一些疏水性表面材料的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面润湿性是固体表面的重要特征之一。具有自清洁能力的超疏水表面的研究具有重要的理论意义和良好的应用前景。另外,表面润湿性动态可控的超疏水/超亲水性可逆转换材料因为具有可以对外部刺激做出精确的改变和调控的特性,在自清洁表面、变焦镜头、液体微球操纵器等方面具有巨大的应用潜能。目前虽然已有许多相关报道,但具有实用性或表面润湿性多种因素动态可控的超疏水表面仍然非常少。本论文研究工作通过多种方法在不同材料基底表面(金属,塑料等)构筑了多种新颖的微纳米结构,并在此基础上提出了多种简单的超疏水表面以及实用化的表面制备方法,并对表面润湿性动态可控的超疏水/超亲水性可逆转换材料进行探索。具有潜在的应用价值。
     本论文中,我们主要报道了如下结果:
     (1)通过长链有机弱酸的醇溶液浸泡,在铁、锌、铜锌合金的表面进行氧化还原自组装反应,形成了微纳米结合的粗糙表面结构,无需低表面能修饰便形成了超疏水表面,为金属材料的表面修饰与防护提供了一种新的简便途径。
     (2)首次合成了一种具有双重刺激响应效果的新型咪唑类离子液体1-(N-异丙基-3-丙酰胺基-)-3-乙烯基咪唑六氟磷酸盐,通过核磁共振对此离子液体的结构进行了表征。
     (3)聚乙烯具有耐腐蚀性,电绝缘性(尤其高频绝缘性),广泛应用于制作耐腐蚀零件和绝缘零件及薄膜。本章利用溶剂挥发法制备了疏水性聚乙烯塑料薄膜,方法简单,成本低廉。
Wettability is one of the most important properties of the solid surface. Super- hydrophobic surfaces with self-cleaning ability are very important in foundamental research, with many potential applications in wide industrial and agriculture production and everday life. And due to the correlation with a surface tension gradient, wettability control provides a more flexible and efficient way for wide applications such as self-cleanness, tunable optical lenses or discrete liquid droplet manipulators. Although many reports have been focused on their preparation, practical superhydrophobic surfaces are still very rare, which can be dynamically and simutaneously controled by several factor. In this thesis, some superhydrophobic surfaces were constructed by some very simple methods.
     (1) An double responsive ionic liquid monomer 1-(N- isopropyl -3- propionylamino -)-3- vinylimidazole hexafluorophosphate, to the temperature and to anion exchange, was successful synthesized and characterized by proton nuclear magnetic resonances.
     (2) Micro/nanoscale composite structural rough surfaces with super hydrophobic properties are prepared with a redox self-assembly by simply immersing them in alcohol solution of 12-hydroxy stearic acid respectively on the iron, zinc and macht metal surfaces and characterized by XPS, contact angle measurement, IR spectra and SEM. The forming mechanism of superhydrophobic films are also discussed. The result shows that static water contact angles on the three films are higher than 160°.
     (3) Polyethylene has corrosion resistance, electrical insulation (especially high frequency insulation), and is widely used in making corrosion resistant parts and insulation parts and film. In this chapter, hydrophobic surface was fabricated by a simpe solvent volatilization procedure with a low cost on polyethylene plastic substrate.
引文
[1] Jiang L., Yang B., Li T. J., Tryk D. A., Fujishima A., Hashimoto K., and Zhu D. B., Binary cooperative complementary nanoscale interfacial materials. Pure Appl. Chem. 2000, 72, 73-81.
    [2] Young T., Experiments and calculations relative to physical optics. The 1803 Bakerian Lecture. Phil. Trans. Roy. Soc. 1804, 94, 1-16.
    [3] Adamson A. W., et al, Physical chemistry of surfaces (6th ed) New York : John Wiley &Sons: 1997.
    [4]臧红霞,接触角的测量方法与发展,福建分析测试2006, 15, (2), 47-48.
    [5]顾易人,朱步瑶,李外郎,马季铭,戴乐蓉,程虎民著,表面化学.科学出版社:北京: 2001.
    [6]周祖康,顾易人,马季铭著,胶体化学基础.北京大学出版社:北京, 1996.
    [7]杜文琴,巫明,接触角测量的量高法和量角法的比较.纺织学报2007, 28, (7), 29-32,37.
    [8]张世文,郝廉,憎水性与接触角的测量[J]现代计量测试1994, 3, 36-41.
    [9] Kijlstra. J. R. K., Klamt A., Roughness and topology of ultra-hydrophobie surfaces. Colloids Surf. A: Physicochem. Eng. Aspects 2002, 206, 521-529.
    [10] Quere D., Azzopardi M. J., Delattre L., Drops at rest on a tilted plane. Langmuir 1998, 14, 2213-2216.
    [11] Wolfram. E., F. R., In wetting, spreading and adhesion; Padday, J. F. ed. Academic press: London, 1978; p 213-218.
    [12] De Gennes P. G., Wetting: statics and dynamics. Rev. Mod. Phys. 1985, 57(3), 927-963.
    [13] Wenzel R. N., Resistence of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988-994.
    [14] Quere D., Rough ideal on wetting. J. Phys. A 2002, 313, 32-46.
    [15] Cassie A. B., et al, Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546-551.
    [16] Barthtott W., Neinhuis C. Purity of the sacred lot us or escape from contamination in biological surfaces. Planta, 1997, 202, 1 - 8.
    [17] Sun T, Feng L, Gao X et al. Bioinspired Surfaces with Special Wettability, Acc. Chem. Res. ,2005, 38(8): 644-652
    [18] Lee, W.; Jin, M.-K.; Yoo, W.-C.; Lee, J.-K. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 2004, 20, 7665-7669.
    [19] Gao, X.; Jiang, L. Biophysics: Water-Repellent Legs of Water Striders. Nature, 2004, 432(7013): 36.
    [20] Dickinson, M., Animal Locomotion: How to Walk on Water. Nature, 2003, 424: 621-622.
    [21] Del Campo, A.; Greiner, C.; Alvarez, I.; Arzt, E.; Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices, Adv. Mater., 2007, 19: 1973- 1977.
    [22] Autumn, K.; Liang, Y. A.; Hsleh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R. and Full, R. J. Adhesive force of a single gecko foot-hair, Nature,2000, 405: 681-686.
    [23] Huang Z., Zhu Y., Zhang J., et al. Stable biomimetic super-hydrophobicity and magnetization film with Cu-ferrite nano-rods, J. Phys. Chem. C, 2007, 111(18): 6821-6825
    [24] Guo Z, Zhou F, Hao J, Liu W. Stable Biomimetic Super-Hydrophobic Engineering Materials. J. Am. Chem. Soc., 2005, 127: 15670-15671.
    [25] Qian B.T., Shen Z.Q., Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. Langmuir, 2005, 21: 9007-9009.
    [26] Wang S, Feng L, Jiang L. One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Adv Mater, 2006, 18: 767.
    [27]郑黎俊,乌学东,楼增,等.表面微细结构制备超疏水表面.科学通报, 2004, 49: 1691-1699.
    [28] Blossey R. Self-cleaning surfaces-virtual realities. Nature Mat, 2003, 2: 301-306.
    [29] Tsujii K, Yamamoto T, Onda T, et al. Super oil-repellent surfaces. Angew Chem Int Ed, 1997, 36: 1011-1012.
    [30] Hozumi A, Takai O. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD. Thin Solid Films, 1997, 303: 222-225.
    [31] Wu Y, Sugimura H, Inoue Y, et al. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethymethoxysilane by microwave plasma CVD. Chem Vap Depos, 2002, 8:47-50.
    [32] Kenneth K S Lau, Jose Bico, Kenneth B K Teo, et al. Superhydrophobic Carbon Nanotube Forests. Nano Lett, 2003, 3:1701-1705.
    [33] Li S, Li H, Wang X B et al. Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. J. Phys. Chem. B, 2002, 106: 9274-9276.
    [34]徐桂龙,邓丽丽,皮丕辉,郑大锋,文秀芳,杨卓如,溶胶凝胶法制备超疏水二氧化硅涂膜及其表面润湿行为,无机化学学报,2010,26:1810-1814.
    [35] Feng X J, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem. Int. Ed., 2005,44, 5115–5118.
    [36] Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A. Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir, 2005; 21: 7299–7302.
    [37]胡小娟,刘岚,罗远芳,贾德民,程梁,胡盛哲,溶胶-凝胶法制备超疏水PMHS-SiO2涂膜,材料研究学报, 2010,24: 266-272.
    [38]薛朝华;贾顺田;张静;二氧化钛溶胶-凝胶法制备含氟超疏水棉织物,印染,2009,1-4.
    [39] Han, J. T., Kim J. S., Kim S. H. et al, Nanocarbon-Induced Rapid Transformation of Polymer Surfaces into Superhydrophobic Surfaces, ACS Appl. Mater. Interfaces, 2010, 2 (11): 3378–3383
    [40] Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B. Reversible superhydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc., 2004;126: 62–63.
    [41] Han, J. T., Lee D. H., Ryu C. Y. and Cho K., Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding, J.Am.Chem.Soc. 2004, 126:4796-4797.
    [42] Tadanaga K, Morinaga J, Matsuda A, et al. superhydrophobic-superhydrophilic Pattern on Flowerlike Alumina Coating Film by the Sol-Gel Method. Chem. Mater., 2000, 12: 590-592.
    [43] Bryans, Tracy R.; Brawner, Vikki L.; Quitevis, Edward L., Microstructure and porosity of silica xerogel monoliths prepared by the fast sol-gel method, Journal of Sol-Gel Science and Technology, 2000, 19: 211-217.
    [44] Shirtcliffe N. J., McHale G., Newton M. I., Perry C. C., Roach P., Porous materials showsuperhydrophobic to superhydrophilic switching. Chem. Commun. 2005: 3135–3137.
    [45] Nagaraja D. Hegde A. Venkateswara Rao. Physical properties of methyltrimethoxy -silane based elastic silica aerogels prepared by the two-stage sol-gel process. J Mater Sci., 2007, 42: 6965-6971
    [46] Guo,C.W, Feng,L. Zhai,J. Song,Y.L. Jiang,L. Zhu,D.B. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer, ChemPhysChem., 2004, 5: 750-753.
    [47]刘斌,阮维青,和亚宁,等.利用软模板和紫外光固化技术制备超疏水表面[J].高分子学报, 2008, 2:155
    [48] Zhang,X.; Shi,F.; Yu,X.; Liu,H. Fu,Y.; Wang,Z.Q.; Jiang,L.; Li,X.Y.; Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: toward Super-Hydrophobic Surface, J.Am.Chem.Soc.,2004,126: 3064-3065.
    [49] Yu, X.: Wang, Z. Q.: Jiang, Y. G.: Shi, F.: Zhang, X., Reversible pH-responsive surface: From superhydrophobicity to superhydrophilicity. Adv. Mater., 2005, 17: 1289-1293.
    [50] Qu, M. N.; Zhang, B.W.; Song, S.Y.; Zhang, J.Y. Fabrication of Superhydrophobic surfaces on engineering materials by a solution-immersion process. Adv. Funct. Mater. 2007, 17: 593-596.
    [51]李艳峰,于志家,于跃飞,等.铝合金基体上超疏水表面的制备[J].高校化学工程学报,2008,22(1):6
    [52] Teshima. K., Sugimura. H., Inoue. Y., Takai. O., Takano. A., Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci,. 2005, 244: 619–22.
    [53] Teare. D. O. H., Spanos. C. G.., Ridley. P., Pulsed Plasma deposition of s uper-hydrophobic nanospheres, Chem Mater, 2002, 14: 4566-4571.
    [54] Li. M., Zhai. J., Liu. H., Song. Y. L., Jiang. L. and Zhu. D. B., Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films, J. Phys. Chem. B, 2003, 107(37): 9954–9957.
    [55] Jiang. Y. G., Wang. Z. Q., Yu. X., Shi. F., Xu. H. P. and Zhang. X., Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures: Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces, Langmuir, 2005, 21(5): 1986–1990.
    [56] N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry and P. Roach, The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping, J. Micromech. Microeng., 2004, 14(10): 1384–1389.
    [57] Karuppuchamy. S. and Jeong. J. M., Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition, Mater. Chem. Phys., 2005, 93: 251–254.
    [58] Xu. L. B., Chen. W., Mulchandani. A., and Yan. Y. S., Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic, Angew. Chem., Int. Ed., 2005, 44(37), 6009–6012.
    [59] Nicolas, M. Guittard, F. Géribaldi, S. Synthesis of Stable Super Water- and Oil-Repellent Polythiophene Films, Angew.Chem.Int.Ed. 2006, 45,2251-2254.
    [60] Ma. M., Mao. Y., Gupta. M., Gleason. K. K., Rutledge. G. C., Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition, Macromolecules, 2005, 38: 9742-9748
    [61] Jiang L., Zhao Y. and Zhai J., A lotus-leaf-like superhydrophobic surface:A porous microsphere nanofiber composite film prepared by electrohydro dynamics, Angew.Chem.,Int.Ed., 2003 ,43: 4338-4341.
    [62] Zielecka, M.; Bujnowska, E., Silicone-containing polymer matrices as protective coatings, Prog. Org. Coat., 2006, 55, 160-167.
    [63] Manoudis, P. N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C., Superhydrophobic Composite Films Produced on Various Substrates. Langmuir 2008, 24(19): 11225-11232.
    [64] Sinha, Arun Kumar; Basu, Mrinmoyee; Pradhan, Mukul; Sarkar, Sougata; Pal, Tarasankar. Fabrication of Large-Scale Hierarchical ZnO Hollow Spheroids for Hydrophobicity and Photocatalysis. Chemistry--A European Journal, 2010, 16(26), 7865-7874
    [65] Lu, J.; Yu, Y.; Zhou, J.; Song, L.; Hu, X.; Larbot, A., FAS grafted superhydrophobic ceramic membrane., Applied Surface Science, 2009, 255(22): 9092-9099.
    [66] Nakajima. A., Hashimoto. K. and Watanabe. T., Recent studies on super-hydrophobic films, Monatshefte fuer Chemie, 2001, 132, 31-41.
    [67] Ban, Takahiko; Mori, Yasushige; Miyake, Yoshikazu; Shioi, Akihisa. Chemically controlled droplet motion. Science and Engineering Review of Doshisha University, 2009, 49(4, Suppl.): 21-26.
    [68] T. Kako, A. Nakajima, H. Irie, Z. Kato, K. Uematsu, T. Watanabe and K. Hashimoto, Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels, J. Mater. Sci., 2004, 39, 547-555.
    [69] M. P. Schultz, C. J. Kavanagh and G. W. Swain, Hydrodynamic forces on barnacles: Implications on detachment from fouling-release surfaces, Biofouling, 1999, 13, 323-335.
    [70] Feng. L., Zhang. Z. Y., Mai. Z. H., Ma. Y. M., Liu. B. Q., Jiang. L. and Zhu. D. B., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem., Int. Ed., 2004, 43, 2012-2014.
    [71] Shirgholami, Mohammad A.; Shateri Khalil-Abad, Mohammad; Khajavi, Ramin; Yazdanshenas, Mohammad E., Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process. Journal of Colloid and Interface Science, 2011, 359(2): 530-535.
    [72] Wang, L.; Zhang, X.; Li, B.; Sun, P.; Yang, J.; Xu, H.; Liu, Y.. Superhydrophobic and Ultraviolet-Blocking Cotton Textiles. ACS Applied Materials & Interfaces, 2011, 3(4): 1277-1281
    [73] Deng, Bo; Cai, Ren; Yu, Yang et al.; Laundering Durability of Superhydrophobic Cotton Fabric. Adv. Mater. 2010, 22(48): 5473-5477.
    [74] Kampeerapappun, P.; Visatchok, K.; Wangarsa, D., Preparation and properties of superhydrophobic cotton fabrics. Journal of Metals, Materials and Minerals, 2010, 20(2): 79-83
    [75] Jin, S.; Kim, J.-Y.; Noh, K.; Choi, C., Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof. PCT Int. Appl. WO:2010022107.
    [76] Hou, Xiao-Mei; Wang, Xiao-Bo; Zhu, Qin-Shu et al, Preparation of polypropylene superhydrophobic surface and its blood compatibility.,Colloids and Surfaces, B: Biointerfaces, 2010, 80(2): 247-250.
    [77] Zhou, Ming; Yang, Jiahong; Ye, Xia et al, Blood platelet's behavior on nanostructured superhydrophobic surface. Journal of Nano Research, 2008, 2: 129-136.
    [78] Sun, Taolei; Tan, Hong; Han, Dong; Fu, Qiang; Jiang, Lei. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small, 2005, 1(10): 959-963
    [79] Khorasani, M. T.; Mirzadeh, H. In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. Journal of Applied Polymer Science, 2004, 91(3): 2042-2047
    [1]张立德,牟季美著:纳米材料和纳米结构.科学出版社, 2001.
    [2] Grevoisier G., Fabre G., Corpart J., Leibler L.. Switchable tackiness and wettability of a liquid crystalline polymer. Science, 1999, 285: 1246.
    [3] Shull K. R., Karis T. E. Dewetting dynamics for large equilibrium contact angels. Langmuir, 1994, 10: 334.
    [4] Rieutord F., Salmeron M. Wetting properties at the submicrometer scale: A scanning polarization force microscopy study. J Phys Chem B, 1998, 102: 3941.
    [5] Tretirnikov O. N., Ikada Y. Hydrogen bonding and wettability of surface-grafted organophosphate polymer. Macromolecules, 1997, 30: 1086.
    [6] Yoo D., Shiratori S. S., Rubner M. F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules, 1998, 31: 4309.
    [7] Thunemann A. F., Schnoller U., Nayken O., Voit B. Macro. Diazosulfonate polymer complexes: Structure and wettability. Macromolecules, 2000, 33: 5665.
    [8] Thunemann A. F. Complexes of polyethyleneimine with perfluorinated carboxylic acids: Wettability of lamellar structured mesophases. Langmuir, 2000, 16: 824.
    [9] Nakajima A., Hashimoto K., Watanabe T. Recent studies on super-hydrophobic films. Monatshefte fur Chemie, 2001, 132: 31-34.
    [10] Coulson S. R., Woodward I., Badyal J. P. S., et al. Super-repellent composite fluoropolymer surfaces. J Phys Chem B, 2000, 104: 8836-8840.
    [11] Schmidt D. L., Coburn C. E., Dekoven B. M, et al. Water-based nonstick hydrophobic coatings. Nature, 1994, 368: 39-41.
    [12] Guo Z., Zhou F., Hao J., Liu W. Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc, 2005, 127: 15670.
    [13] Qian B. T., Shen Z. Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir, 2005, 21: 9007.
    [14] Wang S., Feng L., Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv Mater, 2006, 18: 767.
    [15]郑黎俊,乌学东,楼增,等.表面微细结构制备超疏水表面.科学通报, 2004, 49: 1691-1699.
    [16] Blossey R. Self-cleaning surfaces-virtual realities. Nature Mat, 2003, 2: 301-306.
    [17] Tsujii K., Yamamoto T., Onda T., et al. Super oil-repellent surfaces. Angew Chem Int Ed, 1997, 36: 1011-1012.
    [18] Shirtcliffe N. J., McHale G., Newton M. I., Perry C. C. Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir, 2005, 21: 937-943.
    [19] Liu H., Feng L., Zhai J., et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir, 2004, 20: 5659-5661.
    [1]邓友权.离子液体-性质、制备和应用.北京:中国石化出版社. 2006.
    [2] Wilkes J. S., Zaworotko M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem Soc Chem Commun, 1992, 35: 965-967.
    [3] Wasserscheid P. W. Keim. Ionic liquids-new "solutions" for transition metal catalysis. Angew Chem Int Ed, 2000, 39: 3772-3789.
    [4] Huddleston J. G., Visser A. E., Reichert W. M., Willauer H. D., Broker G. A., Rogers R. D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem, 2001, 3: 156-164.
    [5]李汝雄.绿色溶剂-离子液体的合成与应用.北京:化学工业出版社. 2004.
    [6] Tang H., Tang J., Ding S., Radosz M., Shen Y. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci A: Polym Chem, 2005, 43: 1432-1443.
    [1] H. X. Wang, J. Fang, T. Cheng, J. Ding, L. T. Qu, L. M. Dai, X. G. Wang and T. Lin,One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity, Chem. Commun., 2008 : 877-879.
    [2] M. Callies and D. Quere, On water repellency,Soft Matter., 2005, 1, 55-61.
    [3] L. Gao and T. J. McCarthy, A Perfectly Hydrophobic Surface (θA/θR = 180°/180°), J. Am. Chem. Soc., 2006, 128 (28) : 9052-9053.
    [4] H. S. Lim, D. Kwak, D. Y. Lee, S. G. Lee and K. Cho, UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film between Superhydrophobicity and Superhydrophilicity.J. Am.Chem. Soc., 2007, 129 (14) : 4128-4129.
    [5] T. L. Sun, L. Feng, X. F. Gao and L. Jiang, Bioinspired Surfaces with Special Wettability, Acc. Chem. Res., 2005, 38 (8) : 644-652.
    [6] X. J. Feng and L. Jiang, Adv. Mater., 2006, 18, 3063; F. Xia and L. Jiang, Bio-Inspired, Smart, Multiscale Interfacial Materials, Advanced Materials., 2008, 20(15) : 2842-2858.
    [7] M. Ma and R. M. Hill, Curr. Superhydrophobic surfaces Current,Opinion in Colloid & Interface Science., 2006, 11(4) : 193-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700