黄酮类希夫碱配体识别Al~(3+)、Zn~(2+)探针的设计合成和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物具有低毒和广谱的药理活性,已经成为国内外开发研究自然界药物的热点,具有广阔的前景。Schiff碱一直都备受关注,其原因在于在C=N基团中N原子有一对孤对电子,赋予其重要的化学和生物学方面的意义。Schiff碱是一类非常重要的配体,它的合成相对容易,改变连接的取代基,便可得到从单齿到多齿,性格迥异、结构多变的Schiff碱配体。
     铝是自然界中含量最多的金属元素,过多的铝离子会对生物体造成危害。锌离子在自然界和生物体系中都起着至关重要的作用。锌离子在人体内的含量仅次于铁离子,其正常范围在sub-nM~0.3Mm。在不同的生物系统,例如基因表达、蛋白质相互转换和神经传递中扮演着重要的角色。细胞内锌离子浓度的破坏,会导致一系列疾病的发生,例如老年痴呆、癫痫和婴儿腹泻等。因此,设计检测铝离子和锌离子的荧光探针在最近几十年内备受研究者的关注。
     在本文中,设计合成了两种铝离子探针,一种锌离子探针。三个探针分别是7-甲氧基色酮-3-醛(3’,4’-二甲基吡咯-2’-甲酰基)腙、7-甲氧基色酮-3-醛((2’-苯并噻唑硫代)乙酰基)腙、7-甲氧基色酮-3-醛(荧光素)腙。这几个探针检测限低、选择性好,因此相信对研究铝、锌离子探针的研究会有一定的作用。
Flavonoids have low toxicity and broad spectrum of pharmacological activity, have become the hotspot of the nature of drug research and development at home and abroad, and have broad prospects. Schiff-base have been of concern, because N atoms in the C=N group have one lone pair electron, given the significance of its chemical and biological. The Schiff-base is a very important class of ligands, and its synthesis is relatively easy. It can be obtained different structure of the Schiff-base ligands from single tooth to polydentate.
     Aluminum is the most abundant metal element in nature. As the existence of aluminum is in the form of free aluminum ions, the excessive aluminum ion accumulated in organisms can cause various diseases. Zinc ions play a vital role in nature and biological systems. The content of zinc ions in the human body is second only to iron ions, and their normal concentration range from the sub-nM to0.3Mm. In a variety of biological systems such as gene expression, protein conversion and neurotransmission, zinc ions play an important role. The destruction of the intracellular concentration of zinc ions, will lead to the occurrence of a range of diseases, such as Alzheimer's, epilepsy and infantile diarrhea. Therefore, the design of the fluorescent probes to detect the aluminum ions and zinc ions has attracted much attention from researchers in recent decades.
     In this paper, we design and synthesis two aluminum ion probes and one zinc ion probe. The three probes are7-methoxychromone-3-carbaldehyde-(3',4'-dimethyl)pyrrole hydrazone (MCPH)7-methoxychromone-3-carbaldehyde-(2'-benzothiazolylthio) acetic acid hydrazone (MCAH),7-methoxychromone-3-carbaldehyde fluorescein hydrazone (MCFH) respectively. These three probes have low detection limit and good selectivity. We believe they can provide a new direction of the studies on aluminum and zinc ion probe.
引文
[1]Tripoli, E., Guardia M.L., Giammanco S., Majo D.D., Giammanco M.. Citrus flavonoids: Molecular structure, biological activity and nutritional properties:A review[J]. Food CHEM. 2007,104:466-479.
    [2]Abe, K., Katayama, H., Suzuki, A.,& Yumioka, E. Biological fate of orally administered naringin and naringenin in rats[J]. JapaneseJournal of Pharmacognosy.1993,47:402-407.
    [3]Reddy, M.K., Alexander-Lindo, R.L., Nair, M.G., Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors[J]. J. Agric. Food Chem.2005,53:9268-9273.
    [4]Zhou Y, Yoon J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids[J]. Chem. Soc. Rev.2012,41:52-67.
    [5]Zhang J, Zhou Y, Yoon J, Kim J. Recent progress on fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions)[J]. Chem. Soc. Rev.2011,40:3416-3429.
    [6]Jeong Y, Yoon J. Recent progress on fluorescent chemosensors for metal ions[J]. Inorg Chim Acta 2012,381:2-14.
    [7]Supriti, S., Mukherjee, T., Chattopadhyay, B., Moirangthem, A., Basu, A., Marekd, J., Chattopadhyay, P. A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging[J]. Analyst.2012,137:3975-3981.
    [8]T. Kiss, I. Sovago, R.B. Martin, Al3+ binding by adenosine 5'-phosphates:AMP, ADP, and ATP[J]. Inorg. Chem.1991,30:2130-2132.
    [9]Alcaraz, M. J.,& Ferrandiz, M. L. Modification of arachidonic metabolism by flavonoids[J]. Journal of Ethnopharmacology,1987,21:209-229.
    [10]Bailey, D. G., Malcolm, J., Arnold, O.,& Spence, J. D. Grapefruit juice-drug interactions[J]. British Journal of Clinical Pharmacology.1998,46:101-110.
    [11]Belt, J. A., Thomas, J. A., Buchsbaum, R. N.,& Racker, E. Inhibition of lactate transport and glycolysis in Ehrlich ascites tumorcells by bioflavonoids[J]. Biochemistry.1979,18: 3506-3511.
    [12]Piccoli, G., Di Gioacchino, A.M., Agostini, D., Bravi, G., Stocchi, V. Characterization of calendula officinalis flowers extracts by electrospray ionization mass spectrometry[J]. Ital. J. Biochem.2004,53:164.
    [13]Benavente-Garci'a, O., Castillo, J., Marin, FR., Ortun~o, A.,& Del Ri'o, J. A. Uses and properties of citrus flavonoids[J]. Journal of Agricultural and Food Chemistry.1997,45: 4505-4515.
    [14]Benavente-Garci'a, O., Castillo, J., Sabater, F.,& Del Rio, J. A. Characterisation of S-adenosyl-L-methionine:eriodictyol 40-O-methyltransferase from Citrus aurantium. Developmental changes in the levels of 40-O-methoxyflavonoids and S-adenosyl-L-methionine:Eriodictyol 40-O-methyltransferase activity[J]. Plant Physiology and Biochemistry.1995,33:227-263.
    [15]Plaumann, B., Fritsche, M., Rimpler, M., Brandner, G., Hess, R.D., Flavonoids activate wild-type p53[J]. Oncogene.1996,13:1605-1614.
    [16]Pyo, Y., Lee, T., Logendra, L., Rosen, R.T. Antioxidant activity an phenolic compounds of Swiss Chard (Beta vulgaris subspecies cycla) extracts[J]. Food Chem.2004,85:19-26.
    [17]Ninfalia, P., Bacchioccaa, M., Antonellia, A., Biagiottia, E., Gioacchinob, A. M., Piccolib, G., Stocchib, V., Brandic, G.-Characterization and biological activity of the main flavonoids from Swiss Chard (Beta vulgaris subspecies cycla)[J]. Phytomedicine.2007,14: 216-221.
    [18]Hertog, M. G., Hollman, P. C. H., Katan, M. B.,& Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease. Lancet.1993,342:1007-1011.
    [19]Bocco, A., Cuvelier, M. E., Richard, H., Berset, C. The antioxidant activity of phenolic compounds measured by an accelerated test based on citronellal oxidation. Sciences des Aliments.1997,18:13-24.
    [20]Bacchiocca, M., Giorgini, S., Biagiotti, E., Antonelli, A., Servili, M., Esposto, S., Selvaggini, R., Brandi, G., Ninfali, P. Biological activity of phytocomplexes purified from Beta vulgaris[J]. Ital. J. Biochem.2003,52:158.
    [21]Plaumann, B., Fritsche, M., Rimpler, M., Brandner, G., Hess, R.D. Flavonoids activate wild-type p53[J]. Oncogene.1996,13:1605-1614.
    [22]Do, Y. K., Kim, J. M., Chang, S. M., Hwang, J. H.,& Kim, W. S. Enhancement of polyphenol bio-activities by enzyme reaction[J]. Journal of Molecular Catalysis B: Enzymatic.2009,56:173-178.
    [23]Chebil, L., Anthoni, J., Humeau, C., Gerardin, C., Engasser, J. M.,& Ghoul, M. Enzymatic acylation of flavonoids:Effect of the nature of the substrate, origin of lipase, and operating conditions on conversion yield and regioselectivity[J]. Journal of Agricultural and Food Chemistry.2007,5:9496-9502.
    [24]Cleiton M. da Silv, Daniel L. da Silva, Luzia V. Modolo, Rosemeire B. Alves, Maria A. de Resende, Cleide V.B. Martins, A(?) ngelo de Fa'tima. Schiff bases:A short review of their antimicrobial activities[J]. Journal of Advanced Research.2011,2:1-8.
    [25]Turro, N. J "Morden Molecualr PhotochemistrY" University sciences books, Mill Vally, C A,1991 [26] C.F. Walker, R.E. Black, Zinc and the risk for infectious disease[J]. Annu. Rev. Nutr.2004,24:255-275.
    [27]Elizabeth, M.N., Lippard, S.J.. Tools and Tactics for the Optical Detection of Mercuric Ion [J]. Chem. Rev.2008,108:3443-3480.
    [28]B. Valeur, I. Leray. Design principles of flourescent molecular sensors for cation recognition [J]. Coord, Chem. Rev.2000,205:3-40.
    [29]Mulon, J. B., Destandau, E., Alain, V., Bardez, E. How can aluminium (Ⅲ) generate fluorescence?[J]. Journal of Inorganic Biochemistry.2005,99:1749-1755.
    [30]Prasanna de Silva, A., Nimal Gunaratne, H. Q., Thorfinnur Gunnlaugsson, Allen, J. M., Huxley, Colin P. McCoy, Jude T. Rademacher, and Terence E. Rice. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem. Rev.1997,97:1515-1566.
    [31]Lu,Y., Huang, S.S., Liu, Y.Y., He, S., Zhao, L.C., Zeng, X.S. Highly Selective and Sensitive Fluorescent Turn-on Chemosensor for Al3* Based on a Novel Photoinduced Electron Transfer Approach[J]. Org. Lett.2011,13:5274-5277.
    [32]Sinha, S.; Koner, R. R., Kumar, S., Mathew, J.,Monisha, P. V., Kazia, I., Ghosh, S. Imine containing benzophenone scaffold as an efficient chemical device to detect selectively Al3+[J]. RSC. Adv.2013,3:345-351.
    [33]Banerjee, A., Sahana, A., Das, S., Lohar, S., Guha, S., Sarkar, B., Mukhopadhyay, S. K., Mukherjee, A. K., Das, D. A naphthalene exciplex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range:experimental and computational studies[J]. Analyst.2012,137:2166-2175.
    [34]Barcelo, J., Poschenrieder, C. Phytoremediation:principles and perspectives[J]. Contribution to science.2003,2:333-344.
    [35]Maity, D., Govindaraju, T. Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al3+ sensor[J]. Chem. Comm.2010,46:4499-4501.
    [36]Maity, D., Govindaraju, T. Conformationally Constrained (Coumarin-Triazolyl-Bipyridyl) Click Fluoroionophore as a Selective Al3+ Sensor[J]. Inorg. Chem.2010,49:7229-7231.
    [37]Kim, S. H., Choi, H. S., Kim, J., Lee, S. J., Quang, D. T, Kim, J. S. Novel Optical/Electrochemical Selective 1,2,3-Triazole Ring-Appended Chemosensor for the Al3+ Ion[J]. Org. Lett.2010,12: 560-563. [38] Shi, X.Y., Wang, H., Han, T.Y., Feng, X., Tong, B., Shi, J. B., Zhi, J., Dong, Y. P. A
    highly sensitive, single selective, real-time and "turn-on" fluorescent sensor for A13+ detection in aqueous media[J]. J. Mater. Chem.2012,22:19296-19302.
    [39]Shay Tal, Husein Salman, Yael Abraham, Mark Botoshansky, and Yoav Eichen. Sensitive and Selective Photoinduced-Electron-Transfer-Based Sensing of Alkylating Agents. Chem. Eur. J.2006,12:4858-4864.
    [40]Lu, M., Fu, D.. Structure of the Zinc Transporter YiiP. Science.2007,317:1746-1748. [41] Lippert, E., Loder, W., Boos, H.. Fluoreszenzspektrum und Franck-Condon-Prinzip in Losungen Aromatischer Verbindungen, in Advances in Molecular spectroscopy. England: Oxford Pergamon Press,1962.
    [42]Wang, Y. X., Xiong, L. M, Geng, F. H., Zhang, F. Q., Xu, M. T. Design of a dual-signaling sensing system for fluorescent ratiometric detection of Al3+ ion based on the inner-filter effect[J]. Analyst.2011,136:4809-4814.
    [43]Lim, N.C., Bruckner, C. Coumarin-Based Chemosensors for Zinc(Ⅲ):Toward the Determination of the Design Algorithm for CHEF-Type and Ratiometric Probes. Inorg. Chem. 2005,44:2018-2030.
    [44]Lim, N.C., Bruckner, C. DPA-substituted coumarins as chemosensors for Zinc (Ⅱ): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin[J]. Chem. Comm.2004,9:1094-1095.
    [45]Yu, T.Z., Su, W.M., Li, W.L., Hong, Z.R., Hua, R.N., Li, M.T., Chu, B., Li, B., Zhang, Z.Q., Hu,Z.Z.. Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex[J]. Inorg. Chimica. Acta.2006,359:2246-2251.
    [46]Xue, L., Liu, Q., Jiang, H.. Ratiometric Zn2+ Fluorescent Sensor and New Approach for Sensing Cd2+ by Ratiometric Displacement. Org. Lett.,2009,11:3454-3457.
    [47]Grynkiewicz, G., Poenie, M., Tsien, R.Y.. A new generation of Ca2+ indicators with greatly improved fluorescence properties[J]. J. Bio. Chem.1985,260:3440-3450.
    [48]Cai, Y. L., Meng, X. M., Wang, S. X., Zhu, M. Z., Pan, Z. W., Guo, Q. X. A quinoline based fluorescent probe that can distinguish zinc(II) from cadmium(II) in water[J]. Tetrahedron Lett.2013,54:1125-1128.
    [49]Gao, C. J., Jin, X. J., Yan, X. H., An, P., Zhang, Y., Liu, L. L., Tian, H., Liu, W. S., Yao, X. J., Tang, Y. A small molecular fluorescent sensor for highly selectivity of zinc ion[J]. Sensors and Actuators B:Chemical.2013,176:775-781.
    [50]Dong, Z. p., Guo, Y. P., Tian, X., Ma, J. T. Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behavior[J]. Journal of Luminescence. 2013,134:635-639.
    [51]Zhang, L. W., Duan, D. Z., Cui, X. M., Sun, J. Y., Fang, J. G. A selective and sensitive fluorescence probe for imaging endogenous zinc in living cells[J]. Tetrahedron.2013,69: 15-21.
    [52]Li, J., Zhang, C. F., Ming, Z. Z., Hao, G. F., Yang, W. C., Yang, G. F. Coumarin-based novel fluorescent zinc ion probe in aqueous solution[J]. Tetrahedron.2013, DOI: 10.1016/j.tet.2013.03.032.
    [53]Ma, Q. J., Zhang, X. B., Zhao, Y, Li, C. Y., Han, Z. X., Shen, G. L., Yu, R. Q. A fluorescent probe for zinc ions based on N-methyltetraphenylporphine with high selectivity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2009, 71:1683-1687.
    [54]Godwin, H. A., Berg, J. M. A Fluorescent Zinc Probe Based on Metal-Induced Peptide Folding[J]. J. Am. Chem. Soc.1996,118:6514-6515.
    [55]Choi, J. Y., Kim, D., Yoon, J. A highly selective "turn-on" fluorescent chemosensor based on hydroxyl pyreneehydrazone derivative for Zn2+[J]. Dyes and Pigments.2013,96: 176-179.
    [56]Taki, M., Wolford, J. L., O'Halloran, T. V. Emission Ratiometric Imaging of Intracellular Zinc:Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy[J]. J.AM. CHEM. SOC.2004,1267:12-713.
    [57]Tomat, E., Lippard, S. J. Ratiometric and Intensity-Based Zinc Sensors Built on Rhodol and Rhodamine Platforms[J]. Inorg. Chem.2010,49:9113-9115.
    [58]Kwon, J. E., Lee, S., You, Y., Baek, K. H., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S. Y., Nam, W. Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions[J]. Inorg. Chem.2012,51:8760-8774.
    [59]Xie, D. X., Ran, Z. J., Jin, Z., Zhang, X. B., An, D. L. A simple fluorescent probe for Zn(Ⅱ) based on the aggregation-induced emission[J]. Dyes and Pigments.2013,96:495-499.
    [1]Soham S., Bhaskar N., Jubaraj B. B. Hydrolytically stable Schiff base as highly sensitive aluminium sensor[J].2012,22:98-100.
    [2]Martin, R.B.. The chemistry of aluminum as related to biology and medicine[J]. Clin. Chem.1986,32:1797-1806.
    [3]Tennakone, K., Wickramanayake, S., Fernando, C.A.N.. Aluminium contamination from fluoride assisted dissolution of metallic aluminium[J]. Environ. Pollut.1988,49:133-143.
    [4]Kamalpreet, K., Vimal K. B., Navneet K., Narinder S. Imine linked fluorescent chemosensor for Al3+ and resultant complex as a chemosensor for HSO4- anion[J]. Inorg. Chem. Commun.2012,18:79-82.
    [5]H.E. Witters, Physicochemical changes of aluminium in mixing zones:mortality and physiological disturbances in brown trout, Environ[J]. Toxicol. Chem.1996,15:986-996.
    [6]J.L. Yang, Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots[J]. Ann. Bot.2006,97:579-584.
    [7]L.V. Kochian, O.A. Hoekenga, How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J], Annu. Rev. Plant Biol.2004,55:459-493.
    [8]E. Altschuler, Aluminum-containing antacids as a cause of idiopathic Parkinson's disease, Med[J]. Hypotheses.1999,53:22-23.
    [9]B. Wang, W. Xing, Y. Zhao, X. Deng, Effects of chronic aluminum exposure on memory through multiple signal transduction pathways, Environ[J]. Toxicol. Pharmacol.29 (2010) 308-313.
    [10]J.R. Walton, Aluminum in hippocampal neurons from humans with Alzheimer's disease[J]. Neuro. Toxicol.2006,27:385-394.
    [11]Kwon, J.E., Lee, Sumin., You, Y., Baek, K.W., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S.Y., Nam, W. Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences:Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions[J]. Inorganic Chemistry.2012,51:8760-8774.
    [12]Ye, B.H., X.Y. Li, L.D. Williams, X.M. Chen, Synthesis and Structural Characterization of di- and Tetranuclear Zinc Complexes with Phenolate and Carboxylate Bridges Correlations between 13C NMR Chemical Schifts and Carboxylate Binding Modes[J]. Inorg. Chem.2002, 41:6426-6431.
    [13]Wang, M.Q., Li, K., Hou, J.T., Wu, M.Y., Huang, Z., Yu, X.Q. BINOL-Based Fluorescent Sensor for Recognition of Cu(Ⅱ) and Sulfide Anion in Water[J]. Journal of Organic Chemistry.2012,77:8350-8354.
    [14]T. Hogberg, M. Vora, S. Drake, L.A. Mitscher, D.T.W. Chu. Acta Chem. Scand. B.1984,38:359.
    [15]A.W. Kleij, D.M. Tooke, A.L. Spek, J.N.H. Reek, A Convenient Synthetic Route for the Preparation of Nonsymmetric Metallosalphen Complexes[J]. Eur. J. Inorg. Chem.2005, 4626-4634.
    [16]C.C. Kwok, S.C. Yu, I.H.T. Sham, C.M. Che, Self-assembled zinc(Ⅱ) Schiff base polymers for applications in polymer light-emitting devices[J]. Chem. Comm.2004,23: 2758-2759.
    [17]A.D. Ashok, D. Maxime, R. Jocelyn. Single-pair fluorescence resonance energy transfer on freely diffusing molecules:observation of Forster distance dependence and subpopulations[J]. Proceedings of the National Academy of Sciences of the United States of America.1999,96:3670-3677.
    [18]W.Y. Lin. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift. Org. Lett.,2008,10:5577-5580.
    [19]M.R. Bermejo, M. Vazquez,, Sanmartin, J., Garcia-Deibe A.M., Fondo, M., Lodeiro, C. Zinc and cadmium complexes with an achiral symmetric helicand.Crystal structure of an enantiomerically pure Zn (Ⅱ) monohelicate[J]. New. J. Chem.2002,26:1365-1370.
    [20]M. Prabhakar, S.K. Zacharias, Das. Self-Assembly of Fluorescent Chiral Zinc(Ⅱ) Complex That Leads to Supramolecular Helices[J]. Inorg. Chem.2005,44:2585-2587.
    [21]C.J. Frederickson, E.J. Kasarskis, D. Ringo, R.E. Frederickson, A quinoline fluorescence method for visualizing and assaying histochemically reactive zinc (bouton zinc) in the brain[J]. J. Neurosci. Methods.1987,20 (2):91-103.
    [22]Li, M., Lu, H.Y., Liu, R.L., Chen, J.D., Chen, C.F. Turn-On Fluorescent Sensor for Selective Detection of Zn2+, Cd2+, and Hg2+ in Water[J]. Journal of Organic Chemistry.2012, 77:3670-3673.
    [23]Comby, S., Tuck, S.A., Kotova, T.O., Gunnlaugsson, T. New Trick for an Old Ligand! The Sensing of Zn(Ⅱ) Using a Lanthanide Based Ternary Yb(Ⅲ)-cyclen-8-hydroxyquinoline System As a Dual Emissive Probe for Displacement Assay[J]. Inorganic Chemistry.2012, 51:10158-10168.
    [1]Basiruddin,S., Saha, A., Sarkar, R., Majumder, M., Jana, N.R. Highly fluorescent magnetic quantum dot probe with superior colloidal stability[J]. Nanoscale.2010,2:2561-2564.
    [2]Kacenka, M., Kaman, O., Kotek, J., Falteisek, L., Cemy, J., Jirak, D., Herynek, V., Zacharovova, K., Berkova, Z., Jendelova, P., Kupeik, J., Pollert, E., Veveka, p., Lukes, I. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on pervskite manganite nanoparticles[J]. Journal of Material Chemistry.2011,21:157-164.
    [3]Singh, A., Arutyunoy, D., McDeemon, M.T., Szymanski, C.M., Evoy, S. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe[J]. Analyst.2011,136:4780-4786.
    [4]Ji, Y. J., Su J. H., Jihyun, C., Chongmok, L., Juyoung, Y. New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+[J].2012,94:423-426.
    [5]Liu, J.L., Liu, Y., Liu, Q., Li, C.Y., Sun, L.N., Li, F.Y. Irdium(III) Complex-Coated Nanosystem for Ratiometric Upconversion Luminescence Bioimaging of Cyanide Anions[J]. Journal of the American Chemical Society.2011,133:15276-15279.
    [6]Kamalpreet, K., Vimal K. B., Navneet K., Narinder S. Fluorescent chemosensor for Al3+ and resultant complex as a chemosensor for perchlorate anion:First molecular security keypad lock based on Al3+ and ClO4- inputs[J].2012,26:31-32.
    [7]Ma, L. J., Cao, W. G., Liu, J. L., Deng, D. Y., Wu, Y. Q., Yan, Y. H., Yang, L. T. A highly selective and sensitive fluorescence dual-responsive pH probe in water[J].2012,169: 243-247.
    [8]Zhang, J., Cui, H. L., Hojo, M., Shuang, S. M., Dong, C. Synthesis and spectral studies of 2-[(N-ethyl carbazole)-3-sulfonyl ethylenediamine]-l-N,N-2-(2-methypyridy) as a fluorescence probe for Zn2+[J].2012,22:343-346.
    [9]He, M., Huang, P., Zhang, C.L., Hu, H.Y, Bao, C.C., Gao, G., he, R., Cui, D.X. Dual Phase-Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrstals Via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging[J]. Advanced Functional Materials.2011,21:4470-4477.
    [10]Lee, H. J., Kim, H. J. Highly selective sensing of cyanide by a benzochromene-based ratiometric fluorescence probe[J].2012,53:5455-5457.
    [11]Bag, S. S., Rajen K., Sangita T. Fluorometric sensing of Cu2+ ion with smart fluorescence light-up probe, triazolylpyrene (TNDMBPy)[J].2012,53:5875-5879.
    [12]Shi, X. Y., Wang, S. H., Swanson, S. D., Ge, S., Cao, Z. Y., Mary, E. V. A., Landmark, K. J., Baker, J. R. Dendrimer-Functionalized Shell-crosslinked Iron Oxide Nanoparticles for In-Vivo Magnetic Resonance Imaging of Tumors[J].2008,20:1671-1678.
    [13]Na, H. B., Song, I. C., Hyeon, T. Inorganic Nanoparticles for MRI Contrast Agents[J].2009, 21:2133-2148.
    [14]Hu, F. Q., Wei, L. Zhou, Z. H., Ran, Y. L. Li, Z., Gao, M. Y. Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer[J].2006,18: 2553-2556.
    [15]Tian, G., Gu, Z.J., Zhou, L.G., Yin, W.Y., Liu, X.X., Yan, L., Jin, S., Ren, W.L., Xing, G.M., Li, S.J., Zhao, Y.L. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for vivo Imaging and Drug Delivery[J]. Advance Materials.2012,24: 1226-1231.
    [16]Hu, H., Xiong, L.Q., Zhou, J., Li, F.Y., Cao, T.Y., Huang, C.H. Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells[J]. Chemistry-a European Journal.2009,15:3577-3584.
    [17]Yong, I.P., Kim, J.H., Lee, K.T., Jeon, K., Na, H.B., yu, J.H., Kim, H.M., Lee, N., Choi, S.H., Baik, S., Kim, H., Park, S.P., Park, B., Kim, Y.W., Suh, Y.D., Hyeon, T. Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent[J]. Advanced Materials.2009,21:4467-4471.
    [18]Wang, Y.H., Shen, P., Li, C.Y., Wang, Y.Y., Liu, Z.H. Upconversion Fluorescence Resonance Energy Transfer Based Biosensor for Ultrasensitive Detection of Matrix Metalloproteinase-2 in Blood[J]. Analytical Chemistry.2012,84:1466-1473.
    [19]Wang, L.Y., Li, Y.D. Green upconversion nanocrystals for DNA detection[J]. Chemical Communications.2006,24:2557-2559.
    [20]Xiong, L.Q., Chen, Z.G., Tian, Q.W., Cao, T.Y., Xu, C.J., Li, F.Y. High Contrast Upconversion Luminescence Targeted Imaging in Vivo Using Peptide-Labeled Nanophosphors[J]. Analytical Chemistry.2009,81:8687-8694.
    [21]Nam, S.H., Bae, Y.N., Park, Y.I., Kim, J.H., Kim, H.M., Choi, J.S., Lee, K.T., Hyeon, T., Suh, Y.D. Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting nanoparticles in Living Cells[J]. Angewandte Chemie,International Edition.2011,50: 6093-6097.
    [22]Liu, Q., Sun, Y., Yang, T.S., Feng, W., Li, C.G., Li, F.Y. Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrstals for Sensitive Bioimaging in Vivo[J]. Journal of the American Chemical Society.2011,133:17122-17125.
    [23]Lin, W. Y., Yuan, L., Long, L. L., Guo, C. C., Feng, J. B. A Fluorescent Cobalt Probe with a Large Ratiometric Fluorescence Response via Modulation of Energy Acceptor Molar Absorptivity on Metal Ion Binding[J].2008,18:2366-2372.
    [24]Wang, H. H., Xue, L., Qian, Y. Y., Jiang, H. Novel Ratiometric Fluorescent Sensor for Silver Ions[J].2010,12:292-295.
    [25]Goswami, S., Sen, D., Das, N. K. A New Highly Selective, Ratiometric and Colorimetric Fluorescence Sensor for Cu2+ with a Remarkable Red Shift in Absorption and Emission Spectra Based on Internal Charge Transfer[J].2010,12:856-859.
    [26]Baier, M. C., Huber, J., Mecking, S. Fluorescent Conjugated Polymer Nanoparticles by Polymerization in Miniemulsion[J].2009,131:14267-14273.
    [27]Anita, A., John, T., Ming, W. H. Early Detection of Steel Corrosion via "Turn-On" Fluorescence in Smart Epoxy Coatings[J].2009,1:2618-2623.
    [28]Amel, B. O., Jeong W. L., Young, H., Rym, A., Jong, S. K., Jacques, V. A novel pyrenyl-appended tricalix[4]arene for fluorescence-sensing of A1(Ⅲ)[J].2007,63: 10793-10800.
    [1]Wang, L. N., Qin, W. W.,Tang, X. L., Dou, W., Liu, W. S. Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+[J].2011,115:1609-1616.
    [2]Amendola, V.; Fabbrizzi, L.; Forti, F.; Licchelli, M.; Mangan C.;Pallavicini, P.; Poggi, A.; Sacchi, D.; Taglieti, A. Coord. Chem. Rev.2006,250,273-299.
    [3]Rurack, K.; Resch-Genger, U. Rigidization, preorientation and electronic decoupling——the 'magic triangle'for the design of highly efficient fluorescent sensors and switches[J].2002,31: 116-127.
    [4]Mani, R., Raman, J., Raaman, N. J., Thangamuthu, M. D. Studies on the synthesis and the antimicrobial and antioxidant activities of a novel class of fluorescein-based glycosides[J].2011, 346:2362-2367.
    [5]Ohshima, H.; Tatemichi, M.; Sawa, T. Arch. Chemical basis of inflammation-induced carcinogenesis[J]. Biochem. Biophys.2003,417:3-11.
    [6]Lim, M. H.; Lippard, S. J. Fluorescent Nitric Oxide Detection by Copper Complexes Bearing Anthracenyl and Dansyl Fluorophore Ligands[J]. Inorg. Chem.2006,45:8980-8989.
    [7]Lim, M. H.; Wong, B. A.; Pitcock, W. H.; Mokshagundam, D.; Baik, M. H.; Lippard, S. J. Direct Nitric Oxide Detection in Aqueous Solution by Copper(II) Fluorescein Complexes[J]. J. Am. Chem. Soc.2006,128:14364-14365.
    [8]Dowlut, M.; Hall, D. G.; Hindsgaul, O. Investigation of Nonspecific Effects of Different Dyes in the Screening of Labeled Carbohydrates against Immobilized Proteins[J]. J. Org. Chem.2005, 70:9809-9813.
    [9]Sarah, F., Maria, P., Kong, X. L., Helen, L. C., Ulrich, E. S., Robert, C. H. Targeting the Lysosome:Fluorescent Iron(Ⅲ) Chelators To Selectively Monitor Endosomal/Lysosomal Labile Iron Pools[J].2008,51:4530-4552.
    [10]Christopher, W. C., Archana, M., Gerald, H. L., Brian, S. J. B., Thomas, E. P., Jeffrey, P. K. Uptake, Distribution and Diffusivity of Reactive Fluorophores in Cells:Implications toward Target Identification[J].2010,1:1301-1310.
    [11]Burdine, L.; Kodadek, T. Target identification in chemical genetics:the (often) missing link[J]. Chem. Biol.2004,11:593-597.
    [12]Peddibhotla, S.; Dang, Y.; Liu, J. O.; Romo, D. Simultaneous arming and structure/activity studies of natural products employing O-H insertions:an expedient and versatile strategy for natural products-based chemical genetics[J]. J. Am. Chem. Soc.2007,129:12222-12231.
    [13]Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Chemical remodeling of cell surfaces in living animals[J]. Nature.2004,430:873-877.
    [14]Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University Science Books: Mill Valley, CA,1994.
    [15]Halliwell, B.; Gutteridge, J. M. C. Role of free radicals and catalytic metal ions in human disease:an overview[J]. Methods Enzymol.1990,186:1-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700