神经元集群小波—聚类编码的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     本论文研究记忆脑区(海马)神经元集群电活动的小波—聚类编码,研究它编码外界刺激的效能,以期在“细貌”上“划分”编码特定刺激的功能的神经元集群。本论文的研究对象是记忆关键脑区海马CA3区的功能神经元集群,期望从神经元放电及其各个小波尺度的细貌上“划分”编码特定刺激的功能神经元集群,探索在不同小波尺度上对刺激的编码效能,特别是在同时输入两类刺激时,研究在某个特定小波尺度上的“细貌”编码在编码两个以上刺激的优越性。
     研究方法:
     1.建立脉冲耦合神经网络(pulse coupled neural network,PCNN)模型,仿真在不同刺激模式(记忆任务)下,海马CA3区神经元群体电活动的时空序列。
     根据海马解剖结构的特点,海马CA3区的120个神经元分为兴奋性神经元和抑制性神经元,其数量比为5:1;在CA3区,平均每个兴奋性神经元与75%的同一层其他神经元相连。抑制性神经元为全连接,用于调节CA3区神经元集群的稀疏放电;神经元之间的权重为高斯分布;只有兴奋性神经元有输出,神经元群体的输出为稀疏发放,群体的平均发放率小于10%(稀疏发放)。
     PCNN模型的输入为几类典型的刺激模式:(1)Gaussian分布随机刺激,周期为0.2sec的正弦刺激以及以上两类刺激以不同权重的线性叠加;(2)正弦整流刺激,余弦整流刺激以及两类刺激的线性叠加。PCNN模型在三类刺激下神经元集群中每个神经元放电的仿真序列中,获取其ISI时空序列。
     2.对仿真神经元群体的放电进行聚类编码:
     1)对PCNN模型在不同刺激下的仿真ISI时空序列,应用自组织竞争神经网络的聚类来划分出功能神经元集群;
     2)根据海马神经元群体发放ISI时空序列的FFT频谱分布,确定小波分解的尺度为5,对ISI序列进行小波分解,对各个尺度上的ISI子分量进行聚类,划分在输入以上三类刺激时,特别是在两种刺激同时输入时编码刺激的功能神经元集群。
     研究结果:
     1.PCNN模型可以有效地仿真海马不同刺激下神经元群体发放的稀疏时空序列,为本论文研究小波—聚类编码提供了仿真数据。
     2.应用自组织竞争神经网络对神经元群体发放的聚类编码表达:
     (1) PCNN模型输入Gaussian随机刺激,正弦刺激和以上两类刺激线性叠加时输出ISI序列的编码结果:
     1)聚类编码
     ①.Gaussian分布的随机刺激下,聚类后的神经元集群中有20个神经元,编号分别为(10,11,14,24,25,27,35,36,37,45,48,50,55,57,61,70,77,90,92,99);
     ②.正弦刺激下,聚类后的神经元集群中有34个神经元,编号为(2,6,8,9,13,19,20,26,28,29,30,32,34,40,41,46,50,51,52,53,54,55,57,59,60,61,63,65,71,75,83,85,86,87)。
     ③.在两类刺激叠加输入模式下,聚类后的神经元集群中有22个神经元,编号为(1,3,4,5,6,8,10,11,12,14,15,17,1 8,19,20,21,22,24,25,26,29,31,33,34,41,42,44,45,46,47,49,50,52,55,56,57,59,60,61,64,67,71,73,75,76,77,78,79,80,81,84,85,87,88,89,91,92,93,94,95,96,97,98,99)。
     2)小波—聚类编码:
     在第五尺度神经元集群放电的小波—聚类编码效果最好,对应神经元编号为
     ①.在Gaussian随机刺激下,第五尺度聚类神经元编号为(1,2,54,69,74,81,85,95):
     ②.在余弦刺激下,第五尺度聚类神经元编号为(9,11,12,15,16,17,18,20,21,23,32,36,37,39,41,43,44,56,57,59,63,66,70,74,75,83,86,95,97);
     ③.在两类刺激叠加输入模式下,第五尺度神经元编号为(1,2,9,12,13,16,17,18,23,32,36,37,39,41,43,44,45,46,54,56,57,69,74,81,83,85,86,63,66,70,74,75,95);
     (2) PCNN模型输入正弦整流刺激、余弦整流刺激和以上两类刺激线性叠加下输出ISI序列的编码结果
     1)聚类编码结果:
     ①.在正弦整流刺激下,聚类神经元编号为(3,12,16,18,19,21,23,24,28,30,31,32,35,38,39,40,46,51,54,55,58,59,62,64,68,71,73,74,75,76,78,79,81,82,84,86,87,91,92,95,97,99);
     ②.在余弦整流刺激下,聚类神经元编号为(2,3,6,9,10,11,12,14,15,22,23,24,26,30,31,32,33,34,39,40,42,49,50,55,57,59,62,63,64,66,73,76,79,80,81,88,89,90,94,95,96):
     ③.在两类刺激叠加输入模式下,聚类神经元编号为(2,3,4,5,6,8,10,12,13,15,21,22,23,25,28,29,30,31,35,37,39,40,41,42,46,47,48,50,52,54,55,56,57,58,59,60,61,65,67,68,69,72,73,74,75,76,78,79,80,81,85,86,91,92,93,95,97,98):
     2)小波—聚类编码结果为
     在第二尺度神经元集群放电的小波—聚类编码效果最好,对应神经元编号为
     ①.在正弦整流刺激下,聚类神经元编号为(1,7,8,10,22,23,33,41,43,51,57,65,77,87):
     ②.在余弦整流刺激下,聚类神经元编号为(15,20,28,32,38,43,53,54,58,61,70,72,83,84,97,100):
     ③.在两类刺激叠加输入模式下,聚类神经元编号为(7,8,12,15,17,20,21,22,23,24,25,26,28,30,31,32,33,34,36,38,39,40,41,43,46,47,52,56,59,61,64,65,67,70,72,73,75,77,78,79,80,83,84,86,87,90,91,93,95,97,100);
     研究结论:
     1.PCNN模型可以有效仿真在三类输入刺激模式下,海马CA3区神经元群体的稀疏发放(平均发放率小于10%)。
     2.聚类编码信息的效能:在(1)Gaussian随机刺激下和正弦刺激;(2)正弦整流刺激和余弦整流刺激下,神经元集群ISI序列聚类编码可以划分表征不同单个刺激的神经元集群;但对于划分两类刺激的叠加效能不明显。
     3.小波—聚类编码信息的效能:(1)在Gaussian随机刺激和正弦刺激下,在第五尺度可以划分表征两类刺激的特征神经元集群,且编码效果优于聚类编码信息的效能;(2)在正弦整流刺激和余弦整流刺激下,在第二尺度可以划分表征两类刺激的特征神经元集群。
Objective
     This paper aims to study the coding of neural ensembles relating to memory (hippocampus) with wavelet-clustering method, so as to discriminate specific functional neural ensembles in the detail. The study probes into the key structure of memory hippocampus CA3 area, with wavelet decomposition, expecting to discriminate functional neural ensembles under different wavelet scales, evaluate the coding efficiency, especially with two simultaneous inputs, the priority of certain wavelet scale over other scales.
     Methods
     1. Establish pulse coupled neural network (PCNN) model, simulate spatial temporal activity of neural population in hippocampus CA3 area under different stimulus (memory tasks).
     According to the anatomical characteristics of hippocampus, the PCNN model is composed of 120 neurons, of which 100 is excitatory and 20 inhibitory. In CA3 area, each excitatory neuron is connected to about 75% of other neurons in the same layer. The inhibitory neurons are all-to-all connected and is related to the sparse firings in the area. The synaptic weight among neurons is set Gaussian distribution; only excitatory neurons output to other layers with sparse activity (less than 10%).
     PCNN model is given different typical patterns of stimuli: (1) random input with Gaussian distribution, sinusoidal input (T=0.2sec), and the linear superimpose of above two signals; (2) Rectified sinusoidal input, rectified cosinusoidal input, and the linear superimpose of above two signals.. The output of PCNN is the time series of spikings of each neuron in the ensemble, from which we acquire inter-spike interval (ISI) series of the neural population.
     2. Cluster coding the simulation data of neural ensembles:
     1) Analyze ISI series of neural population under three different stimuli, discriminate functional neural ensembles with self organizing map;
     2) According to the FFT spectrum of ISI series, the scale of wavelet is set to 5. Code the ISI series with self organizing map at each scale of wavelet, discriminate different functional ensembles relating to the specific input.
     Results
     1. PCNN model can simulate the sparse activity of hippocampus neural population under different stimuli, it provides simulation data for the further study of waveletcluster coding in this paper.
     2. Cluster coding of neural population with the application of self organizing map:
     (1) Results for Gaussian input, sSinusoidal input and superimpose of the two inputs:
     1) Results of cluster coding:
     ①. Under random stimulus with Gaussian distribution, the clusterd neurons are (10, 11, 14, 24, 25, 27, 35, 36, 37, 45, 48, 50, 55, 57, 61, 70, 77, 90, 92,99);
     ②. Under sinusoidal input, the clusterd neurons are (2, 6, 8, 9, 13, 19, 20, 26, 28, 29, 30, 32, 34, 40, 41, 46, 50, 51, 52, 53, 54, 55, 57, 59, 60, 61, 63, 65, 71, 75, 83, 85, 86, 87)
     ③. Under the stimulation of both the above inputs, the clustered neurons are ( 1, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 29, 31, 33, 34, 41, 42, 44, 45, 46, 47, 49, 50, 52, 55, 56, 57, 59, 60, 61, 64, 67, 71, 73, 75, 76, 77, 78, 79, 80, 81, 84, 85, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99).
     2) Results of wavelet-cluster coding:
     For the wavelet-clustering coding, the best results are shown on scale-5, the clustered neurons under three different stimuli are as follows:
     1) Under random stimulus with Gaussian distribution, the clusterd neurons on scale-5 are (1, 2, 54, 69, 74, 81, 85, 95);
     2) Under sinusoidal stimulus with Gaussian distribution, the clusterd neurons on scale-5 are (9, 11, 12, 15, 16, 17, 18, 20, 21, 23, 32, 36, 37, 39, 41, 43, 44, 56, 57, 59, 63, 66, 70, 74, 75, 83, 86, 95, 97);
     3) Under the stimulation of both the above inputs, the clustered neurons are (1, 2, 9, 12, 13, 16, 17, 18, 23, 32, 36, 37, 39, 41, 43, 44, 45, 46, 54, 56, 57, 69, 74, 81, 83, 85, 86, 63, 66, 70, 74, 75, 95).
     (2) Results for sinusoidal input, cosinusoidal input and superimpose of the two inputs:
     1) Results of cluster coding:
     ①. Under the stimulation of sinusoidal input, the clustered neurons are (3, 12, 16, 18, 19, 21, 23, 24, 28, 30, 31, 32, 35, 38, 39, 40, 46, 51, 54, 55, 58, 59, 62, 64, 68, 71, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 91, 92, 95, 97, 99);
     ②. Under the stimulation of cosinusoidal input, the clustered neurons are (2, 3, 6, 9, 10, 11, 12, 14, 15, 22, 23, 24, 26, 30, 31, 32, 33, 34, 39, 40, 42, 49, 50, 55, 57, 59, 62, 63, 64, 66, 73, 76, 79, 80, 81, 88, 89, 90, 94, 95, 96);
     ③. Under the stimulation of both the above inputs, the clustered neurons are (2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 21, 22, 23, 25, 28, 29, 30, 31, 35, 37, 39, 40, 41, 42, 46, 47, 48, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 85, 86, 91, 92, 93, 95, 97, 98);
     2) Results of wavelet-cluster coding..
     For the wavelet-clustering coding, the best results are shown on scale-2, the clustered neurons under three different stimuli are as follows:
     ①. Under the stimulation of sinusoidal input, the clustered neurons are (1, 7, 8, 10, 22, 23, 33, 41, 43, 51, 57, 65, 77, 87);
     ②. Under the stimulation of cosinusoidal input, the clustered neurons are (15, 20, 28, 32, 38, 43, 53, 54, 58, 61, 70, 72, 83, 84, 97, 100);
     ③. Under the stimulation of both the above inputs, the clustered neurons are (7, 8, 12, 15, 17, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 43, 46, 47, 52, 56, 59, 61, 64, 65, 67, 70, 72, 73, 75, 77, 78, 79, 80, 83, 84, 86, 87, 90, 91, 93, 95, 97, 100).
     Conclusions
     1. The sparse output of PCNN model efficiently simulated firing patterns of hippocampus CA3 area neurons under three different stimuli.
     2. The cluster coding of neural ensemble under (1) Gaussian distributed random stimulus and sinusoidal stimulus; (2) rectified sinusoidal and rectified cosinusoidal input show little overlap over each other, on the whole , different stimuli can be discriminated with cluster coding neural ensembles. But under the above two stimuli simultaneously, the cluster coding is not very effective.
     3. The wave-cluster coding can discriminate different input stimulus on most of the scales, this is best shown (1) on scale-5 for Gaussian random input and sinusoidal input; (2) on scale-2 for rectified sinusoidal input and rectified cosinusoidal input. Under the superimpose of both the stimulus, wave-clustering on specific scale show better result than cluster coding.
引文
[1] Hebb. DO The organization of behavior: A neurophysiological theory , Wiley 1949.
    
    [2] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. Journal of Physiology, 1951, 117:500-544
    
    [3] Chay TR, Fan YS, Lee YS. Bursting, spiking, chaos, fractals and universality in biological rhythms [J]. Int. J. Bifurcation and Chaos, 1995, Vol. 5(3):595-635.
    
    [4] Traub RD, Wong RKS, Miles R, et al. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clam data on intrinsic condctances[J]. J. Neurophysiol., 1991, 66:635-650
    
    [5] Traub RD, Schmitz D, Jefferys JG.R, Draguhn A. High-frequency population scillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axo-axonal gap junctions[J]. Neuroscience, 1999, 92, 407-426.
    
    [6] Traub RD, Bibbig A. A model of high-frequency ripples in the hippocampus, based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons[J]. J. Neurosci., 2000, 20, 2086-2093.
    [7] Pinsky P, Rinzel J. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons [J]. J Comput Neurosci, 1994, 1: 39-60.
    [8] Feng Jianfeng, Li Guibin. Impact of geometrical structures on the output of neuronal models: A theoretical and numerical analysis[J]. Neural Comput, 2002 , 14(3):621-40.
    [9] Kepecs A, Wang Xiaojing. Analysis of complex bursting in cortical pyramidal neuron models[J]. Neurocomputing, 2000, 32-33:181-187.
    [10] Kepecs A, Wang Xiaojing. Analysis of complex bursting in cortical pyramidal neuron models [J]. Neurocomputing, 2000, 32-33:181-187.
    
    [ 11 ]Gerstner, Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity[M]. Cambridge University Press, 2002
    [12] MacGregor R J, Oliver RM. A model for repetitive firing in neurons[J]. Cybernetik, 1974, 16, 53-64.
    [13] Kohonen, T. Self-organization and associative memory[M]. 1984. Springer Verlag
    [14] Kohonen, T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics. 1982.43:59-69
    [15] Eckhorn R , Reiboeck HJ., Arndt M., et al. A Neural Networks for feature linking via synchronous activity: Results from cat visual cortex and from simulations, In Models of Brain Function[M], R.M.J. Cotterill, Ed. Cambridge, Cambridge Univ. Press, 1989
    [16] Eckhom R, Frien A, Bauer, R. et.al. High frequency oscillations in primary visual cortex of awake monkeys[j]. NeuroRep, 1993,4(3):243~246.
    [17] Johnson Jl, Padgett ML. PCNN models and applications[J]. IEEE Transactions on Neural Networks, 1999, 10(3):480~498.
    [18] 顾晓东,余道衡.PCNN的原理及其应用[J].电路与系统学报.2001.6(3):45~50.
    [19] 马义德.脉冲耦合神经网络的原理及其应用[M].科学出版社.2006
    [20] Izhikevich EM. Class I neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of puse coupled models[J]. IEEE Transactions Neural Networks, 1999,10(3):499~507.
    [21] Izhikevich EM, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting[M]. The MIT press. 2005
    [22] Izhikevich E.M. and Hoppensteadt F.C. Classification of Bursting Mappings[J]. International Journal of Bifurcation and Chaos, 2004.14:3847-3854
    [23] Izhikevich E.M., Gally J.A., and Edelman, G.M. Spike-Timing Dynamics of Neuronal Groups[J]. Cerebral Cortex, 2004. 14:933-944
    [24] Izhikevich E.M. and Hoppensteadt F.C. Slowly Coupled Oscillators: Phase Dynamics and Synchronization[J]. SIAM Journal on Applied Mathematics, 2003 63:1935-1953
    [25]Izhikevich E.M. and Desai N.S. Relating STDP to BCM[J]. Neural Computation 2003. 15:1511-1523
    
    [26]Izhikevich E.M., Desai N.S., Walcott E.C., Hoppensteadt EC Bursts as a unit of neural information: selective communication via resonance[J]. Trends in Neuroscience . 2003.26:161-167
    
    [27]Izhikevich E.M. Synchronization of Elliptic Bursters[J]. SIAM Review, 2001.43:315-344
    
    [28]Izhikevich E.M. Resonate-and-Fire Neurons[J]. Neural Networks, 2001 14:883-894
    
    [29]Izhikevich E.M. Polychronization: computation with spiks Neurons[J]. Neural Networks, 2006 18:245-282
    
    [30]Hopfield, JJ. Neural networks and physical systems with emergent collective computational abilities. PNAS. 1982. 79,2554-2558.
    
    [31]Meeter M. Long-term memory disorders: Measurement and modeling[D]. 2003
    
    [32]Meeter, M. & Murre, J.M.J. Simulating episodic memory deficits in semantic dementic dementia with TraceLink model[J].. Memory, 2004. 12, 272-287.
    
    [33]Meeter, M., & Murre, J.M.J. Consolidation of long-term memory: Evidence and alternatives[J]..Psychological Bulletin, 2004. 130, 843-857.
    
    [34]Meeter, M., Talamini, L.M., Murre, J.M.J. Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits[J]. Figures Hippocampus, 2004. 14, 722-741.
    
    [35]Gluck, M.A., Meeter, M. Myers, CE. Computational models of the hippocampal region: linking incremental learning and epicodic memory[J]. Trends in Cognitive Sciences. 2003. 7, 269-276.
    
    [36]Meeter, M. Control of consolidation in neural networks : avoiding runaway effects[J]. Connection Science. 2003. 15, 45-61.
    
    [37]Adrian, ED. The impulses produced by sensory nerve endings. J.Physil. 1926. 61:49~72.
    [38] Gordon T, Tyreman N, Rafuse VF, Munson JB. Limited plasticity of adult motor units conserves recruitment order and rate coding[J]. Prog Brain Res. 1999; 123:191-202.
    [39] Stein RB. The frequency of nerve action potentials generated by applied currents[J]. Proc R Soc Lond B Biol Sci. 1967,167(6):64-86
    [40] von der Malsburg C. Am I thinking assemblies[M]? In: Palm G, Aertsen A,eds. Brain Theory. Berlin: Springer; 1986, pp. 161±176.
    [41] vonder Malsburg C. The correlation theory of brain function[M]. In: Domany E, van Hemmen JL and Schulten K, eds. Models of NeuralNetworks Ⅱ. Berlin: Springer; 1994, pp. 95±119.
    [42] Fujii H, Ito H, Athara K, et al. Dynamical cell assembly hypothesis-Theoretical possibility of spatiotemporal coding in the cortex[J]. Neural Network. 1996.9:1303-1350.
    [43] Barbieri R., Frank L.M., Nguyen D.P., et al. Dynamic Analyses of Information Encoding in Neural Ensembles[J]. Neural Computation, 2004.16:227-307.
    [44] Schnitzer M.J., Meister M. Multineuronal firing patterns in the signal from eye to brain[J]. Neuron, .2003.37:99-511.
    [45] Bhumbra G..S., Dyball R.E.J. Spike coding from the perspective of a neuron[J]. Cognitive Processing 2005.
    [46] Branner A., Normann R.A. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats[J], Brain Research Bulletin, 2000.51(4), p293.
    [47] Guo Jianzeng, Guo Aike. Crossmodal interactions between olfactory and visual learning in drosophila. Science. 2005.309:307-310.
    [48] 杨谦、齐翔林等, 视皮层VI区简单细胞的稀疏编码策略.计算物理.2001.18(2):143-146.
    [49] Klemm WR, Sherry CJ. Do neurons process information by relative intervals in spike trains[J]? Neurosci Biobehav Rev. 1982 Winter-,6(4): 429-37.
    [50] 梁培基,陈爱华.神经元活动的多电极同步记录及神经信息处理[M].北京工业大学出版社.2003
    [51] Kahana M J, Seelig D, and Madsen J R. θ returns[J]. Curr Opin Neurobiol. 2001. 11: 739-744.
    [52] Klimesch W. EEG alpha and θ oscillations reflect cognitive and memory performance: a review and analysis[J]. Brain Res.Rev. 1999.29:169-195.
    [53] George D., Sommer, F.T. Computing with inter-spike interval codes in networks of integrate and fire neurons[J]. Neurocomputing, 2005. (65-66):415-420.
    [54] Junge D., Moore G.P. Interspike-interval fluctuations in Aplysia pacemaker neurons[J]. Biophysical Journal, 1966. Vol.6:411-433
    [55] Feng J.,Brown D., Impact of temporal variation and the balance between excitation and inhibition on the output of the perfect integrate-and-fire model[J], Biol. Cybern. 1998.78:369-376.
    [56] Feng J., Brown D., Coefficient of Variation of interspike intervals greater than 0.5. How and when[J]? Biol. Cybern. 1999.80:291-297.
    [57] Feng J., Brown D., Impact of correlated inputs on the output of the Integrate-and-Fire model[J], Neural Computation, 2000. 12:671-692.
    [58] Lin J. K., Pawelzik K., Ernst U., et al. Irregular synchronous activity in stochastically coupled networks of integrate-and-fire neurons[J], Network: Comput. Neural Syst. 1998.9:333-344.
    [59] Softky W. R., Koch C., The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSP's[J], J. of Neurosci. 1993.13:334-530.
    [60] Stevens C. F., Zador A. M., Input synchrony and the irregular firing of cortical neurons[J], Nature Neurosci. 1998. 1:210-217
    
    [61]Troyer T. W., Miller K. D., Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell, Neural Computation, 1997, 9:971-983.
    
    [62]O'Reilly RC, McClelland. JL. Hippocampal Conjunctive Encoding, Storage, and Recall: Avoiding a Trade-Off. Hippocampus, 1994. Vol.4, No. 6, 661-682
    
    [63]Ascoli, GA, Atkeson, JC. Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus. BioSystems 2005.79, 173-181.
    
    [64]Norman KA, O'Reilly RC. Modeling Hippocampal and Neocortical Contributions to Recognition Memory: A Complementary-Learning-Systems Approach. Psychological Review. 2003. Vol.110, No. 4, 611-646
    
    [65]Izhikevich. Simple model of spiking neurons. IEEE Transaction on Neural Networks, 1999. Vol. 14(6): 1569-1572.
    
    [66]Brunei, N.: Dynamics of sparsely connected networks of excitatory and inhibitoryspiking neurons[J]. J. Comp. Neuro. 2000. 8:183 - 208
    
    [67]Borgers C, Kopell N., Synchronization in networks of excitatory and inhibitoryneurons with sparse, random connectivity[J], Neural Comput. 2003. 15:509-538.
    
    [68]Hansel D., Mato G, Asynchronous states and the emergence of synchrony inlarge networks of interacting excitatory and inhibitory neurons[J], Neural Comput. 2003.15:1-56.
    
    [69]Olshauen B.A., Field D.J. Sparse coding or sensor inputs[J]. Current Opinion in Neurobioloty, 14, 481-487
    
    [70]O'Reilly RC, McClelland. JL. Hippocampal Conjunctive Encoding, Storage, and Recall: Avoiding a Trade-Off. Hippocampus, 1994. Vol.4, No. 6, 661-682
    
    
    [71]Stein RB. The frequency of nerve action potentials generated by applied currents. Proc R Soc Lond B Biol Sci. 1967,167(6):64-8
    [72] 飞思科技产品研发中心.MATLAB6.5辅助神经网络分析与设计[M].电子工业出版社.2003.
    [73] Gordon T, Tyreman N, Rafuse VF, Munson JB. Limited plasticity of adult motor units conserves recruitment order and rate coding. Prog Brain Res. 1999; 123: 191-202.
    [74] Kirn K H, Kirn S J. A wavelet_based method for action potential detection from extracellular neural signal recording with low signal—to—noise ratio[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(8): 999—1011.
    [75] Letelier J C, Weber P P. Spike sorting based on discrete wavelet transform coefficients[J]. Journal ofNeuroscienceMethods, 2000, 101(2): 93—106.
    [76] Zhang PM, Wu JY, Liang PJ, et. al. Neural spike sorting under low signal to-noise ratio[J]. Journal of Shanghai Jiaotong University. 2004, 38(5): 794-798.
    [77] Kim K H , Kim S J. Neural spike sorting under near 1 y 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural network classifier[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(10): 1406-1411.
    [78] Wong Y, Bank J, Bower J M. Neural networks for template matching: Application to real—time classification of the action potentials of real neurons[c]. Neural Information Processing Systems. 1988. New York: A1P: 103-113.
    [79] Chandra R, Optican I M. Detection, classification, and superposition resolution of action potentials in multiunit single channel recordings by an on line real-time neural network[J]. IEEE Transactions on Bio—medical Engineering, 1997, 44(5): 403-412
    [80] Averbeck BB, Latham PE., Pouget A. Neural correlations, population coding and computation[J], Nature Reviews, 2006, 7:358~366;
    [81] Knoblauch A., Palm G. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback[J].Biol. Cybern., 2002. 87:151-167
    
    [82]Brecht M, Singer W., Engel AK. Patterns of Synchronization in the Superior Colliculus of Anesthetized Cats. The Journal of Neuroscience,1999, 19(9):3567-3579
    
    [83]Sougne, J., & French, R. M.. A Neurobiologically Inspired Model of Working Memory Based on Neuronal Synchrony and Rythmicity[C]. In J. A. Bullinaria, D. W. Glasspool, & G. Houghton (Eds.), Proceedings of the Fourth Neural Computation and Psychology Workshop: Connectionist Representations, (pp. 155-167).London: Springer-Verlag. 1997
    
    [84] Engel AK, Konig P, Singer W. Direct Physiological Evidence for Scene Segmentation by Temporal Coding[J] .Proc. Nati. Acad. Sci. 1991. Vol. 88, pp. 9136-9140.
    
    [85]Brecht M, Goebel R., Singer W., et. al. Synchronization of visual responses in thesuperior colliculus of awake cats[J] Vision 2001. Vol 12 No 1 22
    
    [86] Singer, W. Synchronization of neuronal responses as a putative bindingmechanism. In M. A. Arbib (Ed.) The Handbook of Brain Theory and NeuralNetworks. Cambridge: MIT Press. 1995
    
    [87]O'Keefe J, Recce M L Phase relationship between hippocampal place units and the EEG G rhythm[.T]. Hippocampus. 1993. 3:317-330
    
    [88]Fischer Y., Wittner, L., Freund T.F., et al. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures[J]. Journal of Physiology, 2002, 539(3):857-868.
    
    [89]Fischer Y. The hippocampal intrinsic network oscillator[J]. J. Physiol. 2003.554(1):156-174.
    
    [90]Witham C.L., Baker S. Network oscillations and intrinsic spiking rhythmicity do not covary in monkey sensorimotor areas[J], J. Physiol. 2007. 580(3):801-814.
    
    [91]Kocsis B. Di Prisco G.V., Vertes R.P. Theta synchronization in the limbic system:the role of Gudden's tegmental nuclei. European Journal of Neuroscience, 2001. Vol. 13:381-388
    
    [92]Kahana M J, Seelig D, and Madsen J R. (?) returns[J]. Curr Opin Neurobiol. 2001. 11:739-744.
    
    [93]Klimesch W. EEG alpha and G oscillations reflect cognitive and memory performance: a review and analysis[J]. Brain Res.Rev. 1999. 29: 169-195
    
    [94]Basar E, Basar-Eroglu C, Karakas S, and Schurmann M. Gamma, alpha,delta, and θ oscillations govern cognitive processes[J]. Int J Psychophysiol 2001. 39: 241-248.
    
    [95] Bush G, Luu P, Posner M I. Cognitive and emotional influences in anterior cingulate cortex[J]. Trends Cogn Sci. 2000. 4: 215-222.
    
    [96]Devinsky O, Morrell M J, Vogt B A. Contributions of anterior cingulated cortex to behaviour[J]. Brain 1995. 118: 279-306.
    
    [97] Drevets W C and Raichle M E. Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition[J]. Cogn Emot 1998. 12: 353-385.
    
    [98]Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface[J]. Nat Rev Neurosci 2001. 2: 417-424.
    
    [99]Tsujimoto T, Shimazu H, Isomura Y. Direct recording of θ oscillations in primate prefrontal and anterior cingulate cortices[J]. J. Neurophysiol. 2006. 95:2987-3000.
    
    [100] Rudy J W, Biedenkapp J C, O'Reilly R C. Prefrontal cortex and the organization of recent and remote memories: an alternative view[J]. Learn. Mem. 2005. 12:445-446.
    
    [101] Grammont, F, Reihle, A. Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time[J]. Biol. Cybern. 88, 2003, 360-373
    
    [102] Gray C. M, Singer W.Stimulas. specific neuronal oscillations in orientation columns of cat visual cortex. PNAS, 1989, 86: 1698-1702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700