非协调各向异性有限元方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对不同类型的偏微分方程(包括广义神经传播方程、Navier-Stokes方程、二阶椭圆方程、非线性sine-Gordon方程及非线性抛物积分微分方程等),分别从非协调元、变网格及各向异性网格等不同角度,对非协调单元的构造,收敛性分析、超逼近和超收敛性及数值计算等方面进行了深入系统的探讨.
     首先在各向异性网格下,利用变网格思想,先用Crouzeix-Raviart型非协调三角形元对变系数的非线性广义神经传播方程的Crank-Nicolson离散格式作了分析,利用该单元的Riesz投影与插值算子是一致的特性,导出了相应变量的最优误差估计.接着,在矩形网格下,利用带约束的旋转Q1元,通过变网格法又对非定Navier-Stokes问题进行了收敛性分析,给出了速度的H1-模及压力L2-模的最优误差估计.
     其次,考虑各向异性任意四边形网格下的EQrot1元.作为一个尝试,我们通过一些新的估计技巧和方法将[65]中的结果推广到各向异性非平行四边形网格上去.针对二阶椭圆方程,导出了最优误差估计.同时通过数值计算验证了理论分析的正确性.
     最后,研究了广义非线性sine-Gordon方程和非线性抛物积分微分方程的非协调Quasi-Wilson有限元方法.利用单元相容误差比插值误差高两阶的特殊性质,并借助于双线性元的高精度分析,采取与以往文献不同的新技巧,分别在半离散和全离散格式下给出了相应未知量的L2-模最优误差估计和离散H1-模意义下的超逼近性质.进一步地,通过插值后处理得到了H1-模的整体超收敛结果及非线性抛物积分微分方程的向后欧拉全离散格式下的最优误差估计和超逼近性.
In this thesis, we consider some kinds of partial differential equations (includ-ing general neural transmission equations-. Navier-Stokes equations、second order elliptic equations、nonlinear sine-Gordon equations and nolinear parabolic integro-differential equation, etc) and study the nonconforming finite elements, moving grids and anisotropic meshes from different points of view and give the comprehensive investigations on the construction of nonconforming elements、convergence analy-sis、superclose、superconvergence and numerical computations, etc.
     Firstly, on anisotropic meshes, by use of moving grids ideas, we use a Crouzeix-Raviart type nonconforming triangle element to approximate the variable coeffi-cient、nonlinear general neural transmission equations and analyze a Crank-Nicolson discrete scheme. The optimal error estimates are derived by the consistent property of the Riesz projection and the interpolation operators about the element. Then, the constrained rotated Q1element on rectangular meshes is used for the nonsta-tionary Navier-Stokes equations and the convergence analysis are provided with moving grides methods, the optimal error estimates in H1-norm for the velocity and.L2-norm for the pressure are derived.
     Secondly, we investigate the EQrat1element on anisotropic arbitrary quadrilat-eral grids, as an attempt, we promote the results in [65] up to anisotropic nonparallel quadrilateral grids based on some new techniques and approaches and derive the optimal error estimates for second order elliptic problems. At the same time, the numerical experiments are carried out to verify the theoretical analysis.
     Finally, the nonconforming Quasi-Wilson finite element approximations for the general nonlinear sine-Gordon equation and the nonlinear parabolic integro-differential equation are discussed. Based on the special feature of the element, i.e., the consistency error estimate is of order O(h3) in the energy norm, which is two order higher than that of interpolation error estimate, and high accuracy analysis of the bilinear element, the optimal error estimates in L2-norm and superclose proper-ties in broken H1-norm of the corresponding unknown functions are derived for the semi-discrete and fully-discrete schemes with new approaches different from that in the previous literature, respectively. Moreover, the global superconvergence results of broken H1-norm are obtained through the postprocessing techniques and the su-perclose properties and the optimal estimates for the Backward-Euler fully-discrete scheme are derived for the nonlinear parabolic integro-differential equations.
引文
[1]李立康,索伯列夫空间引论,上海:上海科技出版社,1978.
    [2]王烈衡,许学军,有限元方法的数学基础,北京:科学出版社,2004.
    [3]Thomee V, Galerkin finite element methods forparabolic problems. Springer, Berlin, 1997.
    [4]Lin Q, Lin J F, Finite element methods:accuracy and improvement, Mathematics Monograph Series, Science Press, Beijing, China,2006.
    [5]Ciarlet P G, The finite element method for elliptic problems, Amsterdam, North-Holland,1978.
    [6]Apel T, Anisotropic finite elements:local estimates and applications, Advances in Numer. Math. Stuttgart:Teubner,1999
    [7]Apel T, Serge N, Joachim S, Crouzeix-Raviart type finite elements on anisotropic meshes, Numer. Math.2001,89:193-223.
    [8]Zenisek A, Vanmaele M, Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements, J. Comput. Anal. Math.,1995,65:109-122.
    [9]Chen S C, Shi D Y, Zhao Y C, Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA J. Numer. Anal.2004,24(1):77-95.
    [10]Chen S C, Zhao Y C, Shi D Y, Anisotropic interpolation with application to noncon-forming elements, Appl. Numer. Math.2004,49(2):135-152.
    [11]Lars B. Wahlbin, Superconvergence in galerkin finite element methods, Spring-Verlag Berlin Heiderberg,1995.
    [12]Q. Lin, J. Lin, finite flement methods:accuracy and improvement, Science Press: Beijing,2006.
    [13]N. Yan, Superconvergence analysis and a posteriori error estimation in finite flement fethods, Science Press:Beijing,2008.
    [14]G. Matthies, P. Skrzypacz, L. Tobiska, Superconvergence of a 3D finite element method for stationary Stokes and Navier-Stokes problems, Numer. Meth. PDEs,2005, 21(4):701-725
    [15]Bonnerot R, Jamet P, A second order finite element method for the one-dimensional stefen problem, Int J. Numer. Math. Engrg.,1974,8(4):811-820.
    [16]Miller K, Miller R N, Moving finite element. SIAM J. Numer. Anal.,1981,18(6):1019-1057.
    [17]袁益让,一类退化非线性抛物型方程组的变网格有限元方法,计算数学,1986,8(2):121-136.
    [18]袁益让,油水两相渗流驱动问题的变网格有限元方法及其理论分析,中国科学(A)辑,1986,2(4):135-148.
    [19]王立俊,双曲型方程的变网格有限元法,计算数学,1990,12(2):119-128.
    [20]梁国平,变网格有限元法,计算数学,1985,7(4):377-384.
    [21]Pao C V. An mixed initial boundary value problem arising in Neurophysicology, J. Math. Anal. Appl.,1975,52(1):105-119.
    [22]程极济,林克椿,生物物理学,北京:人民教育出版社,1982.
    [23]张志跃,一类广义神经传播方程的有限元方法及其数值分析,数学物理学报,2001,21(Z1):647-654.
    [24]王波,一类神经传导方程的变网格有限元方法及其数值分析,生物数学学报,2006,21(1):119-128.
    [25]Shi D Y, Mao S P, Chen S C, An anisotropic nonconfonning finite element with some superconvergence results, J. Comput. Math.,2005,23(3):261-274.
    [26]石东洋,关宏波,抛物型变分不等式的一类全离散非协调有限元方法,应用数学学报,2008,31(1):90-96.
    [27]Douglas Jr J, Santos J E, Sheen D, Ye X, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, RAIRO Math. Model. Anal. Numer.,1999,33(4):747-770.
    [28]Shi D Y, Wang H H, An anisotropic nonconforming finite element method for ap-proximating a class of nonlinear Sobolev equations, J. Comput. Math.,2009,27(2-3):299-314.
    [29]Shi D Y, Ren J C, Nonconforming mixed finite element approximation to the sta-tionary Navier-Stokes equations on anisotropic meshes, Nonlinear Anal:TMA,2009, 71(9):3842-3852.
    [30]Lin Q, Tobiska L, Zhou A H, Superconvergence and extrapolation of nonconform-ing low order elements applied to the Poisson equation, IMA J. Numer. Anal., 2005,25(1):160-181.
    [31]石东洋,关宏波,粘弹性方程的非协调变网格有限元方法,高校应用数学学报,2008,23(4):452-458.
    [32]Girault V, Raviart P, Finite Element Method for Navier-Stokes Equations:Theory and Algorithms, Springer-Verlag, New York,1986.
    [33]Heywood J, Rannacher R, Finite element approximations of the nonstationary Navier-Stokes problem, Part Ⅰ:Regularity of solutions and second-order spatial dis-cretization, SIAM J. Numer. Anal.,1982,19:275-311.
    [34]He Y, Liu K, A multi-level finite element method for the time-dependent Navier-Stokes equations, Numer. Meth. PDEs,2005,21:1052-1068.
    [35]Nochetto R, Pyo J, A finite element Gauge-Uzawa method Part Ⅰ:Navier-Stokes equations, SIAM J. Numer. Anal.,2005,43:1043-1068.
    [36]Temam R, Navier-Stokes Equation, Theory and Numerical Analysis, New York, Am-stedam:North-Hoolland,1984.
    [37]D.Y.Shi, S.P.Mao, S.C.Chen, On the anisotropic accuracy analysis of ACM noncon-forming finite element, J. Comput. Math.,2005,23(6):635-646.
    [38]Lazaar J, Nicaise S, A nonconforming finite element method with anisotropic mesh grading for the incompressible Navier-Stokes equations in domains with edges, Cal-colo,2002,39:123-168.
    [39]Apel T, Nicaise S, Schoberl J, A nonconforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges, IMA Numer. Anal.,2001,21:843-856.
    [40]Bonnerot R, Jamet P, A second order finite element method for the one dimensional Stefan problem, Int J. Numer. Math. Engrg.,8(4)(1974),811-820.
    [41]Miller K, Miller R, Moving finite element, SIAM J. Numer. Anal.,1981,18(6):1019-1057.
    [42]戴培良,许进超,Stokes问题的变网格非协调有限元法,高等学校计算数学学报,1995,10(3):265-274.
    [43]Shi D Y, Zhang Y R, A nonconforming anisotropic finite element approximation with moving grids for Stokes problem, J. Comput. Math.,2006,24(5):561-578.
    [44]Park C J, Sheen D W, P1 nonconforming quadrilateral finite element method for second order elliptic problem, SIAM J. Numer. Anal.,2003,41(2):624-640.
    [45]胡俊,弹性力学问题的四边形Locking-free元,博士学位论文.北京:中国科学院,2004.
    [46]胡俊,满红英,石钟慈,带约束非协调旋转Q1元在Stokes和平面弹性问题的应用,计算数学,2005,27(3):311-324.
    [47]李开泰,周磊,加罚N-S方程的有限元非线性Galerkin方法,1995,17(4):360-380.
    [48]李开泰,黄艾香,黄庆怀,有限元方法及其应用,北京:科学出版社,2006.
    [49]李开泰,黄艾香,有限元方法及其应用(Ⅱ),西安:西安交通大学出版社,1988.
    [50]Rannacher R, On the finite element approximation of the nonstationary Navier-Stokes problems, Lecture Notes in Mathematics, Springer-Verlag, New York,1980.
    [51]Shi Z C, A convergence condition for the quadrilateral Wilson element, Numer. Math., 1984,44(3):349-361.
    [52]Wachspress E L, Incompatible quadrilateral basis functions, Int. J. Numer. Methods. Engrg.,1978,12(4):589-595.
    [53]Long Y Q, Xu Y, Generalized conforming quadrilateral membrane element with ver-tex rigid rotational freedom, Comput. Stru.,1994,52(4):749-755.
    [54]Long Y Q, Huang M F, A generalized conforming isoparametric element, Appl. Math. Mech.,1988,9(10):929-936.
    [55]江金生,程晓良,二阶问题的一个类Wilson非协调元,计算数学,1992,14:274-278.
    [56]石东洋,陈绍春,一类改进的Wilson任意四边形单元,高等学校计算数学学报A辑,1994,16(2):161-167.
    [57]石东洋,陈绍春,一类六参数非协调任意凸四边形单元,高校应用数学学报A辑,1996,11(2):231-238.
    [58]Chen S C, Shi D Y, Accuracy analysis for Quasi-Wilson element, Acta. Math. Sci., 2000,20(1):44-48
    [59]Rannacher R, Turek S, Simple nonconforming quadrilateral Stokes element, Numer. Meth. PDEs,1992,8(2):97-111.
    [60]Xu J, On the accuracy of nonconforming quadrilateral Q1 element approximation for the Navier-Stokes problem, SIAM J. Numer. Anal.,2000,38(l):17-39.
    [61]Li Q, Lin J F, Finite element methods:accuracy and improvement, Science Press, Beiing,2006.
    [62]R. Uwe, Superconvergence of a nonconforming low order finite element, Appl. Numer. Math..,2005,54(3-4):324-338.
    [63]Ming P B, Shi Z C, Xu Y, Superconvergence studies of quadrilateral nonconforming rotated Q1 elements, Int. J. Numer. Anal. Model.,2006,3(3):322-332.
    [64]Apel T, Dobrowolski M, Anisotropic interpolation with applications to the finite element method, Computing,1991,47:277-293.
    [65]Mao S P, Chen S C, Shi D Y, Convergence and superconvergence of a nonconforming finite element on anisotropic meshes, Int. J. Numer. Anal. Model.,2007,4(1):16-38.
    [66]Shi D Y, Pei L F, Low order Crouzeix-Raviart type nonconforming finite element methods for approximation Maxwell's equations, Int. J. Numer. Anal. Model.,2008, 5(3):373-385.
    [67]Shi D Y, Wang H H, An anisotropic nonconforming finite element method for ap-proximation a class of nonlinear sobolev equations, J. Comput. Math.,2009,27(2-3):299-314.
    [68]Ming P B, Shi Z C, Quadrilateral mesh, Chin. Ann. of Math.2002,23(B2):235-252.
    [69]周盛凡.有阻尼sine-Gordon方程的全局吸引子的维数,数学学报,1996,39(5):597-601
    [70]周建平,闫志莲.一类广义非线性sine-Gordon方程新的显式解,量子电子学报,2007,24(5):535-538
    [71]张建文,王旦霞,吴润衡.一类广义强阻尼sine-Gordon方程的整体解,物理学报,2008,57(4):202-2025
    [72]梁宗旗.广义非线性sine-Gordon方程的整体解及数值计算,应用数学,2003,16(4):40-49
    [73]许秋滨,张鲁明,二维广义非线性sine-Gordon方程的一个ADI格式,.应用数学学报,2007,30(5):836-846
    [74]Liu Y, Li H. Numerical solutions of H1-Galerkin mixed finite element method for a damped sine-Gordon equation, Math. Appl.,2009,22(3):579-588
    [75]Wang C. Convergence of the interpolated coefficient finite element method for the two-dimensional elliptic sine-Gordon equations, Numer. Meth. PDEs.,2011,27(2): 387-398
    [76]黄明游,发展方程数值计算方法,北京:科学出版社,2004.1-150
    [77]Shi D Y, Guan H B, A class of C-R type nonconforming FEMs for parabolic VIP with moving grid on anisotropic meshes, Hokkaido Math. J.,2007,36(4):687-709
    [78]石东洋,龚伟,各向异性网格上抛物方程全离散格式的高精度分析,数学物理学报(A辑),2009,29(4):898-911
    [79]Douglas J Jr, Santos J E, Sheen D W, A nonconforming mixed finite element method for Maxwell's equations. Math. Methods Appl. Sci.,2000,10(4):593-613
    [80]石东洋,张斐然,Sine-Gordon方程的一类低阶非协调有限元分析,计算数学,2011,33(3):289-297
    [81]Taylor R L, Beresford P J, Wilson E L. A nonconforming element for stress analysis, Int. J. Numer. Math. Engrg.,1976,10:1211-1219
    [82]林群,严宁宁,高效有限元构造与分析,河北大学出版社,1996.1-24
    [83]石钟慈,关于Wilson元的最佳收敛阶,计算数学,1986,8(2):159-163
    [814]龙驭球,黄民丰,广义协调等参元,应用数学与力学,1988,9(10):871-877
    [85]陈万吉,唐立民,等参拟协调元,大连理工学院学报,1981,20(1):63-74
    [86]Carey G F. An analysis of finite element equations and mesh subdivision, Comput. Methods Appl. Mech. Engrg.,1976,9:165-179
    [87]Crouzeix M, Raviart P A, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O. R3,1973:33-76
    [88]Knobloch P, Tobiska L. The Pmod1 element:a new nonconforming finite element for convection-diffusion problems, SIAM J. Numer. Anal.,2003,41(2):436-456
    [89]石东洋,王彩霞,Stokes问题非协调混合有限元超收敛分析,应用数学学报,2007,30(6):1056-1065
    [90]Shi D Y Hao X B. Accuracy analysis for Quasi-Carey element, J. Syst. Sci. Complex-ity,2008,21(3):456-462.
    [91]Yanik E G, Faiweather G, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Analysis:TMA,1988,12:785-809.
    [92]Lopez-Marcos J C, A difference scheme for a nonliear partial integro-differential equa-tion, SIAM. J. Numer. Anal.1990,27:20-31.
    [93]Chen C, Thomee V, Wahlbin L B, Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comput.,1992, 58:587-602.
    [94]Yan Y, Fairweather G, Orthogonal spline collocation methods for some partial integro-differential equations, SIAM J. Numer. Anal.,1992,29(8):755-768.
    [95]Pani A K, Fairweather G, H1-Galerkin mixed finite element method for parabolic partial integro-differential equations, IMA. J. Numer. Anal.,2002,22:231-252.
    [96]陈红斌,徐大,刘晓奇,非线性抛物型偏微分方程的H1-Galerkin混合有限元法,应用数学学报,2008,31(4):702-712.
    [97]Shi D Y, Zhang B Y, High accuracy analysis of the finite elenent method for nonlin-ear parabolic integro-differential equations with nonlinear boundary conditions, Adv. math.,2009,38(6):715-722.
    [98]Shi D Y, Wang H H, An H1-Galerkin nonconforming mixed finite element method for integro-differential equation of parabolic type, J. math. res. & exp.,2009,29(5): 871-881;
    [99]石东洋,王海红,抛物型积分微分方程各向异性非协调有限元分析,工程数学学报,2009,26(2):209-218.
    [100]石东洋,郭城,王海红,带弱奇异核的抛物型积分微分方程的非协调有限元方法,数学物理学报,2010,30A(3):764-775.
    [101]石东洋,裴丽芳,非线性抛物型积分微分方程非协调三角形Carey的收敛性分析,系统科学与数学,2009,29(6):854-864.
    [102]郝晓斌,非协调元的构造及其应用.博士学位论文.郑州:郑州大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700