无线网络流量分形特性分析与建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1993年W. E. Leland等人将分形学中“自相似(self-similarity)”概念引入通信领域的网络流量研究中,由此而发展起来的用分形(fractal)理论来研究网络流量行为的思路为网络理论的发展开辟了新的途径,同时也对网络性能分析、服务质量(QoS)控制以及网络设计产生了深远影响。但十余年的大量研究和探索主要针对有线环境下的网络流量而进行,揭示的是有线网络流量在不同时间尺度上所呈现出的复杂分形特性,而无线网络在物理层传输机制和介质访问控制上与有线网络有较大差异,网络中流量的分布及其参数取决于用户移动性、分组大小、无线链路的比特率、网络负载、无线接入点的调度、越区切换、位置管理等因素,因此,有线网络环境中流量所呈现的分形特性以及据此建立的流量模型和进行的排队性能分析不能直接照搬到无线网络中。目前,对无线网络流量特性的相关研究尚处于起步阶段,还缺乏一套完整有效的研究方法和体系,这就要求研究者从网络技术和工程实际的角度出发,从现有数学理论和工具中选择适用于无线网络流量特性研究的方法,建立一个包括无线网络流量特性分析、流量建模、流量预测以及网络性能评价的体系。本论文的主要研究工作就是围绕上述问题而进行。论文在利用分形理论分析无线网络流量特性、比较多种不同的网络流量数学模型的基础上,引入了时间序列分析、多重分形谱理论、小波分析法、排队论、计算机仿真等研究方法,对无线网络流量建模、流量预测以及网络性能评价进行了较为系统的研究。
     本论文对研究所必需的理论基础、方法工具和技术手段做了详实的基础工作,主要有:分形网络流量理论、分形特性检验与估计、自相似业务流合成特性研究、分形特性流量建模及预测和分形流量的网络性能分析等。在研究过程中,针对无线网络流量的分形特性检测、业务流合成、流量建模及预测和网络性能评价,开展了一些具有创新意义的工作。
     本文第二章对分形理论中与流量研究相关的概念以数学定义和解释的方式做出全面总结,从单分形(monofractal)和多重分形(multifractal)的视角出发,探究概念和定义的理论依据、本质内涵和相互关系,为后续进一步的研究工作打下理论基础。
     第三章研究分形特性的检验与估计。本章从自相似和多重分形两条主线出发给出常用的时/频域和小波域内自相似性检验的Hurst参数估计方法,以及利用H(?)lder指数和多重分形谱进行多重分形检验和估计的算法。通过实验一和实验二分别对OPNET仿真所得以及真实无线网络环境中的流量数据序列的自相似性和多重分形特性进行检验和估计。针对传统Hurst参数估计方法所存在的不足,在本章中提出了一种基于最优化线性回归模型的小波域内Hurst参数估计方法,并对无线局域网的网络流量利用所提出的方法和传统Hurst参数估计方法进行比较分析。为实现对大、小时间尺度上分形特性的统一检验与估计,本章还提出了一种基于分形维数的分形特性统一检测方法,能同时对网络流量在大时间尺度上的自相似性和小时间尺度上的多重分形性进行判定,并通过实验验证该方法的有效性。
     由于自相似反映了网络流量在较长时间周期上的相关性,而合成操作又是网络中的一种基本操作,因此,第四章对自相似业务流的合成特性进行研究。本章在对N(N∈Z_+,N>3)个严格二阶自相似、长程相关和强二阶自相似输入流合成后的流量分形特性进行理论推导的基础上,以IEEE 802.11无线局域网(WLAN)为研究对象,详细分析研究了其在四向握手机制、退避机制下的业务流具体汇聚过程,并在OPNET中基于Sup-FRPP节点模型和WLAN环境对自相似业务合成流特性进行实验研究。
     第五章基于分形网络流量理论、分形特性检验与估计和自相似业务流合成特性的研究结果,进行分形特性无线网络流量建模的研究。对传统的流量模型从物理模型和统计模型两条主线加以概括,对物理模型中的ON/OFF模型从单一业务源到多业务源组进行研究,而对统计模型则从时域内的短相关和长相关模型进行归纳总结。本章提出了一种基于分形自回归综合滑动平均(FARIMA)过程的无线网络流量模型,给出模型辨识过程,通过实验研究利用该过程对无线网络流量的建模,并对模型有效性进行验证。给出GARMA模型的构建及其模型辨识算法。本章还提出了一种基于稳定分布的无线网络流量自相似模型,包括稳定分布的定义和属性、参数估计和验证,并给出实验与结论。由于小波变换的一些独有优点,本章还提出了基于小波分解的无线网络流量模型,对连续小波变换(CWT)、多解析度分析(MRA)和小波变换的Mallat算法进行研究,并由此建立无线网络流量的小波模型并进行实验研究。
     第六章基于第五章所提出的分形网络流量模型进行流量预测。提出了基于FARIMA模型的自相似无线网络流量自适应预测,并对真实无线网络流量在不同时间尺度上的流量数据序列进行预测,对预测结果进行分析以验证预测算法和评估预测性能。由于小波变换具有很好的去相关性,因此对无线网络流量trace进行小波分解所得的尺度系数和小波系数可利用短相关模型ARMA进行建模。本章基于小波分解的无线网络流量模型,提出自回归预测算法,对不同时间尺度上无线网络流量的近似分量和细节分量进行预测,进而得到对整个网络流量的预测结果,并对预测性能进行分析。
     第七章在流量建模及流量预测的基础上进行网络性能分析。本章第一部分通过引入一类混合指数分布并证明此类分布服从Pareto重尾分布,得到相应的LST变换闭合形式及服务时间渐进级数,同时将形状参数γ=3/2时的服务时间及其LST变换推广到更一般的情形,较为有效地解决了重尾分布的信源排队等待时间分析问题。此外,本章还提出了一种通用的分组丢失率分析方法,在对流量过程的平稳增量过程利用normal分布和Log-normal分布进行大、小时间尺度建模的基础上,定量分析研究稳态和瞬态时网络性能,将排队系统中发生的分组丢失划分为绝对丢失和随机丢失,分别对相应的分组绝对丢失率和随机丢失率进行定量分析研究,并通过实验研究真实无线网络环境中流量在大、小时间尺度上的分形特性带给网络性能的影响。
Ever since 1993, when W. E. Leland formally introduced the concept of self-similarity of fractal into the study of network traffic in the field of telecommunication, the further development of applying the fractal theory to studying the network behavior has found a new way for the development of the network-related theories. Furthermore, the fractal theory has a strong impact upon the network performance analysis, QoS control, and network design. Although the following over ten year's traffic researches aim at the wired networks and the complex fractal properties has been discovered in these kinds of network traffic, the wireless-networks take different physical layer transport scheme and MAC compared with wired network. The wireless traffic distribution and its depends on the mobility of wireless stations, the size of packets, the bit ratio of wireless link, network traffic load, the scheduling scheme in access point, handover, and location management. So the fractal characteristics, the corresponding traffic models, and queue performance analysis of wired network traffic can not been applied to the wireless traffic directly. The researches on the wireless traffic properties are still in the initial stage, and the intact and efficient research methods and system are lacking. From the network technologies and engineering practice points of view, the researchers try to select a proper research method from the existing mathematics theories and tools which reflect the wireless traffic properties, and build a whole system of wireless traffic properties analyses, traffic modeling, traffic prediction and network performance evaluation. Our researches aim at the above problems. Based on applying the fractal theory to analyses the wireless traffic and comparing the different traffic mathematics models, this paper introduces the time series analyses, multifractal spectrum, wavelet analyses, queuing theory, and computer simulation into the wireless traffic modeling, wireless traffic forecasting, and network performance evaluation.
     This paper has taken detailed researches on the required theory, methods, tools, and technologies, including fractal network traffic theories, fractal property identification and estimation, the researches on the properties of merging self-similar traffic flows, fractal traffic modeling and prediction, and the network performance analysis with fractal traffic. Aimed at the fractal property identification and estimation of wireless traffic, traffic merg- ing, traffic modeling and prediction, and network performance evaluation, we've donesome innovated researches.
     The 2nd chapter of this paper summarizes some concepts and definitions in fractal theories which related to the traffic properties researches. From the monofractal and multifractal views, this chapter studies the theoretical backgrounds, basic principles and the correlation between these concepts and definitions, which forms the theories bases of the further researches.
     The 3th chapter studies the identification and estimation of fractality. The Hurst parameter estimation methods in time/frequency and wavelet domain are given in identifying the self-similarity, and Holder parameter and multifractal spectrum are used to estimate the multifractal property of the network traffic. The self-similarity and multifractal property of the OPNET-simulating and real wireless traffic are identified through experiment 1 and experiment 2. To overcome the shortcomings of the traditional Hurst parameter estimation methods, an optimal linear regression wavelet model is proposed, and applied to estimate the Hurst parameter of WLAN traffic. The estimation results are compared with the results obtained from the traditional estimation methods. In order to realize the unified identification of the fractal properties in the large and small time scale, a novel fractal dimension-based method is proposed, which can identify the self-similarity in the large time scale and the multifractality in the small time scale at the same time. The validity of this proposed method is validated via experiment.
     The 4th chapter studies the characteristics of the aggregating self-similar traffic flows. The aggregation operation is a basic network operation, and self-similarity reflects the long term correlation of the network traffic. Based on the theoretic proof of the characteristics of the aggregating exact second-order self-similar, long range dependent, and strong second-order self-similar traffic flows, this chapter detailed study the traffic aggregation process in IEEE 802.11 WLAN under four-way handshaking and backoff schemes. The experiment research utilizes the Sup-FRPP-based node model and WLAN simulation via OPNET to study the aggregating traffic flows.
     The 5th chapter studies the modeling of fractal wireless traffic based on researches results of the fractal network traffic theories, fractality identification, and the aggregating traffic properties. The traditional traffic models are classed into two trends, i.e., physical model and statistical model. The researches of ON/OFF model are from single ON/OFF source to the multi-traffic sources, and statistical models are summarized via the time-domain short range dependence and long range dependence models. This chapter proposes a FARIMA-based wireless traffic model and gives the model identification process. The experiment utilizes the FARIMA process to model the wireless traffic and validate the proposed model. The GARMA model and its identification are given in this chapter. A stable distribution-based wireless traffic self-similarity model is proposed, which includes the definition and attributes of stable distribution, parameters estimation, and the results of the experiment. Owing to the special virtues of wavelet transform, this chapter proposes a wavelet decomposition-based wireless traffic model. We studies the continuous wavelet transform (CWT), multiresolution analysis (MRA) and the Mallat arithmetics. Based on the research results, the wireless traffic wavelet model is built and the experiment research is conducted.
     The 6th chapter studies the traffic prediction based on the wireless traffic model built in chapter 5. A FARIMA self-similar wireless network traffic adaptive forecasting method is proposed. This suggested algorithm is applied to predict the future wireless traffic under different time scales. The prediction results are analyzed and validate the proposed algorithm. Due to the wavelet transform has the good dis-correlation property, the scaling coefficients and wavelet coefficients of network traffic trace wavelet decomposition can be modeled by ARMA model. This chapter proposes a regression algorithm based on the wireless traffic wavelet model. This method predict the approximation and detailed parts of the wireless traffic and obtain the predict results of the whole wireless traffic. The prediction results are anal sized.
     The 7th chapter introduces a class of mixtures of exponential distribution and proof they are heavy-tailed Pareto distributions. By calculating the LST and asymptotic series of the service-time distribution we analyze the steady-state waiting-time probabilities of M/G/1 queue system. We also extend the special caseγ=3/2 to the normal case. The results show that it will be helpful to analyze the heavy-tailed waiting-time distribution of self-similar traffic sources. This chapter also proposes a generalized packets loss method. Analyses of busty network traffic in LAN and WAN have demonstrated that the network traffic exhibits double-fractal property: self-similarity on large time scale and multifractality on small time scale. The traditional Poisson or Markovian short-range dep- endent model is not applicable. The normal and Log-normal distributions are used to model the large and small time scale, respectively. A generalized method is applied to analyze the steady and transient queuing performance. The packets loss is classified into two types: absolute loss and arbitrary loss, and analyzed quantificationally via the generalized method.
引文
[1] W. E. Leland, M. Taqqu, W. Willinger, D. Wilson. On the self-similar nature of ethernet traffic. ACM SIGCOMM '93, pp. 183 - 193.
    
    [2] W. E. Leland, M. Taqqu, W. Willinger, D. Wilson. On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans, on Networking, 1994, 2(1): 1-15.
    
    [3] V. Paxson, S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans, on Networking, 1995, 3(3): 226-244.
    
    [4] W. Willinger, M. S. Taqqu, R. Sherman, D. Wilson. Self-similarity through high-variability: statistical analysis of ethernet lan traffic at the source level. ACM/Sigcomm '95, 1995, pp. 100-113.
    
    [5] M. W Garrett, W. Willinger. Analysis, modeling and generation of self-similar VBR video traffic. Proc. of the ACM SIGCOMM'94, 1994, pp. 269-280.
    
    [6] P. Abry, D. Veitch. Wavelet analysis of long range dependent traffic. IEEE Trans, on Information Theory, 1998,44(1): 2-15.
    
    [7] P. Abry, D. Veitch, P. Flandrin. Long-range dependence: revisiting aggregation with wavelets. Journal of Time Series Analysis, 1998, 19(3): 253-266.
    
    [8] J. M. Bardet, G. Lang, G. Oppenheim, A. Philippe, M. S. Taqqu. Generators of long-range dependent processes: a survey, Long-Range Dependence: Theory and Applications, 2003, pp. 579-623.
    
    [9] A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Trans, on Networking, 1996 , 4(2):209-223.
    
    [10] M. Ashour, T. Le-Ngoc. Aggregation of long-range dependent traffic streams using multifractal wavelet models. IEEE Canadian Conference on Electrical and Computer Engineering, 2003, 2: 793-796.
    
    [11] M. E. Crovella, L. Lipsky. Simulations with heavy-tailed workloads. Self-Similar Network Traffic and Performance Evaluation, John Wiley & Sons, Inc., 2000.
    [12] I. Antonios, L. Lipsky. On the relationship between packet size and router performance for heavy-tailed traffic. Third IEEE International Symposium on Network Computing and Applications, 2004, pp. 235-242.
    
    [13] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM Trans, on Networking, 1995, 3(3): 226-244.
    
    [14] W. Willinger. Self-similarity in wide-area network traffic. Lasers and Electro-Optics Society Annual Meeting, 1997, 2: 462 - 463.
    
    [15] R. Narasimha, Seungsin Lee, R. Rao. Discrete-time scale invariant systems: relation to long-range dependence and FARIMA models. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002, 4: IV-4170.
    
    [16] P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, D. Veitch. Multiscale nature of network traffic. IEEE Signal Processing Magazine, 2002, 19(3): 28-46.
    
    [17] P. Chainais, R. Riedi, P. Abry. Scale invariant infinitely divisible cascades. PSIP, 2003.
    
    [18] P. Chainais, R. Riedi, and P. Abry. On non scale invariant infinitely divisible cascades. IEEE Trans, on Information Theory, 2005, 51(3): 1063 - 1083.
    
    [19] T. Karagiannis, M. Faloutsos, R. Riedi. Long - range dependence: now you see it, now you don't. IEEE GLOBECOM '02, 2002.
    
    [20] R. H. Riedi. An improved multifractal formalism and self-similar measure. J. Math. Anal. Appl., 1995, 189: 462-490.
    
    [21] R. H. Riedi. An Improved Multifractal Formalism and Self-Affine Measures. PhD thesis, Swiss Federal Institute of Technology, 1993.
    
    [22] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, R. G Baraniuk. A multifractal wavelet model with application to network traffic. IEEE Trans, on Information Theory, 1999, 45(3): 992-1018.
    
    [23] R. H. Riedi, J. L. Vehel. Multifractal properities of tcp traffic: a numerical study. Technical report, Institut National de Recherche en Informatique et en Automatique, 1997.
    
    [24] W. Willinger, V. Paxson, R. H. Riedi, M. S. Taqqu. Long-range dependence and data network traffic. Cambridge, MA: Birkhauser, 2001.
    [25] A. Feldmann, A. Gilbert, W. Willinger. Data networks as cascades: Investigating the multifractal nature of internet wan traffic. ACM SIGCOMM'98, 1998, pp. 42-55.
    
    [26] A. Feldmann, P. Huang. Dynamics of ip traffic: a study of the role of variability and the impact of control. ACM/SIGCOMM'99, 1999, 29: 301-313.
    
    [27] A. C. Gilbert, W. Willinger, A. Feldmann. Visualizing multifractal scaling behavior: a simple coloring heuristic. Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers, 1998, 1: 715-722.
    
    [28] Sheng Ma, Chuanyi Ji. Modeling heterogeneous network traffic in wavelet domain, IEEE/ACM Trans, on Networking, 2001, 9(5): 634-649.
    
    [29] W .W illinger, M .S. Taqqu, W. E. Leland, D. V. Wilson. Self-similarity in high speed packet traffic: an alysis and modeling of Ethetnet traffic measurements. Statistical Science, 1995, 10(1): 6 7 - 85.
    
    [30] J. Barral, B. Mandelbrot. Multiplicative products of cylindrical pulses. Probab. Theory Related Fields, 2002, 124(3): 409-430.
    
    [31] B. Mandelbrot, A. Fisher, Calvet. A multifractal model of asset returns. Technical report, 1997.
    
    [32] B. B. Mandelbrot, J. W. V. Ness. Fractional brownian motions, fractional noises and applications. SIAM Review, 1968, 10(4): 422-437.
    
    [33] B. B. Mandelbrot, M. S. Taqqu. Robust r/s analysis of long-run serial correlation, the 42nd Session of the International Statistical Institute, 1979,48: 69-104.
    
    [34] J. Cao, W. S. Cleveland, D. Lin, D. X. Sun. The effect of statistical multiplexing on the long-range dependence of internet packet traffic. Technical report, Bell Labs, 2002.
    
    [35] R. Gaigalas. A non-Gaussian limit process with long-range dependence. PhD thesis, Uppsala University, 2004.
    
    [36] M. Grossglauser, J. C. Bolot. On the relevance of long-range dependence in network traffic. ACM SIGCOMM'96, 1996, pp. 15-24.
    
    [37] B. Ryu, A. Elwalid. The importance of long-range dependence of vbr video traffic in atm traffic enineering: myths and realities. ACM SIGCOMM'96,1996, pp. 3-14.
    [38] D. Veitch, P. Abry. A wevelet based joint estimator of the parameters of long-range dependence. IEEE Trans, on Information Theory, 1999, 45(3): 878 - 897.
    [39] E. Bacry, J. Delour, J. F. Muzy. Multifractal random walk. Phys. Rev. E, 64, 2001.
    [40] E. Bacry, J. F. Muzy. Log-infinitely divisible multifractal processes. Communications in Mathematical Physics, 2002, 6(3): 449-475.
    [41] M. S. Taqqu, V. Teverovsky, W. Willinger. Is network traffic self-similar of multifractal? Fractals, 1997, 5(1): 63-73.
    [42] D. Veitch, J.-A. Backar, J.Wall, J. Yates, M. Roughan. On-line generation of fractal and multifractal traffic. PAM2000, Workshop on Passive and Active Networking, 2000, pp. 117-126.
    [43] M. S. Taqqu, W. Willinger, R. Sherman. Proof of a fundamental result in self-similar traffic modeling. ACM Computer Communication Review, 1997, 27(2).
    [44] P. Abry, P. Flandrin, M. S. Taqqu, D. Veitch. Wavelets for the analysis, estimation and synthesis of scaling data. In K. Park and W. Willinger, editors, Self Similar Network Traffic Analysis and Performance Evaluation. Wiley, 2000.
    [45] T. D. Dang, B. Sonkoly, S. Molnar. Fractal analysis and modeling of VoIP traffic. Telecommunications Network Strategy and Planning Symposium, 2004, pp. 123— 130.
    [46] T. D. Dang, S. Molnar, I. Maricza. Some results on multiscale queueing analysis. 10th International Conference on Telecommunications (ICT), 2003, 2:1631-1638.
    [47] H. F. Zhang, Y. T. Shu, O. Yang. Estimation of Hurst parameter by variance-time plots. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1997, 2: 883-886.
    [48] M. Bodruzzaman, J. Cadzow, R. Shiavi, A. Kilroy, B. Dawant, M. Wilkes. Hurst's rescaled-range (R/S) analysis and fractal dimension of electromyographic (EMG) signal. IEEE Proceedings of Southeastcon, 1991, 2: 1121-1123.
    [49] Lau Wing-Cheong, A. Erramilli, J. L. Wang, W. Willinger. Self-similar traffic parameter estimation: a semi-parametric periodogram-based algorithm. IEEE Global Telecommunications Conference, 1995, 3: 2225-2231.
    [50] F. Hong, W. Zhimei. Multifractal analysis and model of the MPEG-4 video traffic. IEEE International Conference on Performance, Computing, and Communications, 2003, pp. 463-467.
    
    [51] Melo, C. A. V. da Fonseca, N.L.S. An envelope process for multifractal traffic modeling. IEEE International Conference on Communications, 2004, 4: 2168-2173.
    
    [52] R. H. Riedi, M. Crouse, V. Ribeiro, R. Baraniuk. A Multifractal Wavelet Model with Application to TCP Network Traffic. IEEE Symposium on Information Theory, 1999,45:992-1018.
    
    [53] J. L. Vehel, B. Sikdar. A multiplicative multifractal model for TCP traffic. In Sixth IEEE Symposium on Computers and Communications, 2001, pp. 714-719.
    
    [54] J. F. Muzy, E. Bacry. Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2002, 66(5): 056-121.
    
    [55] J. Gao, I. Rubin. Superposition of multiplicative multifractal traffic processes. Electronics Letters, 2000, 36 (8): 761-763.
    
    [56] L. Xin W. Ke, D. Huijing. Wavelet multifractal modeling for network traffic and queuing analysis. International Conference on Computer Networks and Mobile Computing, 2001, pp. 260-265.
    
    [57] T. D. Dang, Sandor Molnar, Istvan Maricza. Performance analysis of multifractal network traffic. In European Trans, on Telecommunications, 2004, 15(2): 63 - 78.
    
    [58] W Jinwu, W. Jiangxing, C. Shuqiao. Joint multifractal network traffic generator and characteristics analysis. Ninth International Symposium on Computers and Communications, 2004, 2: 951-956.
    
    [59] C.A.V. Melo, N. L. S. da Fonseca. Statistical multiplexing of multifractal flows. IEEE International Conference on Communications, 2004, 2: 1135-1140.
    
    [60] M. Krishna, V. Gadre, U. Desai. Multiplicative multifractal process based modeling of broadband traffic processes: variable bit rate video traffic. International Zurich Seminar on Broadband Communications, 2002, pp. 181 - 186.
    [61] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk. Wavelets and multifractals for network traffic modeling and inference. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2001, 6: 3429 - 3432.
    [62] P. Goncalves, R. Reidi, R. Baraniuk. A simple Statistical Analysis of Wavelet-based Multifractal Spectrum Estimation. Proceedings of the 32nd Conference on Signals, Systems and Computers, 1998, pp. 2110 - 2114.
    [63] P. Salvador, A. Nogueira, R. Valadas. Modeling multifractal traffic with stochastic L-systems. IEEE Global Telecommunications Conference, 2002, 3: 2518 - 2522.
    [64] G. Jianbo, R. Ritke. Long - Range - Dependence and Multifractal modeling of vBNS Traffic. Applied Telecommunications Symposium, 2001, pp. 167-173.
    [65] N. Desaulniers-Soucy, A. Iuoras. Traffic modeling with universal multifractals. Global Telecommunications Conference, 1999, IB: 1058-1065.
    [66] http://www.opnet.com
    [67] http://crawdad.cs.dartmouth.edu
    [68] A. Arneodo, B. Audit, E. Bacry, S. Manneville, J. F. Muzy, S. G. Roux. Thermodynamics of fractal signals based on wavelet analysis: application to fully developed turbulence data and dna sequences. Physica A, 1998, 254:24-45.
    [69] A. Arneodo, E. Bacry, J. F. Muzy. Random cascades on wavelet dyadic trees. Journal of Mathematical Physics, 1998, 39(8): 4142-4164.
    [70] B. Audit, E. Bacry, J. F. Muzy, A. Arneodo. Wavelet-based estimators of scaling behavior. IEEE Trans. on Information Theory, 2002, 48(11):2938-2954.
    [71] S. Cambanis, C. Houdre. On the continuous wavelet transform of second-order random processes. IEEE Trans. on Information Theory, 1995, 41(3): 628-642.
    [72] E. Y. Lam. Statistical modelling of the wavelet coefficients with different bases and decomposition levels. IEE Proceedings: Vision, Image and Signal Processing, 2004, 151(3): 203-206.
    [73] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.
    [74] L. Yongli, L. Guizhong; L. Hongliang, H. Xingsong. Wavelet-based analysis of Hurst parameter estimation for self-similar traffic. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'02), 2002, 2: 2061- 2064.
    [75] P. Abry, P. Flandrin, M. S. Taqqu, et al. Self-Similarity and long-range dependence through the wavelet lens. Theory and Applications of Long Range Dependence. Boston: Birkhauser Press, 2002, pp. 345-379.
    
    [76] S. Giordano, S. Miduri, M. Pagano, F. Russo, S. Tartarelli. A wavelet-based approach to the estimation of the Hurst parameter for self-similar data. 13th International Conference on Digital Signal Processing Proceedings, 1997, 2: 479-482.
    
    [77] Y. Dejian, J. C. X. Zixiang, Z. Wenwu. Wavelet-based VBR video traffic smoothing. IEEE Trans, on Multimedia, 2004, 6 (4): 611-623.
    
    [78] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, Nov. 1999.
    
    [79] S. Chakrabarti, A. Mishra. QoS issues in ad hoc wireless networks. IEEE Communications Magazine, 2001, 39(2): 142-148.
    
    [80] M. M. Krunz, Jeong Geun Kim. Fluid analysis of delay and packet discard performance for QoS support in wireless networks. IEEE Journal on Selected Areas in Communications, 2001, 19(2): 384-395.
    
    [81] E. Hossain, V. K. Bhargava. Link-level traffic scheduling for providing predictive QoS in wireless multimedia networks. IEEE Trans, on Multimedia, 2004, 6(1): 199 -217.
    
    [82] X.-D. Huang, Y.-H. Zhou, Statistical Multiplexing of Self-Similar Traffic with Different QoS Requirements, IEICE Trans. Inf. & Syst, 2004, vol. E87-D, pp. 2171-2178.
    
    [83] Chai Keong TOH, Victor O.K. LI, Wei Kang TSAI, Chih-Heng SHIH, Hung-Yun HSIEH. A MAC Protocol for High Performance Wireless Ad Hoc Networks. IEEE Journal on Selected Areas in Wireless Communication Technology, 2004, Vol. E87-B, No. 2, pp. 266-275.
    
    [84] Jau-Yang CHANG, Hsing-Lung CHEN. A Traffic-Based Bandwidth Reservation Scheme for QoS Sensitive Mobile Multimedia Wireless Networks. IEEE Journal on Selected Areas in Mobility Management, 2004, Vol. E87-B, No. 5, pp. 1166-1176.
    [85] A. Zahedi, K. Pahlavan. Capacity of a wireless LAN with voice and data services. IEEE Trans, on Comm, 2000, 48(7): 1160-1170.
    
    [86] F. Cali, M. Conti, E. Gregori. IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism. IEEE Journal on Selected Areas in Communications, 2000, 18(9): 1774-1786.
    
    [87] J. Zhao, Z. Guo, Q. Zhang, W. Zhu. Performance study of MAC for service differentiation in IEEE 802.11. IEEE Global Telecommunications Conference, (GLOBECOM '02), 2002, 1: 778-782.
    
    [88] Y. Chen, Q. -An Zeng, D. P. Agrawal. Performance analysis and enhancement for IEEE 802.11 MAC protocol. ICT'03, 2003, 1: 860 - 867.
    
    [89] F. Cali, M. Conti, E. Gregori. IEEE 802.11 wireless LAN: capacity analysis and protocol enhancement. INFOCOM'98, 1998, 1: 142 - 149.
    
    [90] Y Tay, K. Chua. A capacity analysis for the IEEE 802.11 MAC protocol. Wireless Networks, 2001, 7: 159 - 171.
    [91] S. Toumpis, A. J. Goldsmith. Capacity regions for wireless ad hoc networks. IEEE Trans. on Wireless Communications, 2003, 2(4): 736 - 748.
    [92] J. Shi, H. Zhu. Merging and splitting self-similar traffic. 5th Asia-Pacific Conference on Communications and 4th Optoelectronics and Communications Conference (APCC/OECC '99), 1999, 1: 18 - 22.
    [93] L. Zhang, P. Bao, W. Xiaolin. Wavelet estimation of fractional Brownian motion embedded in a noisy environment. IEEE Trans. on Information Theory, 2004, 50(9): 2194-2200.
    
    [94] Sheng Ma, Chuanyi Ji. Modeling video traffic using wavelets. Communications Letters, 1998,2(4): 100-103.
    
    [95] FAN Y, GEORGANAS N D. On merging and splitting of self-similar traffic in high-speed networks. Proc ICCC'95, Seoul, Korea, 1995.
    
    [96] Antonio NOGUEIRA, Paulo SALVADOR, Rui VALADAS, Antonio PACHECO. Fitting Self-Similar Traffic by a Superposition of MMPPs Modeling the Distribution at Multiple Time Scales. IEICE Trans. Commun., 2004, Vol. E87-B, No. 3, pp. 678 - 688.
    [97] B. D. Fritchman, "A binary channel characterization using partitioned Markov chains," IEEE Trans. Inform. Theory, vol. 13, pp. 221-227, Apr. 1967.
    
    [98] W. Turin, R. van Nobelen. Hidden Markov modeling of flat fading channels. IEEE J. Select. Areas Commun., 1998, vol. 16, pp. 1809-1817.
    
    [99] A. Giovanardi, G. Mazzini. Impact of chaotic self-similar and Poisson traffics on WLAN token passing protocols. The 2000 IEEE International Symposium on Circuits and Systems, 2000, 1: 383 - 386.
    
    [100] G Dethe Chandrashekhar, D. G Wakde. Time series model for packet process in network traffic. International Conference on Modelling Identification and Control (IASTED), 2003, pp. 365-369.
    
    [101] How, Jacek. Parameter estimation in FARIMA processes with applications to network traffic modeling. IEEE Signal Processing Workshop on Statistical Signal and Array Processing (SSAP), 2000, pp. 505-509.
    
    [102] L. Jiakun, Y. T. Shu, L. F. Zhang, F. Xue, W. W. Oliver. Traffic modeling based on FARIMA models. Canadian Conference on Electrical and Computer Engineering, 1999, 1: 162-167.
    
    [103] Stoev, Stilian, M. S. Taqqu, S. Murad. Simulation methods for linear fractional stable motion and farima using the fast fourier transform. Fractals, 2004, 12(1): 95-121.
    
    [104] C. H. Liew, C. K. Kodikara, A. M. Kondoz. MPEG-encoded variable bit-rate video traffic modeling. IEE Proceedings: Communications, 2005, 152(5): 749-756.
    
    [105] Paliwal, K. Kuldip. Low-complexity GMM-based block quantisation of images using the discrete cosine transform. Signal Processing: Image Communication, 2005, 20(5): 435-446.
    
    [106] Jacovitti, Giovanni, Neri, Alessandro. Motion field estimation based on Laguerre-Gauss circular harmonic pyramids. The International Society for Optical Engineering (SPIE), 1999, pp. 361-372.
    
    [107] M. Carli, G Jacovitti, A. Neri. Markovian motion field regularization based on the Gauss-Laguerre transform. The International Society for Optical Engineering (SPIE), 2001, pp. 372-381.
    [108] L. Muscariello, M. Mellia, M. Meo, M. Marsan, M. Ajmone, R. Cigno. An MMPP-based hierarchical model of Internet traffic. IEEE International Conference on Communications, 2004, 4: 2143-2147.
    
    [109] A. Nogueira, Salvador Paulo, Valadas Rui, Pacheco Antonio. Markovian Appr oachfor Modeling IP Traffic Behavior on Several Time Scales. The International Society for Optical Engineering (SPIE), 2003, pp. 29-40.
    
    [110] H. Kang Sang, K. Yong Han, S. Dan, D. Choi Bong. An applicatio n of Markovianarrival process (MAP) to modeling superposed ATM cell streams, IEEE Transactions on Communications, 2002, 50(4): 633-642.
    
    [111] G. Min, M. Ould-Khaoua. A queueing model for pipelined circuit-switched networks with the MMPP traffic. IEEE International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2001, pp. 259-266.
    
    [112] J. I. Qi-Jin. Can multifractal traffic burstiness be approximated by Markov modulated Poisson processes? IEEE International Conference on Networks (ICON), 2004,1:26-30.
    [113] T. C. Wong, J. W. Mark, K. C. Chua. Delay performance of voice and MMPP video traffic in cellular wireless ATM network. IEE Proceedings: Communications, 2001, 148(5): 302-309.
    [114] Nakagawa Kenji. Importance sampling simulation of MMPP/D/1 queueing. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E80-A, No. 11, 1997, pp. 2238-2244.
    [115] K. Onda, K. Nakagawa. Approximation of video cell traffic by AR(1) + IPP model. Electronics & Communications in Japan, Part I: Communications (English translation of Denshi Tsushin Gakkai Ronbunshi), 1995, 78(8): 1-9.
    [116] Y D. Lee, A. van de Liefvoort, V. L. Wallace. Modeling correlated traffic with a generalized IPP. Performance Evaluation, 2000, 40(1): 99-114.
    [117] M. E. Woodward. Product form solutions for discrete-time queueing networks with bursty traffic. Electronics Letters, 2000, 36(17): 1512-1514.
    [118] P. Flandrin. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. on Information Theory, 1992, 38(2): 910 - 917.
    
    [119] NORROS. On the use of fractional Brownian motion in the theory of connectionless networks. IEEE Journal on Selected Areas in Communication, 1995, 13: 953-962.
    
    [120] Donald R. McGaughey, G J. M. Aitken. Generating two-dimensional fractional Brownian motion using the fractional Gaussian process (FGp) algorithm. Physica A: Statistical Mechanics and its Applications, 2002, 311(3-4): 369-380.
    
    [121] T. E. Duncan. Some aspects of fractional Brownian motion. Nonlinear Analysis, Theory, Methods and Applications, 2001,47(7): 4775-4782.
    
    [122] X. Bardina, M. Jolis. Multiple fractional integral with Hurst parameter less than 1/2. Stochastic Processes and their Applications, 2006, 116(3): 463-479.
    
    [123] El-Nouty Charles. A Note on the Fractional Integrated Fractional Brownian Motion. Probability Theory and Mathematical Statistics Part I, 2003, 78: 103-114.
    
    [124] Wang Wensheng. The fractal nature of the functional law of logarithm of fractional Brownian motions. Mathematical and Computer Modelling, 2004, 40 (3-4): 457-464.
    
    [125] Pipiras Vladas. Wavelet-based simulation of fractional Brownian motion revisited. Applied and Computational Harmonic Analysis, 2005, 19(1): 49-60.
    [126] T. S. Kim, S. Kim. Singularity spectra of fractional Brownian motions as a multi-fractal. Chaos, Solitons and Fractals, 2004, 19(3): 613-619.
    
    [127] H. Kettani, J. A. Gubner. Estimation of the long-range dependence parameter of fractional ARIMA processes. 28th Annual IEEE International Conference on Local Computer Networks (LCN '03), 2003, 307 - 308.
    
    [128] M. Coulon, A. Swami. A Least squares detection of multiple changes in fractional ARIMA processes. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2001, 5: 3177-3180.
    
    [129] J. How, H. Leung. Self-similar texture modeling using FARIMA processes with applications to satellite images. IEEE Trans. on Image Processing, 2001, 10(5): 792-797.
    [130] N. Sadek, A. Khotanzad. K-factor Gegenbauer ARMA process for network traffic simulation Ninth International Symposium on Computers and Communications (ISCC'04), 2004, 2: 963 - 968.
    
    [131] R. Ramachandran, P. Beaumont. Robust estimation of GARMA model parameters with an application to cointegration among interest rates of industrialized countries. Computational Economics, 2001, 17(2-3): 179-201.
    
    [132] N. Sadek, A. Khotanzad. Multi-scale network traffic prediction using k-factor Gegenbauer ARMA and MLP models. 3rd ACS/IEEE International Conference on Computer Systems and Applications, 2005, pp. 343-349.
    
    [133] N. Sadek, A. Khotanzad. Multi-scale high-speed network traffic prediction using k-factor "Gegenbauer ARMA model. IEEE International Conference on Communications (ICC), 2004, 4: 2148-2152.
    [134] R. Ramachandran, V. R. Bhethanabotla. Generalized autoregressive moving average modeling of the Bellcore data. Conference on Local Computer Networks, 2000, pp. 654-661.
    
    [135] J. H. McCulloch. Financial applications of stable distributions. G S. Maddala and C. R. Rao, editors, Statistical Methods in Finace, Handbook of Statistics, volume 14. North-Holland, NY, 1996.
    
    [136] J. P. Nolan. Parameterizations and models of stable distributions. Stat. Prob. Letters, 1998, 38: 187-195.
    
    [137] J. P. Nolan. Fitting data and assessing goodness of fit with stable distributions. In the Conference on Applications of Heavy Tailed Distributions in Economics, Engineering and Statistics, Washington, DC, American University, 1999.
    
    [138] J. P. Nolan. Maximum likelihood estimation and diagnostics for stable distributions. In O. E. Barndorff-Nielsen, T.Mikosch, and S. Resnick, editors, L'evy Processes. Brikh"auser, Boston, 2001.
    [139] E. Masry. The wavelet transform of stochastic processes with stationary increments and its application to fractional brownian motion. IEEE Transaction on Information Theory, 1993, 39(1):260-264.
    [140] X. Tian, S. Ma, C. Ji. Comparison of the independent wavelet models to network traffic. IEEE GLOBECOM'00, 2000, 3: 1448-1452.
    
    [141] W. Dong, C. Haiguang. Wavelet-based models for network traffic. Tenth IEEE Workshop on Statistical Signal and Array Processing, 2000, pp. 490 - 494.
    
    [142] B. Pesquet-Popescu, P. Larzabal. Higher and lower-order properties of the wavelet decomposition of self-similar processes. IEEE Signal Processing Workshop on Higher-Order Statistics, 1997, pp. 458 - 462.
    
    [143] Q. Zhang, A. Benveniste. Wavelet networks. IEEE Trans. on Neural Networks, 1992, 3(6): 889-898.
    
    [144] G. Katul, B. Vidakovic, J. Albertson. Estimating Global and Local Scaling Exponents in Turbulent Flows using Wavelet Transformations. Physics of Fluids, 2001, 13(1): 241-250.
    
    [145] Guoliang Fan, Xiang-Gen Xia. Improved hidden Markov models in the wavelet-domain. IEEE Trans. on Signal Processing, 2001, 49(1): 115-120.
    
    [146] S. G Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    
    [147] S. A. Billings, H. L. Wei. The wavelet-NARMAX representation: A hybrid model structure combining polynomial models with multiresolution wavelet decompositions. International Journal of Systems Science, 2005, 36(3): 137-152.
    
    [148] Huimin Chen, Hong Cai, Yanda Li. Self-similar traffic. Hurst parameter estimation based on multiresolution sampling and wavelet analysis. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1998, 26(7): 88-93.
    
    [149] Yao Liang, W. Page Edward. VBR video traffic prediction using neural networks with multiresolution learning. Advances in Neural Networks and Applications, 2001, p 98-103.
    
    [150] A. Aussem, F. Murtagh. Web traffic demand forecasting using wavelet-based multiscale decomposition. International Journal of Intelligent Systems, 2001, 16(2): 215-236.
    [151] M. Guoqiang. A timescale decomposition approach to network traffic prediction. IEICE Trans. on Communications, 2005, Vol. E88-B, No. 10, pp. 3974-3981.
    
    [152] Chun You, Kavitha Chandra. Time series models for internet data traffic. Proc 24th Conference on Local Computer Networks (LCN'99), 1999, pp. 164-171.
    
    [153] Shen Dongxu, L. Hellerstein Joseph. Predictive models for proactive network management: application to a production web server. IEEE Symposium Record on Network Operations and Management Symposium, 2000, pp. 833-846.
    
    [154] G. Gripenberg, I. Norros. On the prediction of fractional Brownian motion. Journal of Applied Probability, 1996, 33(2): 400.
    
    [155] Tran, Hung Tuan; Ziegler, Thomas. Adaptive bandwidth provisioning with explicit respect to QoS requirements. Computer Comm., 2005, 28(16): 1862-1876.
    
    [156] T. Tuan and K. Park. Multiple time scale congestion control for self-similar network traffic. Perf. Eval., 36:359-386, 1999.
    
    [157] T. Tuan and K. Park. Performance evaluation of multiple time scale tcp under self-similar traffic conditions. Technical Report CSD-TR-99-040, Department of -Computer Sciences, Purdue University, 1999.
    
    [158] T. Tuan and K. Park. Multiple time scale redundancy control for qossensitive transport of real-time traffic. In IEEE INFOCOM '00, 2000.
    
    [159] Y. T. Shu, L. Wang, L. F. Zhang, F. Xue, Z. G. Jin, O. Yang. Internet traffic modeling and prediction using FARIMA models. Chinese Journal of Computers, 2001, 24(1): 46-54.
    
    [160] Yantai Shu, Zhigang Jin, Jidong Wang, W W. Oliver. Prediction-based admission control using FARIMA models. IEEE International Conference on Communications (ICC), 2000, 3: 1325-1329.
    
    [161] Huifang Feng, Yantai Shu. Study on network traffic prediction techniques. International Conference on Wireless Communications, Networking and Mobile Computing (WCNM'05), 2005, pp. 995 - 998.
    
    [162] H. Guoguang, M. Shoufeng. A study on the short-term prediction of traffic volume based on wavelet analysis. The IEEE 5th International Conference on Intelligent Transportation Systems, 2002, PP. 731-735.
    [163] Chandrashekhar G. Dethe, D.G. Wakde. On the prediction of packet process in network traffic using FARIMA time-series model. Journal of the Indian Institute of Science, 2004, 84(1-2): 31-39.
    
    [164] Jacek Ilow. Forecasting network traffic using FARIMA models with heavy tailed innovations. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2000, 6: 3814-3817.
    
    [165] Zhi-Gang Jin, Yong-Mei Luo. User-oriented probing and forecast of characteristics of Internet link. Journal of Tianjin University Science and Technology, 2003, 36(3): 316-319.
    
    [166] Jacek Ilow. Forecasting network traffic using FARIMA models with heavy tailed innovations. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2000, 6: 3814-3817.
    
    [167] Qureshi, Aziz G. Prediction of long-range dependent processes for teletraffic applications. Proceedings of the International Symposium on Signal Processing and its Applications (ISSPA), 1996, 1: 180-183.
    
    [168] Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe. Long-term forecasting of Internet backbone traffic. IEEE Trans. on Neural Networks, 2005, 16(5): 1110-1124.
    
    [169] Lin, Cheng-Jian; Chin, Cheng-Chung. Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(5): 2144-2154.
    
    [170] Alarcon-Aquino, Vicente; Barria, Javier A. Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction. IEEE Trans. on Systems, Man and Cybernetics Part C: Applications and Reviews, 2006, 36(2): 208-220.
    
    [171] Mao, Guoqiang. A timescale decomposition approach to network traffic prediction. IEICE Trans. on Communications, 2005, Vol. E88-B, No. 10, pp. 3974-3981.
    
    [172] W. Li, L. Zengzhi, S. Chengqian. Network traffic prediction based on seasonal arima model. Fifth World Congress on Intelligent Control and Automation (WCICA'04), 2004, 2: 1425 - 1428.
    [173] Y. Guoqiang, Z. Changshui. Switching ARIMA model based forecasting for traffic flow. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), 2004, 2: 1520-6149.
    
    [174] S. Song, Ng J. K.-Y., B. Tang. Some results on the self-similarity property in communication networks. IEEE Trans. on Communications, 2004, 52 (10): 1636-1642.
    
    [175] Likhanov N., Tsybakov B., Georganas N. D.. Analysis of an ATM buffer with self - similar ("fractal") input traffic. INFOCOM'95, 1995, 3: 985-992.
    
    [176] Boxma O. J., Cohen J. W.. The M/G/1 queue with heavy-tailed service time distribution. IEEE Journal on Selected Areas in Communications, 1998, 16(5): 749-763.
    
    [177] Abate J., Whitt W.. Explicit M/G/1 waiting-time distributions for a class of long-tail service-time distributions. Operations Research Letters 25, 1999, 25-31.
    
    [178] A. Arneodo, S. Manneville, J.F. Muzy, and S.G. Roux. Experimental evidence for anomalous scale dependent cascading process in turbulent velocity statistics. Applied and Computational Harmonie Analysis, 1999, 6: 374-381.
    
    [179] M. W. Garrett andW. Willinger. Analysis, modeling and generation of selfsimilar vbr video traffic. In ACM SIGCOMM '94, 1994, pp. 269-279.
    
    [180] O. Tickoo, B. Sikdar. On the impact of IEEE 802.11 MAC on traffic characteristics. IEEE Journal on Selected Areas in Communications, 2003, 21(2): 189 - 203.
    
    [181] A. Adas. Traffic models in broadband networks. IEEE Communications Magazine, 1997, pp. 82-89.
    
    [182] R.G. Addie, M. Zukerman, and T. Neame. Fractal traffic: measurement, modeling and performance evaluation. IEEE INFOCOM'95, 1995, pp. 977-984.
    
    [183] H.D. Alsaialy and J.A. Silvester. Clustering method and semi-markov processes for vbr traffic modeling in an atm network. In IEEE GLOBECOM '99, 1999, pp. 1194-1202.
    
    [184] A. Erramilli, M. Roughan, D. Veitch, and W. Willinger. Self-similar traffic and network dynamics. Proceedings of the IEEE, 90(5): 800-819, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700