最优控制问题有限体积元法的收敛性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最优控制问题是微分方程约束下的一个约束优化问题,如同微分方程一样,最优控制问题应用广泛,比如大气污染的控制,癌症化疗,金融投资,流体控制等.有限体积元法是一种具有守恒性(质量,能量和动量守恒)的微分方程数值近似的方法,特别适合用于具有守恒性的问题的数值近似,比如流体类问题.本文研究几类基本最优控制问题有限体积元法的收敛性分析,虽是研究三类基本最优控制问题的有限体积元法近似,但是它为进一步研究最优控制问题的有限体积元法打下了基础.
     本文基于先优化后离散的方式,采用变分离散技巧(variational discretization)研究了求解线性二次椭圆、抛物、二阶双曲最优控制问题的有限体积元法,给出了相应离散系统解的存在唯一性和收敛性分析,对于发展型方程最优控制问题,还给出了其全离散格式及相应的先验误差估计,对所有问题都给出了数值算例.本文的主要工作如下:
     首先,基于先优化后离散的方式,对线性二阶椭圆最优控制问题,采用变分离散技巧得到了线性有限体积元近似的离散最优性系统,证明了此离散最优系统解的存在唯一性,给出了由此离散系统得出的状态,对偶状态和控制的收敛性分析,并用数值算例检验理论结果的正确性.
     其次,对线性抛物最优控制问题采用先优化后离散的方式得到了线性有限体积元近似的半离散最优性系统,证明了此半离散最优系统解的存在唯一性;对由此得出的半离散解给出了的先验误差估计;在半离散格式的基础上,给出了向后Euler有限体积元格式和Crank-Nicolson有限体积元格式,对此两种全离散近似解作出了收敛性分析,得出了理想的收敛阶;还提供了数值算例来检验理论结果的正确性.
     最后,对二阶双曲最优控制问题得到了线性有限体积元近似的半离散最优性系统,证明了此离散最优系统解的存在唯一性;对由此离散系统得出的半离散解给出了先验误差估计;以半离散最优性系统为基础,给出了带参数的全离散有限体积元格式和Crank-Nicolson有限体积元格式,对Crank-Nicolson有限体积元全离散近似解作出了收敛性分析,得出了最优的收敛阶;用数值算例检验理论结果的正确性.
The optimal control problem is a optimization problem under the constraints of diferentialequations. As the diferential equations do, the optimal control problem is widely used in oursociety, such as air pollution control, cancer chemotherapy, financial investment, fluid control etc.Finite volume element method is a method with conservation (mass, energy and momentum). It isparticularly suitable for the numerical approximation with conservation issues, such as fluid flowproblems. In this paper we study the convergent analysis of finite volume element method foroptimal control problems. Though we study the finite volume element approximation of severalbasic classes optimal control problems, it is the foundation for further studying the finite volumeelement approximation of some other optimal control problems.
     In this paper, we apply the optimize-then-discretize technique and the variational discretiza-tion approach to study the finite volume element approximation of the elliptic optimal control,parabolic optimal control and second order hyperbolic optimal control problems. We obtain thecorresponding discrete optimal system, verify the existence and uniqueness of these systems, andderive some convergent results (i.e. some a prior error estimates) for the numerical solution. Forthe evolutional equations optimal problems, we also develop some fully-discrete schemes and getthe corresponding a priori error estimates. Numerical examples are also presented to test thetheoretical analysis. The main results are as followsμ
     Firstly, we use the optimize-then-discreize technique to discretize the second order ellipticoptimal problems and obtain a finite dimensional optimal system. The existence and uniquenessof the system are proved. A priori error estimates are derived. A numerical example is listed toillustrate the theoretical results.
     Secondly, the semi-discrete finite volume element optimal system of the parabolic optimalproblem is got. We verify the existence and uniqueness of the discrete system and get some apriori error estimates. Back Euler finite volume element scheme and Crank-Nicolson finite volumeelement scheme are used to approximate the semi-discrete system. Convergent analysis of the fully-discrete solution is carried out and some convergent orders are achieved. Numerical experimentsare provided to test all the theoretical results at the end of these contents.
     Thirdly, we obtain the semi-discrete optimal system of the second order hyperbolic optimalproblems. The existence and uniqueness of the discrete system is proved. Some a priori errorestimates are got for the solution of the semi-discrete optimal system. Two fully-discrete schemesare proposed to approximate the semi-discrete system. One is a finite volume element scheme witha parameter. The other one is Crank-Nicolson finite volume element scheme. Convergent analysisof the Crank-Nicolson finite volume element approximation is carried out and optimal convergent order is obtained. Some numerical experiments are presented to test the theoretical results.
引文
[1]陈传淼,科学计算概论,科学出版社,2007;
    [2]黄云清,舒适,陈艳萍等,数值计算方法,科学出版社,2009.
    [3]张石生,变分不等式及其相关问题,重庆出版社,2007.
    [4]朱江,曾庆存,控制大气污染的一个数学理论框架,中国科学(D辑),32(10)(2002):864-870.
    [5]R.A. Adams, Sobolev Spaces, Academic Press:New York, San Francisco, London,1975.
    [6]M. Afif, A. Bergam and et al, A posteriori estimators for the finite volume discretization of an elliptic problem, Numer. Algor.,34(2003):127-136.
    [7]F. Allgower, J. Cortial and et al, Real-Time PDE-Constrained Optimization, edited by L. T. Biegier, D. Keyes, et al, SIAM,2007.
    [8]W. Alt and U. Machenroth, Convergence of finite element approximation to state constrained convex parabolic boundary control problems, SIAM J. Control Optima,27(1989):718-736.
    [9]N. Arada, J. Raymond and F. Troltzsh, On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces, Computational Optimization and Applications,22(2002):369-398.
    [10]R.E. Bank and D.J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal.,24(1987):777-787.
    [11]R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math.,106(2007):349-367.
    [12]D.A. Behrens, J.P. Caulkins, G. Tragler and G. Feichtinger, Optimal control of drug epidemics: prevent and treat but not at the Same time? Management Science,46(2000):333-347.
    [13]C. Bi and V. Ginting, A residual-type a posteriori error estimate of finite volume element method for a quasilinear elliptic problem, Numer. Math.,114(2009):107-132.
    [14]C. Bi and M. Liu, A discontinious finite volume element method for second-order elliptic problems, Numer. Methods PDEs,28(2)(2012):425-440.
    [15]P. Bochev and M.D. Gunzburger, Least-square finite element methods for optimality system arsing in optimization and control problems, SIAM J. Numer. Anal.,43(6)(2006):2517-2543.
    [16]S. Brenner and R. Scott, Mathematical Theory of Finite Element Methods, Springer:New York,2002.
    [17] M. Burger and R. Pinnau, Fast optimal design of semiconductor devices, SIAM J. Appl. Math.,64(1)(2003):108-126.
    [18] Z. Cai, On the finite volume element method, Numer. Math,58(1991):713-735.
    [19] Y. Cao, X. He and T. Lu¨, An algorithm using the finite volume element method and its splittingextrapolation, J. Comp. Appl. Math.,235(13)(2011):3734-3742.
    [20] C. Carstensen, R. Lazarov and S. Tomov, Explcit and averaging a posteriori error eatimates foradaptive finite volume ethods, SIAM J. Numer. Anal.,42(2005):2496-2521.
    [21] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints, SIAMJournal on Control and Optimization,31(4)(1993):993-1006.
    [22] E. Casas and J.P. Raymond, Error estimates for the numerical approximation of Dirichlet boundarycontrol for semilinear elliptic equations, SIAM J. Control Optim.,45(2006):1586-1611.
    [23] E. Casas and M. Mateos, Error estimates for the numerical approximation of Neumann control prob-lems, Computational Optimization and Applications,39(2008):265-295.
    [24] P. Chatzipantelidis, A finite volume method based on the Crouzeix-Raviart element for elliptic PDEsin two dimensions, Numer. Math.,82(1999):409-432.
    [25] P. Chatzipantelidis, Finite volume methods for elliptic PDE’s: a new approach, Mathematical Mod-elling and Numerical Analysis,36(2)(2002):307-324.
    [26] P. Chatzipantelidis, R. Lazarov and V. Thom′ee, Error estimate for a finite volume element methodfor parabolic equations in convex polygonal domains, Numer. Methods PDEs,20(2004):650-674.
    [27] P. Chatzipantelidis, R. D. Lazarov and V. Thome′e, Parabolic finite volume element equations innonconvex polygonal domains, Numer. Methods PDEs,25(3)(2009):507-525.
    [28] L. Chen, A new class of high order finite volume methods for second order elliptic equations, SIAMJ. Numer. Anal.,47(2010):4021-4043.
    [29] L. Chen, iFEM: an integrated finite element methods package in MATLAB, Technical Report, Uni-versity of California at Irvine,2008.
    [30] P. Chen and S.M.N. IsIam, Optimal Control Models in Finance a New Computational Approach,Springer, Australia,2005.
    [31] Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Mathematicsof Computation,77(263)(2008):1269-1291.
    [32] Y. Chen and Y. Dai, Superconvergence for optimal control problems governed by semi-linear ellipticequations, J. Sci. Comput.,39(2009):206-221.
    [33] Y. Chen, F. Huang, N. Yi and et al, A Legendre Galerkin spectral method for optimal control problemsgoverned by Stokes equations, SIAM J. Numer. Anal.,49(2011):1625-1648.
    [34] Y. Chen, Y. Huang, W.B. Liu and et al, Error estimates and superconvergence of mixed finite elementmethods for convex optimal control problems, J. Sci. Comput.,42(3)(2010):382-403.
    [35] Y. Chen, Y. Huang and N. Yi, A posteriori error estimates of spectral method for optimal controlproblems governed by parabolic equations, Sci. China Series A: Math,51(2008):1376-1390.
    [36] Y. Chen and W.B. Liu, Error estimates and superconvergence of mixed finite element for quadraticoptimal control, Int. J. Numer. Anal. Model.,3(2006):311-321.
    [37] Y. Chen and Z. Lu, Error estimates of fully discrete mixed finite element methods for semilinearquadratic parabolic optimal control problems, Comput. Methods Appl. Mech. Engrg.,199(2010):1415-1423.
    [38] Y. Chen, N. Yi and W.B. Liu, A Legendre Galerkin spectral method for optimal control problemsgoverned by elliptic equations, SIAM J. Numer. Anal.,46(5)(2008):2254-2275.
    [39] Z. Chen, R. Li and A. Zhou, A note on the optimal L2estimate of the finite volume element method,Adv. Comput. Math.,16(2002):291-303.
    [40] K. Chen and D.A. Lorenz, Image sequence interpolation using optimal control, J. Math. Imag. Vis.,41(3)(2011):222-238.
    [41] Z. Chen, J. Wu and Y. Xu, Higher-order finite volume methods for elliptic boundary value problems,Adv. Comput. Math.,2011:1-63.
    [42] P. Chidyagwai, I. Mishev, and B. Rivie`re, On the coupling of finite volume and discontinuous Galerkinmethod for elliptic problems, J. Comp. Appl. Math.,235(8)(2011):2193-2204.
    [43] S.H. Chou and Q. Li, Error estimates in L2, H1and L∞in covolume methods for elliptic and parabolicproblems: a unified approach, Mathematics of Computation,69(2000):103-120.
    [44] S.H. Chou and X. Ye, Unified analysis of finite volume methods for second order elliptic problems,SIAM J. Numer. Anal.,45(2007):1639-1653.
    [45] I. Chryssoverghi, Discretization methods for semilinear parabolic optimal control problems, Int. J.Numer. Anal. Model.,3(2006):437-458.
    [46] S. Collis and M. Heinkenschloss, Analysis of the streamline upwind/Petrov Galerkin method appliedto the solution of optimal control problems, CAAM TR02-01, March2002.
    [47] C.L. Darby, W.W. Hager and A.V. Rao, An hp-adaptive pseudospectral method for solving optimalcontrol problems, Optim. Control Appl. Meth.,32(4)(2011):476-502.
    [48] K. Deckelnick and Hinze, Variational discretization of parabolic control problems in the presence ofpointwise state constraints, J. Comput. Math.,29(2011):1-16.
    [49] Q. Du and L. Ju, Finite volume methods on spheres and spherical centroidal voronoi meshes, SIAMJ. Numer. Anal.,43(2005):1673-1692.
    [50] T. Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer.Anal.,10(1973):880-889.
    [51] R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewiselinear polynomials, SIAM J. Numer. Anal.,39(6)(2002):1865-1888.
    [52] F.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,J. Math. Anal. Appl.,44(1973):28-47.
    [53] K.R. Fister and J.C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAMJ. Numer. Anal.,60(3)(2000):1059-1072.
    [54] H. Fu and H. Rui, A characteristic finite element method for constrained convection-difusion-reactionoptimal control problems, Journal of computational mathematics,31(1)(2013):88-106.
    [55] H. Fu, A characteristic finite element method for optimal control problems governed by convection-difusion equations, Journal of Computational and Applied Mathematics,235(2010):825-836.
    [56] T. Gallou¨et, A. Larcher and J.C. Latch′e, Convergence of a finite volume scheme for the convection-difusion equation with L1data, Math. Comp.,81(2012):1429-1454.
    [57] T. Gallouet, R. Herbin and M.H. Vignal, Error estimates on the approximate finite volume solution ofconvection difusion equations with general boundary conditions, SIAM J. Numer. Anal.,37(6)(2000):1935-1972.
    [58] F.S. Gayzik, Optimal Control of Thermal Damage to Biological Materials, Virginia Polytechnic Insti-tute and State University Master of Science in Mechanical Engineering,2004.
    [59] T. Geveci, On the approximation of the solution of an optimal control problem governed by an ellipticequation, RAIRO Anal. Numer.,13(1979):313-328.
    [60] W. Gong and N. Yan, A posteriori error estimates for boundary control problems governed by parabolicpartial diferential equations, J. Comp. Math.,27(2009):68-88.
    [61] M.D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM,2002.
    [62] W. Hackbusch, On first and second order box schemes, Computing,41(1989):277-296.
    [63] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadraticcase, Comput. Optim. Appl.,30(1)(2005):45-61.
    [64] M. Hinze and K. Karl, Second order methods for optimal control of time-dependent fluid flow, SIAMJournal on Control and Optimization,40(3)(2001):925-946.
    [65] M. Hinze, R. Pinnau and et al, Optimization with PDE Constraints, Springer,2009.
    [66] D. H¨omberg, A. Steinbrecher and T. Stykel, Optimal control of robot guided laser material treatment,Preprint1405, WIAS Berlin,2009.
    [67] J. Huang and S. Xi, On the finite volume element method for general self-adjoint elliptic problems,SIAM J. Numer. Anal.,35(5)(1998):1762-1774.
    [68] K. Ito and K. Karl, The primal-dual active set method for nonlinear optimal control problems withbilateral constraints, SIAM J. Control. Optim.,43(1)(2004):357-376.
    [69] L. Ju and Q. Du, A finite volume method on general surfaces and its error estimates, J. Math. Anal.Appl.,352(2009):645-668.
    [70] L. Ju, L. Tian and D. Wang, A posteriori error estimates for finite volume approximations of ellipticequations on general surfaces, Comput. Methods Appl. Mech. Engrg.,198(2009):716-726.
    [71] E. Kammann, F. Tr¨oltzsch and S. Volkwein, A posteriori error estimation for semilinear parabolic op-timal control problems with application to model reduction by POD, ESAIM: Mathematical Modellingand Numerical Analysis,47(2)(2013):555-581.
    [72] G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. ControlOptim.,20(1982):414-427.
    [73] A. Kr¨oner, Adaptive finite element methods for optimal control of second order hrperbolic equations,Comput Methods Appl Math,11(2)(2011):214-240.
    [74] A. Kr¨oner, K. Kunisch and B. Vexler, Semismooth Newton methods for optimal control of the waveequation with control constraints, SIAM J Control Optim,49(2)(2011):830-858.
    [75] S. Kumar, N. Nataraj and A.K. Pani, Finite volume element method for second order hyperbolicequations, Int. J. Numer. Anal. Model.,5(2008):132-151.
    [76] S. Kumar, N. Nataraj and A.K. Pani, Discontinuous Galerkin finite volume element methods forsecond-order linear elliptic problems, Numer. Methods PDEs,25(2009):1402-1424.
    [77] J. Li, Z. Chen and Y. He, A stabilized multi-level method for non-singular finite volume solutions ofthe stationary3D Navier-Stokes equations, Numer. Math.,122(2012):279-304.
    [78] R. Li, Z. Chen and W. Wu, Generalized diference methods for diferential equations, New York:Marcel Dekker, Inc.,2000.
    [79] R. Li, H. Ma, W.B. Liu and T. Tang, Adaptive finite element approximation for distributed ellipticoptimal control problems, SIAM J. Control. Optim.,41(5)(2003):1321-1349.
    [80] S. Liang, X. Ma and A. Zhou, A symmetric finite volume scheme for selfadjoint elliptic problems, J.Comp. Appl. Math.,147(2002):121-136.
    [81] J.L. Lions, Optimal Control of Systems Governed by Partial Diferential Equations, Springer-Verlag,Berlin,1971.
    [82] H. Liu and N. Yan, Recovery type superconvergence and a posteriori error estimates for controlproblems governed by Stokes equations, Journal of Computational and Applied Mathematics,209(2)(2007):187-207.
    [83] J. Liu, L. Mu and X. Ye, An adaptive discontinuous finite volume method for elliptic problems, J.Comp. Appl. Math.,235(18)(2011):5422-5431.
    [84] W.B. Liu and N. Yan. Adaptive Finite Element Methods for Optimal Control Governed by PDEs,Science Press, Beijing,2008.
    [85] M. Luka′ˇcov′a-medvidˇova′, K.W. Morton and G. Warnecke, Finite volume evolution Galerkin methodsfor hyperbolic systems, SIAM J. Sci. Comput.,26(1)(2004):1-30.
    [86] X. Luo, Y. Chen and Y. Huang, Some error estimates of finite volume element method for ellipticoptimal control problems, Int. J. Numer. Anal. Model., accepted(2012).
    [87] X. Luo, Y. Chen, Y. Huang and et al, Some error estimates of finite volume element method forparabolic optimal control problems, Optim Contr Appl Meth,2012, Doi:10.1002/oca.2059.
    [88] X. Luo, Y. Chen and Y. Huang, A priori error analysis of Crank-Nicolson finite volume elementmethod for parabolic optimal control problems, Advances in Applied Mathematics and Mechanics,accepted(2013).
    [89] X. Luo, Y. Chen and Y. Huang, A priori error analysis of finite volume element method for hyperbolicoptimal control problems, SCIENCE CHINA Mathematics,2013, Doi:10.1007/s11425-013-4573-5.
    [90] X. Ma, S. Shu and A. Zhou, Symmetric finite volume discretization for parabolic problems, Comput.Methods Appl. Mech. Engrg.,192(2003):4467-4485.
    [91] R. Mcknight and Jr. Borsarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J.Control Optim.,11(1973):510-524.
    [92] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization ofparabolic optimal control problems part I: problems without control constraints, SIAM Journal onControl and Optimization,47(3)(2008):1150-1177.
    [93] D. Meidner and Boris Vexler, A priori error estimates for space-time finite element discretization ofparabolic optimal control problems part II: problems with control constraints, SIAM Journal on Controland Optimization,47(3)(2008):1301-1329.
    [94] C. Meyer and A. R¨osch, Superconvergence properties of optimal control problems, SIAM J. Control.Optim.,43(3)(2004):970-985.
    [95] C. Meyer and A. Ro¨sch, L∞-estimates for approximated optimal control problems, SIAM J. Control.Optim.,44(2005):1636-1649.
    [96] I.D. Mishev, Finite volume element methods for non-definite problems, Numer. Math.,83(1999):161-175.
    [97] K. Mustapha and H. Mustapha, A quadrature finite element method for semilinear second-orderhyperbolic problems, Numer. Methods PDEs,24(2008):350-367.
    [98] P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithmsand Applications, M. Dekker, New York,1994.
    [99] A. Quarteroni and R. Ruiz-Baier, Analysis of a finite volume element method for the Stokes problem,Numer. Math.,118(4)(2011):737-764.
    [100] A. Quarteroni and A. Valli, Numerical Approximation of Partial Diferential Equations, Springer-Verlag,1997.
    [101] A. Rincon and I-Shih Liu, On numerical approximation of an optimal control problem in linearelasticity, Divulgaciones Matema′ticas,11(2)(2003):91-107.
    [102] A. Ro¨sch, Error estimates for parabolic optimal control problems with control constraints, Z. Anal.Ihre Anwend. ZAA,23(2004):353-376.
    [103] A. R¨osch and B. Vexler, Optimal control of the Stokes equations: a priori error analysis for finiteelement discretization with postprocessing, SIAM J. Numer. Anal.,44(5):1903.1920.
    [104] S. Ryu, H. Lee and S. D. Kim, First-order system least-squares methods for an optimal controlproblem by the Stokes flow, SIAM J. Numer. Anal.47(2)(2009):1525-1545.
    [105] A. Schiela, Barrier Methods for Optimal Control Problems with State Constraints, SIAM J. Optim.,20(2)(2009):1002-1031.
    [106] R.K. Sinha, Finite element approximations with quadrature for second-order hyperbolic equations,Numer. Methods PDEs,18(2002):537-559.
    [107] S. Shu, H. Yu, Y. Huang and C. Nie, A symmetric finite volume element scheme on quadrilateralgrids and superconvergence, Inter. J. Numer. Anal. Model.,3(2006):348-360.
    [108] Y. Tang and Y. Chen, Variational discretization for parabolic optimal control problems with controlconstraints, Journal of Systems Science and Complexity,25(2012):880-895.
    [109] F. Tro¨ltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary controlproblems-strong convergence of optimal control, Appl. Math. Optim.,29(3)(1994):309-329.
    [110] F. Tr¨oltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal controlproblems, Computational Optimization and Applications,44(1)(2009):83-115.
    [111] M. Ulbrich, Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimiza-tion Problems in Function Spaces, Technische Universit¨aat Mu¨nchen Fakulta¨at fu¨r Mathematik,2002.
    [112] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces, SIAM J. Optim.,13(3)(2003):805-841.
    [113] S.R. Upreti, Optimal Control for Chemical Engineers, CRC Press,2012.
    [114] T.V. Voitovich, and S. Vandewalle, Exact integration formulas for the finite volume element methodon simplicial meshes, Numer. Methods PDEs,23(5)(2007):1059-1082.
    [115] W. Wei, H.M. Yin and J. Tang, An optimal control problem for microwave heating,Nonlinear Analysis,75(2012):2024-2036.
    [116] X. Xing and Y. Chen, Error estimates of mixed finite element methods for optimal control problemsgoverned by parabolic equations, Int. J. Numer. Anal. Model.,5(2008):441-456.
    [117] X. Xing, Y. Chen and N. Yi, Error estimates of mixed finite element methods for quadratic optimalcontrol problems, J. Comp. Appl. Math.,233(2010):1812-1820.
    [118] J. Xu and Q. Zou, Analysis of linear and quadratic simplicial finite volume methods for ellipticequations, Numer. Math.,111(2009):469-492.
    [119] N. Yan and Z. Zhou, A priori and a posteriori error estimates of streamline difusion finite elementmethod for optimal control problem governed by convection dominated difusion equation, Numer.Math. Theor. Meth. Appl.,1(2008):297-320.
    [120] X. Ye, On the relationship between finite volume and finite element methods applied to the Stokesequations, Numer. Methods PDEs,17(5)(2001):440-453.
    [121] X. Ye, A new discontinuous finite volume method elliptic problems, SIAM J. Numer. Anal.,42(3)(2004):1062-1072.
    [122] X. Ye, A posterior error estimate for finite volume methods of the second order elliptic problem,Numer. Methods PDEs,27(5)(2011):1165-1178.
    [123] W. Zhang and H. Ma, The Chebyshev-Legendre collocation method for a class of optimal controlproblems, Int. J. Comput. Math.,85(2)(2008):225-240.
    [124] J. Zhou and D. Yang, Spectral mixed Galerkin method for state constrained optimal control problemgoverned by the first bi-harmonic equation, Int. J. Comput. Math.,88(14)(2011):2988-3011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700