球状TiO_2薄膜的制备、改性及光电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的半导体材料中,TiO2具有无毒、稳定、高催化活性和高折射率等优良特性。但由于其光生电子-空穴对的复合几率较高,对太阳光能利用率低等缺点而严重阻碍了TiO2的工业化应用。本文以钛酸四丁酯[Ti(OC4H9)4]、冰乙酸、聚乙烯吡咯烷酮(PVP)、尿素和硝酸铁为原料,采用溶胶凝胶法和脉冲电沉积法制备了表面由球状颗粒组成的TiO2薄膜、N-TiO2薄膜以及Fe修饰的N-TiO2薄膜(Fe/N-TiO2薄膜)。利用TG-DSC、XRD、SEM、紫外可见吸收以及光电化学测试等检测手段对制备出的各种TiO2薄膜进行了表征。主要研究成果如下:
     首先考察了PVP用量和热处理温度对TiO2薄膜电极形貌及光电化学性质的影响。当PVP为1g时,经500℃热处理1 h制备出由球形颗粒组成TiO2的薄膜,颗粒尺寸为100-200 nm。400℃时,薄膜球形颗粒尺寸达到250 nm左右,表面较光滑,随着热处理温度的上升表面球形颗粒有变小的趋势,并且颗粒表面也变得较粗糙。另外,光电流随热处理温度先上升后下降,在500℃时,光电流达到最大值。在施加偏压为1.0V(vs Ag/AgCl),热处理温度为400℃、500℃和600℃时的光电流密度分别为0.23、0.42和0.31 mA/cm2。
     其次,在上述基础上,以尿素[CO(NH2)2]为氮源,成功实现TiO2薄膜电极的N掺杂。研究表明,N的引入对薄膜形貌没有影响,当尿素含量为4%时,N-TiO2薄膜样品的光响应范围扩展到600 nm以上的可见光区,在电位为1.0V(vs Ag/AgCl)时,光电流密度比未掺杂薄膜提高了1倍。
     最后,为进一步提高TiO2薄膜电极的光电转换效率,本文采用脉冲电沉积法对球状N-TiO2薄膜电极进行表面修饰,研究了Fe修饰对薄膜光电性能的影响。结果表明,通过调节沉积电流可实现Fe负载量的控制,沉积铁后样品光电流密度在1.4 V下达到1.55 mA/cm2,相比沉积前提高了50%。
Among various oxide semiconductors, titanium dioxide (TiO2) has properties of non-toxic, high catalytic activity, optimum chemical stability and high refractive index. However, fast recombination rate of photogenerated electron-hole pairs in the bulk TiO2 and the low quantum yield of photochemical conversion for solar severely hinder the industrial applications of TiO2 semiconductor material. In this study, five chemical materials, i.e., tetrabutylortitanate, ice acetic acid, polyvinylpyrrolidone (PVP), urea and ferric nitrate, were used as raw material. The TiO2 film, N- TiO2 film and Fe/N- TiO2 film with spherical particles on surface were prepared by sol-gel method and pulse electrodeposition. The TG-DSC, XRD, SEM, UV-Vis absorption spectroscopy and photocurrent spectroscopy analysis were performed to characterize the morphology, crystalline phase, photo-absorption ability and photoelectrochemical property of the sample. The main results are outlined as following:
     Firstly, the effects of PVP contents and sintering temperature on microstructure and photoelectrochemical properties of TiO2 films were investigated. The TiO2 films with spherical particles of size about 100-200 nm were synthesized after heat treatment at 500℃for 1 hour by adding 1 g PVP. Spherical particle size reached~250 nm and the surface was smooth when films were prepared at 400℃. The grain size becomes smaller and the surface of the grain is rougher with the increase of heat treatment temperature. In addition, photocurrent becomes higher firstly and then becomes lower with the increase of heat treatment temperature. The photocurrent reached the maximum value when treated at 500℃. The photocurrent of N-TiO2 films calcined at 400℃,500℃,600℃are 0.23,0.42 and 0.31 mA/cm2 respectively.
     Furthermore, the nitrogen-doped TiO2 film was fabricated by sol-gel method using urea as N source. The result indicates that inducing of N has no effect on morphology of film. Optical response of TiO2 sample with 4% N extended to over 600 nm in visible light area. In comparison to undoped TiO2, the N-doped samples show a significant enhancement in photoresponse with photocurrent increase of 1 time at 1.0 V (vs Ag/AgCl).
     Finally, to further improve photoelectric conversion efficiency, we have fabricated Fe-doped N-TiO2 film by pulse voltage electrodeposition. The effects of Fe content on photoelectrochemical properties of N-TiO2 films were investigated. The results show that ferric can be doped successfully onto TiO2 photoelectrodes by controlling deposition current, and the Fe/N-TiO2 film show significant enhancement in photoresponse with photocurrent increase of 50%.
引文
[1]Sun W-T, Yu Y, Pan H-Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society,2008.130 (4): 1124-1125.
    [2]Liu Z, Jin Z, Li W, et al. Preparation of ZnO porous thin films by sol-gel method using PEG template. Materials Letters,2005.59 (28):3620-3625.
    [3]Fujii M, Nagasuna K, Fujishima M, et al. Photodeposition of CdS quantum dots on TiO2:preparation, characterization, and reaction mechanism. The Journal of Physical Chemistry C,2009.113 (38):16711-16716.
    [4]Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society,2007.129 (14):4136-4137.
    [5]Miyauchi M, Nakajima A, Watanabe T, et al. Photoinduced Hydrophilic Conversion of TiO2/WO3 Layered Thin Films. Chemistry of Materials,2002.14 (11):4714-4720.
    [6]Yang H, Shi R, Zhang K, et al. Synthesis of WO3/TiO2 nanocomposites via sol-gel method. Journal of Alloys and Compounds,2005.398 (1-2):200-202.
    [7]Lee J-K, Jeong B-H, Jang S-i, et al. Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry,2009.15 (5):724-729.
    [8]Kim S, Hwang S-J, Choi W. Visible light active platinum-ion-doped TiO2 photocatalyst. The Journal of Physical Chemistry B,2005.109 (51): 24260-24267.
    [9]Driessen M D, Grassian V H. Photooxidation of trichloroethylene on Pt/TiO2. The Journal of Physical Chemistry B,1998.102 (8):1418-1423.
    [10]Liang Y-C, Wang C-C, Kei C-C, et al. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. The Journal of Physical Chemistry C,2011.115 (19):9498-9502.
    [11]Wang X H, Li J G, Kamiyama H, et al. Pyrogenic iron(Ⅲ)-doped TiO2 nanopowders synthesized in RF thermal plasma:phase formation, defect structure, band gap, and magnetic properties. Journal of the American Chemical Society,2005.127(31):10982-10990.
    [12]Klosek S, Raftery D. Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. The Journal of Physical Chemistry B,2001.105 (14): 2815-2819.
    [13]Chen D, Jiang Z, Geng J, et al. Carbon and nitrogen Co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial & Engineering Chemistry Research,2007.46 (9):2741-2746.
    [14]Ao Y, Xu J, Zhang S, et al. A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Applied Surface Science,2010.256 (9):2754-2758.
    [15]Czoska A M, Livraghi S, Chiesa M, et al. The nature of defects in fluorine-doped TiO2. The Journal of Physical Chemistry C,2008.112 (24):8951-8956.
    [16]Yang K, Dai Y, Huang B. Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles. The Journal of Physical Chemistry C,2007. 111(51):18985-18994.
    [17]Li Z G, Miyake S. Characteristics of N-doped TiO2 thin films grown on unheated glass substrate by inductively coupled plasma assisted dc reactive magnetron sputtering. Applied Surface Science,2009.255 (22):9149-9153.
    [18]Mallak M, Bockmeyer M, Lobmann P. Liquid phase deposition of TiO2 on glass: systematic comparison to films prepared by sol-gel processing. Thin Solid Films, 2007.515 (20-21):8072-8077.
    [19]Foster H A, Sheel D W, Sheel P, et al. Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. Journal of Photochemistry and Photobiology A:Chemistry,2010.216 (2-3):283-289.
    [20]Jagminas A, Mazeika K, Bernotas N, et al. Compositional and structural characterization of nanoporous films produced by iron anodizing in ethylene glycol solution. Applied Surface Science,2011.257 (9):3893-3897.
    [21]Li K, Wang Y, Sun Y, et al. Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell. Materials Science and Engineering:B,2010.175 (1):44-47.
    [22]Saini K K, Sharma S D, Chanderkant, et al. Structural and optical properties of TiO2 thin films derived by sol-gel dip coating process. Journal of Non-Crystalline Solids,2007.353 (24-25):2469-2473.
    [23]Masuda Y, Kato K. Anatase TiO2 films crystallized on SnO2:F substrates in an aqueous solution. Thin Solid Films,2008.516 (9):2547-2552.
    [24]San Vicente G, Morales A, Gutierrez M T. Sol-gel TiO2 antireflective films for textured monocrystalline silicon solar cells. Thin Solid Films,2002.403-404: 335-338.
    [25]Senthil T S, Muthukumarasamy N, Agilan S, et al. Preparation and characterization of nanocrystalline TiO2 thin films. Materials Science and Engineering:B, In Press, Corrected Proof:
    [26]Li G, Wang T, Zhu Y, et al. Preparation and photoelectrochemical performance of Ag/Graphene/TiO2 composite film. Applied Surface Science, In Press, Accepted Manuscript:
    [27]Takeda S, Suzuki S, Odaka H, et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films,2001.392 (2):338-344.
    [28]常学森,巴德纯,刘坤,et al.磁控溅射状态三个参数理论分析.真空与低温,2007.13(003):178-182.
    [29]DeSario P A, Graham M E, Gelfand R M, et al. The effect of Nb substitution on synthesis and photo-response of TiO2 thin films prepared by direct current magnetron sputtering. Thin Solid Films,2011.519 (11):3562-3568.
    [30]Nagayama H, Honda H, Kawahara H.Preparation of photocatalyst doped TiO2 with liquid phase deposition. J. Electrochem. Soc,1988.359:2013-2016.
    [31]Zhang J, Ding Q, Wang R, et al. Liquid phase deposition of mesoporous TiO2/DNA hybrid film:characterization and photoelectrochemical investigation. Electrochimica Acta,2010.55 (11):3614-3620.
    [32]李洪义,冉津,王金淑,et al.液相沉积法制备YiO2薄膜及其对304不锈钢的光生阴极防护.北京工业大学学报,2009.9:
    [33]Cuong T M, A.Tuan V, Linh B H, et al., in:E.M. Gaigneaux MDSHPAJJAM, P Ruiz (Eds.), Studies in Surface Science and Catalysis, Elsevier,2010, pp. 497-500.
    [34]Li S, Zhang G, Guo D, et al. Anodization fabrication of highly ordered TiO2 nanotubes. The Journal of Physical Chemistry C,2009.113 (29):12759-12765.
    [35]Lai Y, Lin C, Huang J, et al. Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 Films. Langmuir,2008.24 (8):3867-3873.
    [36]Bu S J, Jin Z G, Liu X X, et al. Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. Journal of the European Ceramic Society,2005.25 (5):673-679.
    [37]程萍,邓长生,戴遐明.纳米TiO2的表面修饰及其光电性能.武汉理工大学学报,2007.29(10):145-148,157.
    [38]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972.238 (5358):37-38.
    [39]Graetzel M. Artificial photosynthesis:water cleavage into hydrogen and oxygen by visible light. Accounts of Chemical Research,1981.14 (12):376-384.
    [40]Zhou J, Zhang Y, Zhao X S, et al. Photodegradation of benzoic acid over metal-doped TiO2. Industrial & Engineering Chemistry Research,2006.45 (10): 3503-3511.
    [41]Peng Y, He J, Liu Q, et al. Impurity concentration dependence of optical absorption for phosphorus-doped anatase TiO2. The Journal of Physical Chemistry C,2011.115 (16):8184-8188.
    [42]Choi H, Antoniou M G, Pelaez M, et al. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environmental Science & Technology,2007.41 (21): 7530-7535.
    [43]Fang J, Wang F, Qian K, et al. Bifunctional N-doped mesoporous TiO2 photocatalysts. The Journal of Physical Chemistry C,2008.112 (46): 18150-18156.
    [44]曹江林,曹楚南.TiO2和过渡金属掺杂TiO2薄膜电极的制备及光电化学性能研究.2005.
    [45]Mohammadi M R, Cordero-Cabrera M C, Fray D J, et al. Preparation of high surface area titania (TiO2) films and powders using particulate sol-gel route aided by polymeric fugitive agents. Sensors and Actuators B:Chemical,2006.120 (1): 86-95.
    [46]王作辉,田守卫,刘阳思,et al.纳米TiO2薄膜的制备及自清洁性能研究.钛工业进展,2007.24(002):37-40.
    [47]Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters,1985. 29 (1-2):211-214.
    [48]Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A:Chemistry,2003.156 (1-3):227-233.
    [49]Yu J C, Ho W, Yu J, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology,2005.39 (4):1175-1179.
    [50]Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology,1998.32 (5):726-728.
    [51]Becquerel J, Opechowski W. Pouvoir rotatoire paramagne'tique et aimantation du fluosilicate de nickel hexahydrate, dans la direction de l'axe optique. Le champ cristallin. Physica,6 (7-12):1039-1056.
    [52]J. Britt C F. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters,1993.62 (22):
    [53]Tsay C-Y, Fan K-S, Chen S-H, et al. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. Journal of Alloys and Compounds,2010.495 (1):126-130.
    [54]Long R, Dai Y, Huang B. Geometric and electronic properties of Sn-doped TiO2 from first-principles calculations. The Journal of Physical Chemistry C,2008. 113 (2):650-653.
    [55]Emeline A V, Furubayashi Y, Zhang X, et al. Photoelectrochemical behavior of Nb-doped TiO2 electrodes. The Journal of Physical Chemistry B,2005.109 (51): 24441-24444.
    [56]施永明,赵高凌.染料敏化纳米薄膜太阳能电池的研究进展.材料科学与工程,2002.20(001):125-127.
    [57]Li J-G, Biichel R, Isobe M, et al. Cobalt-doped TiO2 nanocrystallites: radio-frequency thermal plasma processing, phase structure, and magnetic properties. The Journal of Physical Chemistry C,2009.113 (19):8009-8015.
    [58]In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. Journal of the American Chemical Society, 2007.129(45):13790-13791.
    [59]潘凯.不同取代基卟啉衍生物敏化纳米TiO2多孔膜电极的光电性质研究.高等学校化学学报,2004.25(5):4.
    [60]张天永,赵进才.染料及表面活性剂的太阳光催化降解.天津大学学报:自然科学与工程技术版,2003.36(001):5-8.
    [61]李祥忠,赵进才.可见光诱导的TiO2界面光化学过程Photographic Science and Photochemistry,2002.20 (4):
    [62]李静谊,苗茵,赵薇,et al.紫外和可见光照射下在TiO2纳米粒子上染料污染物的光降解研究.第三届全国环境化学学术大会论文集,2005.
    [63]Wang S, Zhang X, Cheng G, et al. Study on electronic transport properties of WO3/TiO2 nanocrystalline thin films by photoassisted conductive atomic force microscopy. Chemical Physics Letters,2005.405 (1-3):63-67.
    [64]Xiong C, Balkus K J. Mesoporous molecular sieve derived TiO2 nanofibers doped with SnO2. The Journal of Physical Chemistry C,2007. 111(28): 10359-10367.
    [65]Chen T-j, Shen P. Defect Clustering and Ordering in Zn-Doped TiO2 upon Solution Annealing. The Journal of Physical Chemistry C,2008.113 (1): 328-332.
    [66]Xin B, Jing L, Ren Z, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. The Journal of Physical Chemistry B,2005.109 (7):2805-2809.
    [67]Argazzi R, Bignozzi C A, Heimer T A, et al. Light-induced charge separation across Ru(II)-modified nanocrystalline TiO2 interfaces with phenothiazine donors. The Journal of Physical Chemistry B,1997.101 (14):2591-2597.
    [68]Morandeira A, Lopez-Duarte I, Martinez-Diaz M V, et al. Slow electron injection on Ru-phthalocyanine sensitized TiO2. Journal of the American Chemical Society,2007.129 (30):9250-9251.
    [69]Rahman M, Krishna K, Soga T, et al. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. Journal of Physics and Chemistry of Solids,1999.60 (2):201-210.
    [70]Xu J-P, Yang X, Lv L-P, et al. Gold-nanoparticle-stabilized pluronic micelles exhibiting glutathione triggered morphology evolution properties. Langmuir, 2010.26 (22):16841-16847.
    [71]Yogi C, Kojima K, Hashishin T, et al. Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. The Journal of Physical Chemistry C,2011.115 (14):6554-6560.
    [72]Wang Y, Cheng H, Hao Y, et al. Preparation, characterization and photoelectrochemical behaviors of Fe (Ⅲ)-doped TiO2 nanoparticles. Journal of Materials Science,1999.34 (15):3721-3729.
    [73]苏碧桃,张彰.Fe3+掺杂的TiO2纳米复合粒子的合成及表征.化学学报,2002.60(011):1936-1940.
    [74]Zheng J W, Bhattcahrayya A, Wu P, et al. The origin of visible light absorption in chalcogen element (S, Se, and Te)-doped anatase TiO2 photocatalysts. The Journal of Physical Chemistry C,2010.114 (15):7063-7069.
    [75]Kuznetsova I N, Blaskov V, Znaidi L. Study on the influence of heat treatment on the crystallographic phases of nanostructured TiO2 films. Materials Science and Engineering:B,2007.137 (1-3):31-39.
    [76]征茂平,金燕苹,金国良,et al. TiO2/PVP杂化薄膜的AFM研究Jourmal of Chinese Electro Microscopy Society,2000.19 (4):
    [77]征茂平,金燕苹Sol-gel法制备TiO2/PVP纳米复合材料及其表征.金属学报,1999.35(011):1224-1228.
    [78]张立同,樊慧庆,金国良,et al. Sol-Gel法制备TiO2/PVP复合材料及其显微硬度研究.材料科学与工程,2000.1:
    [79]征茂平,金燕苹Sol-Gel法制备TiO2/PVP纳米复合材料薄膜及性能研究.功能材料,2000.31(004):431-432.
    [80]Park J, Choi W. TiO2-nafion photoelectrode hybridized with carbon nanotubes for sensitized photochemical activity. The Journal of Physical Chemistry C,2009. 113(49):20974-20979.
    [81]Wang X H, Li J G, Kamiyama H, et al. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(Ⅲ)-doped TiO2 nanopowders under UV and visible light irradiation. The Journal of Physical Chemistry B,2006.110 (13):6804-6809.
    [82]Li F, Jiang Y, Xia M, et al. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C, 2009.113(42):18134-18141.
    [83]Mattsson A, Leideborg M, Larsson K, et al. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. The Journal of Physical Chemistry B,2005.110 (3):1210-1220.
    [84]Wen B, Liu C, Liu Y. Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions. Inorganic Chemistry,2005.44 (19):6503-6505.
    [85]Patil P S, Mujawar S H, Inamdar A I, et al. Electrochromic properties of spray deposited TiO2-doped WO3 thin films. Applied Surface Science,2005.250 (1-4): 117-123.
    [86]Jeon S, Braun P V. Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles. Chemistry of Materials,2003.15 (6):1256-1263.
    [87]Li J, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. Journal of the American Chemical Society,2007.129 (51):15839-15847.
    [88]Yin J B, Zhao X P. Preparation and enhanced electrorheological activity of TiO2 doped with chromium ion. Chemistry of Materials,2003.16 (2):321-328.
    [89]Yin J B, Zhao X P. Enhanced electrorheological activity of mesoporous Cr-doped TiO2 from activated pore wall and high surface area. The Journal of Physical Chemistry B,2006.110 (26):12916-12925.
    [90]Wang H, Wu Z, Liu Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. The Journal of Physical Chemistry C,2009.113 (30):13317-13324.
    [91]Parida K M, Sahu N, Tripathi A K, et al. Gold promoted S,N-doped TiO2:an efficient catalyst for CO adsorption and oxidation. Environmental Science & Technology,2010.44 (11):4155-4160.
    [92]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters,2005.6 (1):24-28.
    [93]Tang X, Li D. Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. The Journal of Physical Chemistry C,2008.112 (14):5405-5409.
    [94]Balcerski W, Ryu S Y, Hoffmann M R. Visible-light photoactivity of nitrogen-doped TiO2:photo-oxidation of HCO2H to CO2 and H2O. The Journal of Physical Chemistry C,2007. 111(42):15357-15362.
    [95]Cong Y, Zhang J, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. The Journal of Physical Chemistry C,2007.111(19):6976-6982.
    [96]Pesci M, Gallino F, Di Valentin C, et al. Nature of defect states in nitrogen-doped MgO. The Journal of Physical Chemistry C,2009.114 (2):1350-1356.
    [97]Spadavecchia F, Cappelletti G, Ardizzone S, et al. Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations. The Journal of Physical Chemistry C,2011.115 (14): 6381-6391.
    [98]Jagadale T C, Takale S P, Sonawane R S, et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. The Journal of Physical Chemistry C,2008.112 (37):14595-14602.
    [99]Zhao Y, Qiu X, Burda C. The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chemistry of Materials,2008.20 (8):2629-2636.
    [100]Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. Journal of Hazardous Materials,2009. 168(1):253-261.
    [101]Ao Y, Xu J, Fu D, et al. A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Journal of Hazardous Materials,2009.167 (1-3):413-417.
    [102]Han L, Xin Y, Liu H, et al. Photoelectrocatalytic properties of nitrogen doped TiO2/Ti photoelectrode prepared by plasma based ion implantation under visible light. Journal of hazardous materials,2010.175 (1-3):524-531.
    [103]Lee S, Cho I S, Lee D K, et al. Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. Journal of Photochemistry and Photobiology A:Chemistry,2010.213 (2-3): 129-135.
    [104]Ma Y, Zhang J, Tian B, et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. Journal of hazardous materials,2010.182 (1-3):386-393.
    [105]Fattori A, Peter L M, Wang H, et al. Fast hole surface conduction observed for indoline sensitizer dyes immobilized at fluorine-doped tin oxide-TiO2 Surfaces. The Journal of Physical Chemistry C,2010.114 (27):11822-11828.
    [106]Yang K, Dai Y, Huang B, et al. Density functional characterization of the visible-light absorption in substitutional C-anion-and C-cation-doped TiO2. The Journal of Physical Chemistry C,2009.113 (6):2624-2629.
    [107]Wang J, Tafen D N, Lewis J P, et al. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. Journal of the American Chemical Society,2009. 131 (34):12290-12297.
    [108]Liu G, Yang H G, Wang X, et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. Journal of the American Chemical Society,2009.131 (36):12868-12869.
    [109]Zhang K, Oh W. Kinetic study of the visible light-induced sonophotocatalytic degradation of MB solution in the presence of Fe/TiO2-MWCNT Catalyst. Korean Chemical Society,2010.31 (6):1589-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700