磁性纳米颗粒的表面修饰及其生物学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用几种方法对Fe3O4磁性纳米颗粒进行表面修饰,得到了能应用于生物学领域的复合纳米颗粒。首先是创造性地制备了具有三层半导体纳米外层和一个磁性纳米颗粒核的双功能纳米复合材料,该材料是在粒径分布均匀的磁性纳米颗粒表面先沉积一层半导体纳米层,得到同时具有磁性和荧光性能的双功能纳米复合材料,在此基础上,通过再在上面包覆带隙较宽的半导体纳米层,得到荧光效率显著增加的双功能复合纳米颗粒,同时,为了调节两半导体纳米晶体之间的晶格失配情况,使用了中间层的方法。在制备用于老年痴呆症早期诊断的磁共振试剂中,我们将Fe3O4磁性纳米颗粒连接上淀粉样蛋白,在制备过程中,先将Fe3O4磁性纳米颗粒表面进行官能化,再通过化学键连接的方式连接生物分子,将得到的试剂在转基因小鼠上实验,并在磁共振仪上显影,得到了有明显改变的小鼠脑部磁共振图像。同时,为了得到具有良好保护性能的磁性纳米颗粒复合物,我们将既有良好抗腐蚀性,又可以用在生物学体系的SiO2作为包覆物对磁性纳米颗粒进行表面修饰,得到了性能良好的Fe3O4/SiO2复合纳米颗粒,我们将该复合纳米颗粒进行了生物学连接实验,发现其与生物分子具有良好的连接性能。然后我们用透射电镜、荧光显微镜等设备观察了所制备样品的形貌,用X射线光电子能谱仪、X射线衍射等研究了样品的结构,用荧光光谱仪测试了双功能纳米材料的荧光效率,用红外光谱仪分析了部分样品的表面官能化情况,结果发现经过表面修饰后的材料,都有明显的性能改进。所制备的材料不仅具有颗粒均匀性,而且分散良好。用半导体材料修饰后得到的复合材料,不仅兼有磁性和荧光性能,而且荧光效率有较大提高,该制备方法为以后的性能改进打下了良好的基础、提供了新的思路;用表面官能化后连接淀粉样蛋白得到的磁性纳米颗粒,不仅是磁性纳米材料生物学应用的良好实例,还为未来临床诊断老年痴呆提供客观的依据,具有明显的社会效益和经济效益;通过SiO2修饰后的磁性纳米复合材料,具有良好的抗腐蚀性能,不仅可以耐很强的酸碱,而且可以耐较高的温度,该纳米复合材料还具有良好的生物分子连接性。
Magnetic Fe3O4 nanoparticles were modified by other substances to get the nanocomposites which can be used in biologic field. Semiconductors were deposited on surface of magnetic Fe3O4 nanoparticles to get bifunctional nanocomposites. Functional groups were also used to modify magnetic Fe3O4 nanoparticles and connected them to biomolecular to form the nanocomposits named ultrasmall supreparamagnetic iron oxide nanoparticles– Aβ(SPION- Aβ). SiO2 was coated on magnetic Fe3O4 nanoparticles to get Fe3O4/SiO2 nanocomposites.
     Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites were obtained by depositing heterogeneous semiconductor on magnetic nanoparticles. The structure and properties of the Fe3O4/CdSe/ZnS nanocomposites were fully characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), superconduct quantum interfere device (SQUID) and photoluminescence (PL). The results indicate that the Fe3O4/CdSe/ZnS nanocomposites are superparamagnetic and are about 8nm in size. The quantum yield of the nanocomposites increases from 2-3% in Fe3O4/CdSe to 10-15% in Fe3O4/CdSe/ZnS, together with a red shift of both the absorption peak and PL band. The increase of quantum yield is because of passivating the surface of magnetic-CdSe nanocomposites with a ZnS layer.
     Chemical reaction was adopted to modify surface of dextran-SPION to functional groups in this study. Fourier transforms infrared spectrometer (FTIR) and XPS were used to verify the functional groups of the modified dextran-SPION. Both morphology and magnetic property of samples were studied by TEM and vibrating sample magnetometer (VSM). The results indicate that unmodified and modified dextran-SPION were superparamagnetism and about 5nm in size. Finally, SPION was connected to biomolecular Aβto get nanocomposites named SPION-Aβ(SPION-Aβ). It was studied on transgenic mice and got obvious changes in their head imaging under magnetic field.
     A sol-gel procedure was used to cover Fe3O4 nanoparticles with SiO2 shell, forming a core/shell structure. The core/shell nanocomposites were synthesized by a two-step process. First, Fe3O4 nanoparticles were obtained through co-precipitation and dispersed in aqueous solution through electrostatic interactions in the presence of tetramethylammonium hydroxide (TMAOH). In the second step, Fe3O4 was capped with SiO2 generated from the hydrolyzation of tetraethyl orthosilicate (TEOS). The structure and properties of the formed Fe3O4/SiO2 nanocomposites were characterized and the results indicate that the Fe3O4/SiO2 nanocomposites are superparamagnetic and are about 30nm in size. Bioconjugation to IgG was also studied. Finally, the mechanism of depositing SiO2 on magnetic nanoparticles was discussed.
引文
[1] 张志馄,崔作林. 《纳米材料与纳米技术》. 第四版. 北京. 国防工业出版社, 2001年7月. 4-6
    [2] 张立德,牟季美. 《纳米材料与纳米结构》. 第二版. 北京. 科学出版社,2001年3月. 2-3
    [3] 徐辉碧.《纳米医药》. 第一版. 北京. 清华大学出版社,2004年1月. 299-301
    [4] 白木,周洁. 纳米磁性材料及其应用. 信息记录材料, (2002), 3(2):38-39
    [5] Bawendi MG, Steigerwald M. L., Brus L E. The quantum mechanicsof larger semiconductor clusters (“quantum dots”). Annu RevPhys Chem , 1990 , 41 : 477 —496
    [6] Junu Chatterjee, Yousef Haik, Ching-Jen Chen. Polythylene magnetic nanoparticle: a new magnetic material for biomedical applications. Journal of Magnetism and Magnetic Materials. 2002, 246: 382-391
    [7] R.S.Molday and L.L.Molday Separation of cells labeled with immunonspecific iron dextran microspheres using high magnetic chromatography. FEBS. 1984, 170(2): 232-237
    [8] N.Cem Balci, Mustafa Sirvanci, Cihan Duran, et al., Hepatic adenomatosis MRI demonstration with the use of superparamagnetic iron oxide. Journal of Clinical Imaging 2002, 26: 35-38
    [9] Maire-France Bellin, Catherine Beigelman, Sophie Precetti-Morel. Iron oxide-enhanced MR lymphography: initial experience. European Journal of Radiology. 2000, 34: 257-264
    [10] 董聿生,梁峰,余向阳等. 新型磁性葡聚糖亲和吸附剂的制备及其在尿激酶纯化中的应用. 色谱,2000,19(1):21-24
    [11] Cavicchi R E, Silsbee R H. First steps towards tailoring fine and ultrafine iron particles using micromulsions. Phys. Rev. Lett., 1984, 52(5): 1453-1457
    [12] M Arturo Lopez-Quintela, Jose Rivas. Chemical reaction in microemulsions: a powerful method to obtain ultrafine particles. Langmuir, 1999, 154(4): 447-453
    [13] Ball P, Garwin L, Matrix-mediated synthesis of nanocrystalline r-Fe2O3: a new optically transparent magnetic material. Nature, 1992, 355: 761-771
    [14] 沈良,江国华. 磁性纳米功能材料研究进展. 杭州师范学院学报, 2001,18(5): 40~44
    [15] S GRIMM, M SCHULTZ, S BARTH, et al., Flame pyrolysis – a preparation route for ultrafine pure -Fe2O3 powders and the control of their particle size and properties, J Mater. Sci., 1997, 32: 1083-1092
    [16] 李春忠,朱以华,车阿小等. 掺硅对铁黄合成过程及铁黄形态的影响 Ⅰ.掺硅时间和掺硅量的影响. 华东理工大学学报,1997, 23 (5):571-574
    [17] 关有生,金鑫,朱簇音等. 控制铁黄(α-FeOOH)长度的方法研究——分散剂对α-FeOOH生成的影响. 应用科学学报, 1990, S(1):76-79
    [18] 王世敏,许祖勋,傅晶. 纳米材料制备技术. 第一版. 化学工业出版社,2002. 15-17
    [19] 刘祖黎,杜玉卿,李震等. 超小型超顺磁性氧化铁磁共振对比剂的制备及性能研究. 功能材料,2005,1:3-6
    [20] Z.L. Liu, H.B. Wang, Q.H. Lu, et al. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2004, 283: 258–262
    [21] Z. L. Liu, X. Wang, K. L. Yao, et al. Synthesis of magnetite nanoparticles in W/O microemulsion. Journal of Material Science, 2004, 39: 2633 – 2636
    [22] Feltin N. Peleni M. P. New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles. Langumuir, 1997, 13(15): 3927-3933
    [23] Dai J. B., Wang J. Q., Sangregorio C., et al. Magnetic coupling induced increase in the blocking temperature of -Fe2O3 nanoparticles. J. Appl. Phys., 2000, 87(10): 7397-7399
    [24] Pascal C., Pascal J. L., Favier F.,et al. Electrochemical Synthesis for the Control of -Fe2O3 Nanoparticle Size, Morphology, Microstructure, and Magnetic Behavior. Chem.Mater., 1999, 11: 141-147
    [25] Rockenberger, J., Scher, E. C., Alivisatos, A. P. A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides. J. Am. Chem. Soc., 1999, 121: 11595-11596
    [26] Hyeon, T., Lee, S. S., Park, J., et al. Synthesis of Highly Crystalline andMonodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc., 2001,123: 12798-12801
    [27] Sun, S., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J Am. Chem. Soc., 2002, 124: 8204-8205
    [28] Sun S, Zeng H., Robinson D.B, et al. Monodisperse MFe2O4 (M=Fe,Co,Mn) nanoparticles. J Am. Chem. Soc., 2004, 126: 273-279
    [29] Pinna, N., Grancharov, S., Beato, P. et al. Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility. Chem. Mater., 2005, 17(11): 3044-3049
    [30] 王乐勤,赵开弘,李耀辉等. 硅烷化磁铁粉固定胰蛋白酶的研究. 武汉大学学报, 1999, 45(2): 203-206
    [31] Perez, J. M., O'Loughin, T., Simeone, F. J., et al. DNA-Based Magnetic Nanoparticle Assembly Acts as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents. J. Am. Chem. Soc., 124(12): 2856-2857
    [32] Joseph F. Poduslo, Thomas M. Wengenack, Geoffry L. Curran, et al. Molecular Targeting of Alzheimer’s Amyloid Plaques for Contrast-Enhanced Magnetic Resonance Imaging. Neurobiology of Disease, 2002, 11: 315–329
    [33] Youssef Zaim Wadghiri, Einar M. Sigurdsson, Marcin Sadowski, et al. Detection of Alzheimer’s Amyloid in Transgenic Mice Using Magnetic Resonance Microimaging. Magnetic Resonance in Medicine, 2003,50: 293–302
    [34] Kiwada H, Sato J , Yamada S , et al. Fea sibility of magnetic liposomes as a targeting device for drugs. Chem Pha rm Bull ( Tokyo) , 1986, 34(10) : 4253-4258.
    [35] 樊祥山,张东生,郑杰. 磁性脂质体在肿瘤治疗研究中的应用. 国外医学肿瘤学分册, 2003, 30 (2) :147-149.
    [36] Kuznetsov A A , Filippov V I , Alyautdin R V , et al. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti2cancer photodynamic drugs. J Magn. Magn. Mater., 2001 , 225 (12) : 95-100.
    [37] Shinkai M, Yanase M, Suzuki M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn. Magn. Mater., 1999, 194(13) :176-184.
    [38] Yanase M, Shinkai M, Honda H , et al. Anticancer immunity inductio n by intracellular hyperthermia using magnetic cationic liposomes . Jpn J Cancer Res, 1998, 89 (7): 775-782.
    [39] Kubo T, Sugita T, Shimose S, et al. Targeted delivery of anticanc er drugs with intravenously administered magnetic liposomes in osteosarcoma2bearing hamsters. Int J Oncol, 2000, 17 (2): 309-315.
    [40] Rocha F M, de Pinho S C , Zollner R L. Preparation and characteriz ation of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies . J. Magn. Magn. Mater., 2001 , 225 (1 ,2) : 101-108.
    [41] 李铁福,邓英杰,王雨青. 磁性脂质体的研究进展. 药学进展, 2002, 26(1): 5-10.
    [42] Koelle D., Kleiner R , Ludwig F., et al. High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys., 1999, 71, 631-678
    [43] Lange J., K6titz R., Haller A., et al. Magnetorelaxometry—a new binding specific detection method based on magnetic nanoparticle. Journal of Magnetism and Magnetic Materials, 252, 2002: 381-383
    [44] Taylor J. I., Hurst C. D,Davies M. J., et al. Application of magnetite and silica–magnetite composites to the isolation of genomic DNA. J.Charomatogr. A, 2000, 890: 159-166
    [45] 何晓晓,王柯敏,谭蔚江等. 超顺磁性DNA纳米富集器应用于痕量寡聚核苷酸的富集. 高等学校化学学报, 2003, 24(1): 40-42
    [46] 朱以华,王强斌,古宏晨等. 表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用. 中国医学科学院学报, 2002, 24(2): 118-120
    [47] Perrin-Cocon L. A, Chesne S., Pignot-Paintrand I., et al. Use of magnetic nanobeads to study intracellular antigen processing. Journal of Magnetism and Magnetic Materials, 2001, 225: 161-168
    [48] Josephson, L., Tung, C.-H., Moore, A., et al. High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates. Bioconjugate Chem., 1999, 10(2): 86-191
    [49] Rosenthal S.J. Bar-coding biomolecules with fluorescent nanocrystals. Nat Biotechnol, 2001, 19: 621-622.
    [50] Correa-Duarte MA, Giersig M, Liz-Marzan LM. Stabilization of CdS. semiconductor nanoparticles against photodegradation by a silica procedure. Chem Phys Lett, 1998, 286: 497-501.
    [51] Mulvaney P, Liz-Marzan LM, Giersig M, et al. Silica encaptulation of quantum dots and metal clusters.J Mater Chem, 2000, 10: 1259-1270.
    [52] 谭翠燕,梁汝强,阮康龙. 量子点在生命科学中的应用.生物化学与生物物理学报, 2002, 34(1): 1-5.
    [53] Han MY, Gao X, Su JZ, Nie SM. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631-635.
    [54] Benoit Dubertret, Paris Skourides, David J. Norris, et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298(29): 1759-1762
    [55] M.Henini, A.Patanè, et al. Electrical and optical properties of self-assembled quantum dots. Microelectronics Journal, 2002, 33: 313-318.
    [56] Kamiya I., Ichiro Tanaka, et al. Density and size control of self-assembled InAs quantum dots: preparation of very low-density dots by post-annealing. Physica E, 2002, 13: 1172-1175.
    [57] Chan, Warren C.W., Maxwell, Dustin J., Gao, Xiaohu, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 2002, 13: 40-46.
    [58] Lianhua Qu, Z. Adam Peng, Xiaogang Peng. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Letters, 2001, 1(6): 333-337.
    [59] 林章霞,苏星光,张皓. 用水溶液中合成的量子点作为生物荧光标记物的研究.高等学校化学学报,2003, 24(2): 217-221
    [60] Trindade, T., O'Brien, P., Pickett, N. L. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives, Chemistry of Materials, 2001, 13(11): 3843-3858.
    [61] S.Wageh, Zhao SuLing, et al. Growth and optical properties of colloidal ZnSnanoparticles. Journal of Crystal Growth, 2003, 255: 332-337.
    [62] Mattoussi, H., Mauro, J. M., Goldman, E. R., et al. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc., 2000, 122: 12142-12150
    [63] Gerion, D., Pinaud, F., Williams, S. C. et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B, 2001, 105: 8861-8871
    [64] Han M, Gao X, Su J Z, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631 -635
    [65] Daniel R. Larson, Warren R. Zipfel, Rebecca M. Williams, et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 2003, 300: 1434-1436
    [66] Bruchez Jr. M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013-2016.
    [67] Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection.Science, 1998, 281: 2016 -2018.
    [68] 任国兰,柴宜民等. 量子点荧光探针的合成.山西师范大学学报(自然科学版).2003, 17(1):60-62.
    [69] Andrew J, Sutherland. Current Opinion in Solid State and Materials. Science, 2002, 286: 365-370.
    [70] Sun BQ, Xie WZ, Yi GS, et al. Microminaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J Immunol Mothods, 2001, 249: 85-89.
    [71] Baoquan Sun, Wenzhang Xie, Guangshun Yi, et al. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. Journal of Immunological Methods, 2001, 249: 85-89.
    [72] Zhang CY, Ma H, Nie SM, et al. Quantum dot-labeled trichosanthin. Analyst, 2000, 125: 1029-1031.
    [73] Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots.J Am Chem Soc, 1999, 121: 8122-8123.
    [74] Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631-635.
    [75] Rosenthal SJ. Bar-coding biomolecules with fluorescent nanocrystals. Nat Biotechnol, 2001, 19: 621-622.
    [76] McCarthy DC. Quantum dots label biomolecules. Biophotonics Int, 2001, 8: 60-61.
    [77] Levison P. R., Badger S. E., Dennis J,et al. Recent developments of magnetic beads for use in nucleic acid purification. J. Chromatogr. A, 1998, 816: 107-111
    [78] Oka Y., Hochepied J. F., Pileni M. P. Excitonic properties of nanostructure semimagnetic semiconductors, J. Lumin. 1996, 70: 35-47
    [79] Sooklal, K., Cullum, B. S., Angel, S. M., et al. Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2+. J. Phys. Chem., 1996, 100(11): 4551-4555.
    [80] Levy, L., Hochepied, J. F., Pileni, M.-P. Control of the Size and Composition of Three Dimensionally Diluted Magnetic Semiconductor Clusters. J. Phys. Chem., 1996, 100(47): 18322-18326.
    [81] Levy, L., Feltin, N., Ingert, D., et al. Three Dimensionally Diluted Magnetic Semiconductor Clusters Cd1-yMnyS with a Range of Sizes and Compositions: Dependence of Spectroscopic Properties on the Synthesis Mode. Phys. Chem. B., 1997, 101(45): 9153-9160
    [82] Mikulec, F. V., Kuno, M., Bennati, M., et al. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals. J. Am. Chem. Soc., 2000, 122(11): 2532-2540
    [83] Norris, D. J., Yao, N., Charnock, F. T., et al. High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Lett., 2001, 1(1): 3-7.
    [84] Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., et al. Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals. J. Am. Chem. Soc., 2003, 125(43): 13205-13218.
    [85] Norberg, N. S., Kittilstved, K. R., Amonette, J. E., et al. Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High-TC Ferromagnetic Nanocrystalline ThinFilms. J. Am. Chem. Soc., 2004, 126(30): 9387-9398
    [86] Barnakov, Y. A., Yu, M. H., Rosenzweig, Z. Manipulation of the Magnetic Properties of Magnetite-Silica Nanocomposite Materials by Controlled Stober Synthesis. Langmuir, 2005, 21(16): 7524-7527
    [87] Zebli, B., Susha, A. S., Sukhorukov, G. B., et al. Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir, 2005, 21(10): 4262-4265
    [88] Harrell, C. W., McCarroll, M. E., Morris, K. F., et al. Fluorescence and Nuclear Magnetic Resonance Spectroscopic Studies of the Effect of the Polymerization Concentration on the Properties of an Amino Acid-Based Polymeric Surfactant. Langmuir, 2003, 19(26): 10684-10691
    [89] Veiseh, O., Sun, C., Gunn, J., et al. Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas. Nano Lett., 2005, 5(6): 1003-1008
    [90] Kwon, K.-W., Shim, M. -Fe2O3/II-VI Sulfide Nanocrystal Heterojunctions. J. Am. Chem. Soc., 2005, 127(29): 10269-10275.
    [91] Hong, X., Li, J., Wang, M., et al. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach. Chem. Mater., 2004, 16(21): 4022-4027.
    [92] Desheng Wang, Jibao He, Nista Rosenzweig, et al. Superparamagnetic Fe2O3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation. Nano Letters, 2004, 4(3): 409-413.
    [93] Hongwei Gu, Rongkun Zheng, XiXiang Zhang, et al. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles. Journal of the American Chemical Society, 2004, 126(18): 5664-5665.
    [94] Radovanovic, P. V., Gamelin, D. R.Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots: Demonstration of an Isocrystalline Core/Shell Synthetic Method. J. Am. Chem. Soc., 2001, 123(49): 12207-12214.
    [95] Hyungrak Kim, Marc Achermann, Laurent P. Balet, et al. Synthesis andCharacterization of Co/CdSe Core/Shell Nanocomposites: Bifunctional Magnetic-Optical Nanocrystals. Journal of the American Chemical Society, 2005; 127(2): 544-546.
    [96] H. Yang, P. H. Holloway. Electroluminescence from Hybrid Conjugated Polymer-CdS:Mn/ZnS Core/Shell Nanocrystals Devices. J. Phys. Chem. B., 2003, 107: 9705-9710
    [97] Lian S.Y., Kang Z. H., Wang E. B., et al. Convenient synthesis of single crystalline magnetic Fe3O4 nanorods. Solid State Commun. 2003, 127: 605-608.
    [98] 蒋秉植, 杨健美, 磁流体的稳定性解析. 润滑与密封, 1995, 3: 61-65
    [99] Jeckel E, Rumbach R. Uber die adsorption von hochmolekularen stoffen aus der losung. Z.Elektochem., 1951, 55: 612-618
    [100] Brant D.A, Burton B.A. The configurational statistics of the pullulan and some related glucans. ACS. Symp. Ser. (Solution Properties of Polysaccharides), 1981, 150: 81-99
    [101] M.Y.Gao, X.G. Peng, J.C.Shen. Polymer langmuir-blogdett film of organic-inorganic composite microgel. Thin Solid Films, 1994, 248:148-151
    [102] 刘世宏,王当憨,潘承璜. X射线光电子能谱分析. 第一版. 北京. 科学出版社,1998年10月.67-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700