, A general route for the convenient synthesis of crystalline hexagonal boron nitride micromesh at mild temperature, Journal of Materials Chemistry,2009,19,1989.
    [33]L. Wang, C. Sun, L. Xu, Y. Qian, Convenient synthesis and applications of gram scale boron nitride nanosheets, Catalysis Science & Technology,2011,1,1119.
    [34]M. Wang, M. Li, L. Xu, L. Wang, Z. Ju, G. Li and Y. Qian, High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation, Catalysis Science & Technology,2011,1,1159-1165.
    [35]L. Yang, H. Yu, L. Xu, Q. Ma and Y. Qian, Sulfur-assisted synthesis of nitride nanocrystals, Dalton Transactions,2010,39,2855-2860.
    [36]G. Lian, X. Zhang, M. Tan, S. Zhang, D. Cui and Q. Wang, Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation, Journal of Materials Chemistry, 2011,21,9201-9207.
    [37]G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui and Q. Wang, Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment, Energy & Environmental Science,2012,5, 7072-7080.
    [38]M. Corso, W. Auwarter, M. Muntwiler, A. Tamai, T. Greber and J. Osterwalder, Boron Nitride Nanomesh, Science,2004,303,217-220.
    [39]G. Younes, G. Ferro, M. Soueidan, A. Brioude and F. Cauwet, in 13th International Conference on Silicon Carbide and Related Materials 2009, ICSCRM2009, October 11,2009-October 16,2009, Trans Tech Publications Ltd, Nurnberg, Germany,2010,645-648,1191-1194.
    [40]Y. Lin, J. W. Cornell, Advances in 2D Boron Nitride Nanostructures:Nanosheets, Nanoribbons, Nanomeshes, and Hybrids with Graphene, Nanoscale,2012.
    [41]C. Zhi, Y. Bando, C. Tang, H. Kuwahara and D. Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials,2009,21,2889-2893.
    [42]W. Q. Han, L. Wu, Y. Zhu, K. Watanabe and T. Taniguchi, Structure of chemically derived mono-and few-atomic-layer boron nitride sheets, Applied Physics Letters,2008,93,223103.
    [43]A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare and C. N. R. Rao, Graphene Analogues of BN:Novel Synthesis and Properties, ACS Nano, 2010,4,1539-1544.
    [1]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han and M. Meyyappan, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science,2003,300, 1249.
    [2]A. Mohanty, N. Garg, R. Jin, A Universal Approach to the Synthesis of Noble Metal Nanodendrites and Their Catalytic Properties, Angewandte Chemie International Edition,2010,49,4962-4966.
    [3]B. K. Jena, C. R. Raj, Synthesis of Flower-like Gold Nanoparticles and Their Electrocatalytic Activity Towards the Oxidation of Methanol and the Reduction of Oxygen, Langmuir,2007,23,4064-4070.
    [4]T. Wang, X. Hu, S. Dong, Surfactantless Synthesis of Multiple Shapes of Gold Nanostructures and Their Shape-Dependent SERS Spectroscopy, The Journal of Physical Chemistry B,2006,110,16930-16936.
    [5]X. Teng, S. Maksimuk, S. Frommer, H. Yang, Three-Dimensional PtRu Nanostructures, Chemistry of Materials,2006,19,36-41.
    [6]A. Chen, X. Peng, K. Koczkur, B. Miller, Super-hydrophobic tin oxide nanoflowers, Chemical Communications,2004,0,1964-1965.
    [7]Q. Liu, X. Guo, Y. Li, W. Shen, Hierarchical Growth of Co Nanoflowers Composed of Nanorods in Polyol, The Journal of Physical Chemistry C,2009, 113,3436-3441.
    [8]L. Zhu, X. Liu, J. Meng, X. Cao, Facile Sonochemical Synthesis of Single-Crystalline Europium Fluorine with Novel Nanostructure, Crystal Growth & Design,2007,7,2505-2511.
    [9]X. Ni, Q. Zhao, H. Zheng, B. Li, J. Song, D. Zhang and X. Zhang, A Novel Chemical Reduction Route towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source, European Journal of Inorganic Chemistry, 2005,2005,4788-4793.
    [10]S. Senapati, S. K. Srivastava, S. B. Singh, K. Biswas, Capping Agent Assisted and Ag-Catalyzed Growth of Ni Nanoflowers, Crystal Growth & Design,2010, 10,4068-4075.
    [11]L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, Journal of the American Chemical Society,2000,122,12700-12706.
    [12]X. L. Li, J. P. Ge, Y. D. Li, Atmospheric Pressure Chemical Vapor Deposition:An Alternative Route to Large-Scale MoS2 and WS2 Inorganic Fullerene-like Nanostructures and Nanoflowers, Chemistry-A European Journal,2004,10, 6163-6171.
    [13]J. N. Tiwari, F. M. Pan, K. L. Lin, Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics, New Journal of Chemistry,2009,33,1482-1485.
    [14]T. T. Kang, X. Liu, R. Q. Zhang, W. G. Hu, G. Cong, F. A. Zhao and Q. Zhu, InN nanoflowers grown by metal organic chemical vapor deposition, Applied Physics Letters,2006,89,071113-071113.
    [15]Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y. M. Kang and S. X. Dou, Rational Design of 3D Dendritic TiO2 Nanostructures with Favorable Architectures, Journal of the American Chemical Society,2011,133, 19314-19317.
    [16]S. H. Sun, D. Q. Yang, D. Villers, G. X. Zhang, E. Sacher and J. P. Dodelet, Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires, Advanced Materials,2008, 20,571-574.
    [17]B. Zhao, F. Chen, Q. Huang, J. Zhang, Brookite TiO2 nanoflowers, Chemical Communications,2009,0,5115-5117.
    [18]H. P. Zhou, Y. W. Zhang, H. X. Mai, X. Sun, Q. Liu, W. G. Song and C.-H. Yan, Spontaneous Organization of Uniform CeO2 Nanoflowers by 3D Oriented Attachment in Hot Surfactant Solutions Monitored with an In Situ Electrical Conductance Technique, Chemistry-A European Journal,2008,14,3380-3390.
    [19]F. L. Jia, L. Z. Zhang, X. Y. Shang, Y. Yang, Non-Aqueous Sol-Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers, Advanced Materials,2008,20,1050-1054.
    [20]G. Wu, J. Wang, D. F. Thomas, A. Chen, Synthesis of F-Doped Flower-like TiO2 Nanostructures with High Photoelectrochemical Activity, Langmuir,2008,24, 3503-3509.
    [21]L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu and W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts, Journal of Materials Chemistry,2007,17,2526-2532.
    [22]S. Prabakar, C. W. Bumby, R. D. Tilley, Liquid-Phase Synthesis of Flower-like and Flake-like Titanium Disulfide Nanostructures, Chemistry of Materials,2009, 21,1725-1730.
    [23]R. J. Nemanich, S. A. Solin, R. M. Martin, Light scattering study of boron nitride microcrystals, Physical Review B,1981,23,6348-6356.
    [24]R. Geick, C. H. Perry, G. Rupprecht, Normal Modes in Hexagonal Boron Nitride, Physical Review,1966,146,543-547.
    [25]C. Zhi, Y. Bando, C. Tang, H. Kuwahara and D. Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials,2009,21,2889-2893.
    [26]B. L. Evans, A. D. Yoffe, P. Gray, Physics And Chemistry Of The Inorganic Azides, Chemical Reviews,1959,59,515-568.
    [I]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials,2007,6,652-655.
    [2]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications,2008,146,351-355.
    [3]M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Graphene-Based Ultracapacitors, Nano Letters,2008,8,3498-3502.
    [4]W. Jang, Z. Chen, W. Bao, C. N. Lau and C. Dames, Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite, Nano Letters, 2010,10,3909-3913.
    [5]A. Essakhi, A. Lofberg, S. Paul, P. Supiot, B. Mutel, V. Le Courtois and E. Bordes-Richard, From Materials Science to Catalysis:Influence of the Coating of 2D-and 3D-Inserts on the Catalytic Behaviour of VOx/TiO2 in Oxidative Dehydrogenation of Propane, Topics in Catalysis,2011,54,698-707.
    [6]Y. Sun, X. Hu, W. Luo, Y. Huang, Ultrathin CoO/Graphene Hybrid Nanosheets:A Highly Stable Anode Material for Lithium-Ion Batteries, The Journal of Physical Chemistry C,2012,116,20794-20799.
    [7]R. C. Andrew, R. E. Mapasha, A. M. Ukpong, N. Chetty, Mechanical properties of graphene and boronitrene, Physical Review B,2012,85,125428.
    [8]L. Ma, H. Hu, L. Zhu, J. Wang, Boron and Nitrogen Doping Induced Half-Metallicity in Zigzag Triwing Graphene Nanoribbons, The Journal of Physical Chemistry C,2011,115,6195-6199.
    [9]Y. Wang, Y. Ding, J. Ni, Stereo Boron Nitride Nanoribbons with Junction-Dependent Electronic Structures from First-Principles, The Journal of Physical Chemistry C,2012,116,5995-6003.
    [10]H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando and D. Golberg, "White Graphenes":Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Letters,2010,10,5049-5055.
    [11]Z. G. Chen, J. Zou, Field emitters:ultrathin BN nanosheets protruded from BN fibers, Journal of Materials Chemistry,2011,21,1191-1195.
    [12]R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim and P. Blake, Hunting for Monolayer Boron Nitride:Optical and Raman Signatures, Small,2011,7, 465-468.
    [13]M. Morscher, M. Corso, T. Greber, J. Osterwalder, Formation of single layer h-BN on Pd(111), Surface Science,2006,600,3280-3284.
    [14]D. J. Qiu, Investigation on the microstructure and optical properties of c-axis oriented nanocrystalline hexagonal BN films fabricated by hot-filament chemical vapor deposition, Thin Solid Films,2005,484,90-93.
    [15]Zhu, Y. Bando, L. Yin, D. Golberg, Field Nanoemitters:Ultrathin BN Nanosheets Protruding from Si3N4 Nanowires, Nano Letters,2006,6,2982-2986.
    [16]D. Pacile, J. C. Meyer, C. O. Girit, A. Zettl, The two-dimensional phase of boron nitride:Few-atomic-layer sheets and suspended membranes, Applied Physics Letters,2008,92,133107-133103.
    [17]J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science,2011,331,568-571.
    [18]J. H. Warner, M. H. Rummeli, A. Bachmatiuk, B. Buchner, Atomic Resolution Imaging and Topography of Boron Nitride Sheets Produced by Chemical Exfoliation, ACS Nano,2010,4,1299-1304.
    [19]A. Pakdel, C. Zhi, Y. Bando, T. Nakayama and D. Golberg, Boron Nitride Nanosheet Coatings with Controllable Water Repellency, ACS Nano,2011,5, 6507-6515.
    [20]C. Zhang, X. Hao, Y. Wu, M. Du, Synthesis of vertically aligned boron nitride nanosheets using CVD method, Materials Research Bulletin,2012,47, 2277-2281.
    [21]J. Dai, L. Xu, Z. Fang, D. Sheng, Q. Guo, Z. Ren, K. Wang and Y. Qian, A convenient catalytic approach to synthesize straight boron nitride nanotubes using synergic nitrogen source, Chemical Physics Letters,2007,440,253-258.
    [22]M. Li, L. Xu, C. Sun, Z. Ju and Y. Qian, Thermal-induced shape evolution from uniform triangular to hexagonal r-BN nanoplates, Journal of Materials Chemistry, 2009,19,8086-8091.
    [23]M. Li, L. Xu, L. Yang, Z. Bai and Y. Qian, Growth of cubic and hexagonal BN particles by using BBr3, NH4Br and metallic Na as reactants, Diamond and Related Materials,2009,18,1421-1425.
    [24]C. Sun, H. Yu, L. Xu, Q. Ma and Y. Qian, Recent Development of the Synthesis and Engineering Applications of One-Dimensional Boron Nitride Nanomaterials, Journal of Nanomaterials,2010,2010,1-16.
    [25]L. Yang, H. Yu, L. Xu, Q. Ma and Y. Qian, Sulfur-assisted synthesis of nitride nanocrystals, Dalton Transactions,2010,39,2855-2860.
    [26]L. Wang, C. Sun, L. Xu, Y. Qian, Convenient synthesis and applications of gram scale boron nitride nanosheets, Catalysis Science & Technology,2011,1,1119.
    [27]Y. Zhu, Q. Li, T. Mei, Y. Qian, Solid state synthesis of nitride, carbide and boride nanocrystals in an autoclave, Journal of Materials Chemistry,2011,21, 13756-13764.
    [28]L. Wang, L. Shen, X. Xu, L. Xu and Y. Qian, Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol, RSC Advances,2012,2,10689-10693.
    [29]F. Feigl, Spot tests in organic analysis, Amsterdam and New York 1966.
    [30]H. J. Maris, F. Caupin, Nucleation of Solid Helium from Liquid Under High Pressure, Journal of Low Temperature Physics,2003,131,145-154.
    [31]F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B. L. Gu and S. B. Zhang, Half metallicity along the edge of zigzag boron nitride nanoribbons, Physical Review B, 2008,78,205415.
    [32]M. Wu, Z. Zhang, X. C. Zeng, Charge-injection induced magnetism and half metallicity in single-layer hexagonal group III/V (BN, BP, AlN, AlP) systems, Applied Physics Letters,2010,97,093109-093103.
    [33]V. Barone, J. E. Peralta, Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties, Nano Letters,2008,8,2210-2214.
    [1]I. Ali, V. K. Gupta, Advances in water treatment by adsorption technology, Nature protocols,2006,1,2661-2667.
    [2]J. Y. Bottero, J. Rose, M. R. Wiesner, Nanotechnologies:Tools for sustainability in a new wave of water treatment processes, Integrated Environmental Assessment and Management,2006,2,391-395.
    [3]J. Cao, Q. Mao, L. Shi, Y. Qian, Fabrication of γ-MnO/α-MnO2 hollow core/shell structures and their application to water treatment, Journal of Materials Chemistry, 2011,21,16210-16215.
    [4]H. Ma, C. Burger, B. S. Hsiao, B. Chu, Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification, Biomacromolecules,2011,12,970-976.
    [5]L. S. Zhong, J. S. Hu, A. M. Cao, Q. Liu, W. G. Song and L. J. Wan,3D Flowerlike Ceria Micro/Nanocomposite Structure and Its Application for Water Treatment and CO Removal, Chemistry of Materials,2007,19,1648-1655.
    [6]S. D. Jiang, Q. Z. Yao, G. T. Zhou, S. Q. Fu, Fabrication of Hydroxyapatite Hierarchical Hollow Microspheres and Potential Application in Water Treatment, The Journal of Physical Chemistry C,2012,116,4484-4492.
    [7]W. Cai, J. Yu, B. Cheng, B. L. Su and M. Jaroniec, Synthesis of Boehmite Hollow Core/Shell and Hollow Microspheres via Sodium Tartrate-Mediated Phase Transformation and Their Enhanced Adsorption Performance in Water Treatment, The Journal of Physical Chemistry C,2009,113,14739-14746.
    [8]M. Ahmaruzzaman, V. K. Gupta, Rice Husk and Its Ash as Low-Cost Adsorbents in Water and Wastewater Treatment, Industrial& Engineering Chemistry Research,2011,50,13589-13613.
    [9]S. He, Y. Zhao, M. Wei, X. Duan, Preparation of Oriented Layered Double Hydroxide Film Using Electrophoretic Deposition and Its Application in Water Treatment, Industrial & Engineering Chemistry Research,2011,50,2800-2806.
    [10]T. Zhang, X. Zhang, J. Ng, H. Yang, J. Liu and D. D. Sun, Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment, Chemical Communications,2011,47,1890-1892.
    [11]I. Urban, N. M. Ratcliffe, J. R. Duffield, G. R. Elder and D. Patton, Functionalized paramagnetic nanoparticles for waste water treatment, Chemical Communications,2010,46,4583-4585.
    [12]J. Fei, Y. Cui, J. Zhao, L. Gao, Y. Yang and J. Li, Large-scale preparation of 3D self-assembled iron hydroxide and oxide hierarchical nanostructures and their applications for water treatment, Journal of Materials Chemistry,2011,21, 11742-11746.
    [13]S. Jeon, K. Yong, Morphology-controlled synthesis of highly adsorptive tungsten oxide nanostructures and their application to water treatment, Journal of Materials Chemistry,2010,20,10146-10151.
    [14]X. h. Lu, D. z. Zheng, J. y. Gan, Z. q. Liu, C.1. Liang, P. Liu and Y. X. Tong, Porous CeO2 nanowires/nanowire arrays:electrochemical synthesis and application in water treatment, Journal of Materials Chemistry,2010,20, 7118-7122.
    [15]C. Chen, P. Gunawan, R. Xu, Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water, Journal of Materials Chemistry,2011,21,1218-1225.
    [16]Y. Zhang, S. Wei, Y. He, F. Nawaz, S. Liu, H. Zhang and F.-S. Xiao, Solvothermal synthesis of carboxyl and amido functionalized mesoporous resins for water treatments, Journal of Materials Chemistry,2010,20,4609-4614.
    [17]J. Cao, Y. Zhu, L. Shi, L. Zhu, K. Bao, S. Liu and Y. Qian, Double-Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment, European Journal of Inorganic Chemistry,2010,2010,1172-1176.
    [18]L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song and L. J. Wan, Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Advanced Materials,2006,18,2426-2431.
    [19]P. Baroni, R. S. Vieira, E. Meneghetti, M. G. C. da Silva and M. M. Beppu, Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes, Journal of Hazardous Materials,2008,152,1155-1163.
    [20]F. Emami, A. R. Tehrani-Bagha, K. Gharanjig, F. M. Menger, Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye, Desalination,2010,257,124-128.
    [21]Z. H. Sun, L. F. Wang, P. P. Liu, S. C. Wang, B. Sun, D. Z. Jiang and F. S. Xiao, Magnetically Motive Porous Sphere Composite and Its Excellent Properties for the Removal of Pollutants in Water by Adsorption and Desorption Cycles, Advanced Materials,2006,18,1968-1971.
    [22]J. Liu, S. B. Hartono, Y. G. Jin, Z. Li, G. Q. Lu and S. Z. Qiao, A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres, Journal of Materials Chemistry,2010,20,4595-4601.
    [23]W. Cai, J. Yu, M. Jaroniec, Template-free synthesis of hierarchical spindle-like Y-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water, Journal of Materials Chemistry,2010,20,4587-4594.
    [24]W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta,1997,202,1-8.
    [25]L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang and D. B. Zhu, Super-hydrophobic surfaces:From natural to artificial, Advanced Materials,2002,14,1857-1860.
    [26]C. Zhi, Y. Bando, C. Tang, H. Kuwahara and D. Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials,2009,21,2889-2893.
    [27]D. Valentin, F. Paray, B. Guetta, The hygrothermal behaviour of glass fibre reinforced PA66 composites:A study of the effect of water absorption on their mechanical properties, Journal of Materials Science,1987,22,46-56.
    [28]Z. B. Chen, X. J. Liu, R. G. Lu, T. S. Li, Friction and wear mechanisms of PA66/PPS blend reinforced with carbon fiber, Journal of Applied Polymer Science, 2007,105,602-608.
    [29]P. Zhang, Z. Wu, G. Zhang, G. Zeng, H. Zhang, J. Li, X. Song and J. Dong, Coagulation characteristics of polyaluminum chlorides PAC-AI3O on humic acid removal from water, Separation and Purification Technology,2008,63,642-647.
    [30]S. S. Khan, A. Mukherjee, N. Chandrasekaran, Impact of exopolysaccharides on the stability of silver nanoparticles in water, Water Research,2011,45, 5184-5190.
    [31]M. R. Das, J. M. Borah, W. Kunz, B. W. Ninham and S. Mahiuddin, Ion specificity of the zeta potential of a-alumina, and of the adsorption of p-hydroxybenzoate at the a-alumina-water interface, Journal of Colloid and Interface Science,2010,344,482-491.
    [32]H. W. Liang, X. Cao, W. J. Zhang, H. T. Lin, F. Zhou, L. F. Chen and S. H. Yu, Robust and Highly Efficient Free-Standing Carbonaceous Nanofiber Membranes for Water Purification, Advanced Functional Materials,2011,21,3851-3858.
    [33]X. Zhang, G. Lian, S. Zhang, D. Cui and Q. Wang, Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants, CrystEngComm,2012,14,4670-4676.
    [34]K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley and K. K. Gleason, Superhydrophobic Carbon Nanotube Forests, Nano Letters,2003,3,1701-1705.
    [35]X. Xingcheng, C. Yang Tse, B. W. Sheldon, J. Rankin, Condensed water on superhydrophobic carbon films, Journal of Materials Research,2008,23, 2174-2178.
    [36]C. Longquan, X. Zhiyong, P. C. H. Chan, L. Yi-Kuen, Dual-scaled stable superhydrophobic nano-flower surfaces,15th International Conference on Solid-State Sensors, Actuators and Microsystems. Transducers 2009,2009, 441-444.
    [37]M. Shakerzadeh, H. E. Teo, C. Tan, B. K. Tay, Superhydrophobic carbon nanotube/amorphous carbon nanosphere hybrid film, Diamond and Related Materials,2009,18,1235-1238.
    [38]C. Chang-Hsiao, S. Huan-Chieh, C. Shih-Chang, Y. Shiang-Jie, C. Yung-Chan, L. Yu-Tao, C. Hsin, Y. Tri-Rung, C. Yen-Chung, Y. Shih-Rung and Y. Da-Jeng, Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes, Nanotechnology,2010,21,485501.
    [39]G. Li, Superhydrophobicity of post-like aligned carbon nanotube films, Proceedings of the SPIE-The International Society for Optical Engineering, 2010,7544,754465-754466.
    [40]Y. Horiuchi, Y. Shimizu, T. Kamegawa, K. Mori and H. Yamashita, Design of superhydrophobic surfaces by synthesis of carbon nanotubes over Co-Mo nanocatalysts deposited under microwave irradiation on Ti-containing mesoporous silica thin films, Physical Chemistry Chemical Physics,2011,13, 6309-6314.
    [41]K. Rana, G. Kucukayan-Dogu, E. Bengu, Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties, Applied Surface Science,2012,258,7112-7117.
    [42]J. Hartikainen, O. Lehtonen, T. Harmia, M. Lindner, S. Valkama, J. Ruokolainen and K. Friedrich, Structure and Morphology of Polyamide 66 and Oligomeric Phenolic Resin Blends:Molecular Modeling and Experimental Investigations, Chemistry of Materials,2004,16,3032-3039.
    [43]T. Terao, Y. Bando, M. Mitome, C. Zhi, C. Tang and D. Golberg, Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes, The Journal of Physical Chemistry C,2009,113, 13605-13609.
    [44]Y. Wang, Z. Shi, J. Yin, Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole, Journal of Materials Chemistry,2011,21,11371-11377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700