大功率聚磁式横磁通永磁电机设计及其优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土永磁电机是现代材料科学、电力电子学及电工理论相结合的产物,体现着当今应用科学的许多最新成果,因而显示出广泛的应用前景和强大生命力。近年来,新的电机拓朴结构与控制方式层出不穷,尤其是横磁通永磁电机(TFPM)问世后,彻底打破了传统电机的设计方法和电源供电方式,为电力传动系统提供了全新的解决方案。由于TFPM电机结构复杂,它在小型化时不具备传统电机的尺寸优势,适宜采用多极多相结构形式,在低速、大转矩、直接驱动的工业和军事领域推广。本文在总结国内外现有TFPM电机主要研究成果的基础上,就一种新型结构大功率聚磁式横磁通永磁电机设计、分析及其控制系统进行了全面研究。
     第一,提出一种新型双C结构的10.4MW聚磁式横磁通永磁电机设计。为降低加工成本,采用组合式定子结构,即电机定子由内定子铁芯、外定子铁芯和定子过渡铁芯三部分组成,具有设计新颖、工艺简单等特点,并已申请专利。同时针对该结构还设计了隔磁环固定结构,既避免了磁路间的相互影响,又可以使电机整体具有较高的机械强度和定位精度。
     第二,聚磁式横磁通永磁电机是同时具有径向、周向和轴向磁通的典型三维磁场电机,需用三维场来分析,为此本文提出一种三维磁场数值计算方法——磁网络法。该方法将电流线圈等效为永磁体来处理,可以用标量磁位完整地描述场中每一点的特性,比矢量磁位减少了计算时间,具有剖分简单、收敛性好、后处理简单等优点。
     第三,应用三维等效磁网络法分析了样机在不同工况下的磁场分布情况,分析了几个主要结构参数对TFPM电机力能指标的影响,从中得到一定的设计规律。另外就电磁负荷对电机功率因数的影响进行深入分析,并指出TFPM电机功率因数较传统电机偏低是其获得高转矩密度所必须付出的代价。
     第四,对TFPM这一新型电机而言,进行优化设计不但可以提高设计质量,而且能够缩短设计周期。本文在深入分析标准粒子群算法(Standard ParticleSwarm Optimization-SPSO)的基础上进行改进研究,并把改进粒子群算法(Improved Particle Swarm Optimization-IPSO)与电机电磁场逆问题研究相结合,对TFPM电机进行优化设计。文中还详细介绍了TFPM电机优化模型的建立以及目标函数和优化变量的确定原则,并对不同优化方法得到的设计结果与原设计方案进行分析、比较。在不降低样机电气性能的前提下,优化后TFPM电机的转子磁钢用量和电机体积都可以显著减少,有效提高了TFPM电机的性价比。
     第五,由于自定位转矩引起的转矩脉动问题使TFPM电机的速度控制特性恶化,严重影响了TFPM电机在直接电力传动系统中的广泛应用。本文充分利用TFPM各相独立的结构特点,从电机本体设计出发,提出一种新型多相(十相)聚磁式组合定子TFPM拓扑。经多相合成后,可以使部分自定位转矩相互抵消,从而减少了输出转矩脉动。
     最后,论文为验证上述设计思想进行仿真研究,仿真结果验证了系统设计的正确性与合理性。因目前国内生产厂家尚无能力制造兆瓦级TFPM电机,课题组成功制造了200W和4.5kW同类型单C结构样机,本文取得的各项成果为今后大功率TFPM电机传动系统的研制、调试提供了有力参考。
As a product involved in material science, power electronics and electrical engineering, rare-earth permanent magnet machine is arguably the most important category of electrical machine for a wide spectrum of application. Most of the major developments in recent times have been in new machine topologies and control methods. Especially the emergence of transverse flux permanent magnet machine (TFPM), a new phase of electrical machine design and power electronic converter has evolving. TFPM has becoming a superior choice for low speed, high torque and direct electric propulsion applications. Compared to conventional machine, TFPM hasn't noticeable predominance in small dimension for their complicated configurations. The principal advantage of TFPM topology is that for large diameter, multi-pole and multi-phase forms. This dissertation mainly focuses on analysis and optimization of large TFPM with flux-concentrated design.
     Firstly, a novel 10.4MW TFPM with double C-shaped stator core and concentrating flux rotor is developed. The stator core is characterized with combined configurations including outer stator, inner stator and joint stator, which allows for an easy assembly and low manufacture cost. This unique idea of this new configuration has applied and granted a patent. In addition, a special insulated ring is designed to keep from electromagnetic couple between stators, which also guarantees the mechanical intensity and positional veracity. Both magnetic circuit and mechanical construction were subject to optimization. For manufacture limitations of large TFPM, there are two prototypes rated in 200W and 4.5kW have been produced in our group.
     Secondly, the TFPM has a complex three-dimension (3D) flux pattern where the magnetic flux passes radially, axially and circumferentially from the rotor to the stator. A 3D equivalent magnetic network (3DEMN) method suitable for 3D electromagnetic analysis especially for transverse flux magnetic systems is introduced. Assuming the current winding as virtual permanent magnet, the scalar magnetic potential equation can be satisfied in 3DEMN, which simplifies the calculation procedure and saves time greatly than vector potential.
     Thirdly, the static magnetic field distribution is analyzed by 3DFEM along with the magnetic force at different operational conditions such as different dimensions, different rotor positions and different loads. It is also noted that for the competition for space between the electric and magnetic circuits present in radial and axial flux machines is largely removed, the ability to load both these circuits to extreme levels brings a consequent much reduced power factor.
     Fourthly, as a new comer to electrical machine, optimal design of TFPM provides both design quality improvement and time saving advantage. Based on the heuristic evolutionary strategy standard particle swarm optimization (SPSO) algorithm, an improved particle swarm optimization (IPSO) algorithm is proposed and initially introduced to TFPM design procedure. The optimization goal, the minimum magnet material and machine volume approaches given in which insure the electric characteristics is available.
     Fifthly, with a mass of high energetic permanent magnet in TFPM rotor, the cogging torque with higher frequency can result in many problems such as mechanical vibration, noise and so on. The electromagnetic analysis results illustrate how constructional changes can decrease the torque ripple of TFPM. Harmonic content of torque waveform can be minimized by superposition technique with a suitable arrangement of individual phases.
     Finally, a simulation experiment is carried out. A non-linear dynamic mathematical model of TFPM is established and the corresponding digital simulation model is built on the developing platform of Simulink. The steady state and dynamic performance of TFPM are simulated under the different commutation modes. The feasibility of TFPM with superposition technique as well as full bridge power supply is verified by simulation results on the basis of improvement of resultant torque ripple and the simplification of the control.
引文
1. K. Stmat, G. Hoffer, J. Olson, and W. Ostertag. A Family of New Cobalt-Base Permanent Magnet Materials. Journal of Applied Physics, 1967, Vol.38, Issue 3, pp: 1001-1002.
    2. 李钟明,刘卫国.稀土永磁电机[M].国防工业出版社,1999.
    3. 唐任远等著.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    4. 李亚旭.横向磁通电动机拓扑结构初析.船电技术,2003(1):8-12.
    5. 李锡群,王志华.电机/推进器一体化装置(IPM)介绍.船电技术, No.2,2003:5-6.
    6. 尹斌传,姜忆初,王竞.潜艇交流永磁同步电力推进系统应用研究.舰船科学技术,No.5,1998:24-27.
    7. Timothy J.Doyle, Howard O.Stevens, Henry Robey. An historical overview of navy electric drive, http://www.onr.navy.mil/fncs/aces/docs/history.pdf.
    8. 吴建华.开关磁阻电机设计与应用.机械工业出版社.北京.2001.
    9. Weh, H. Transversal flow machine in accumulator arrangement [P]. United States Patent: 5051641,1991.
    10. Dubois M R, Polinder H, Ferreira J A. Comparison of generator topologies for direct-drive wind turbines. 2000 IEEE Nordic Workshop on Power and Industrial Electronics, ISBN: 87-89179-29-3, NORPIE 2000: 22-26.
    11. Masmoudi, A. Elantably. An approach to sizing high power density TFPM intended for hybrid bus electric propulsion. Electric Machines and Power Systems, Vol. 28, No. 1-6, 2000: 341-354.
    12. Mitcham A J. Transverse flux motor for electric propulsion of ships. Proceedings of IEE, London UK, 1997:1-6.
    13. Jens-Peter Altendorf, et al. OKOFEH--A Research Project for Initiating Further Development of Drive Systems for Electric, Hybrid and Fuel Cell Vehicles[CD]. EV18, Berlin, 2001.
    14. The Royal Institutionof Naval Architects. All-electric ships exert a powerful attraction.5,2003, http://www.rina.org.uk/rfiles/warship/electric_may03.pdf.
    15. Ahmed Masmoudi, Ahmed Elantably. Transverse Flux Permanent Magnet Machines: an Important Challenge for the Improvement of the Mass Production Potential of Electric Propulsion Drives[CD]. EV17, 2000.
    16. 李永斌,袁琼,江建中.一种新型聚磁式横向磁通永磁电机研究.电工技术学报.2003,18(5):46-49.
    17. G.Kastinger, Robert Bosch GmbH. Design of a novel transverse flux machine. http://www.ansoft.com/news/articles/Design_of_Tranverse_Flux_Machine.pdf.
    18. M.Bork and G.Henneberger. New transverse flux concept for an electric drive system. Proceedings of International Conference on Electrical Machines, Spain, Vol.3,1996:308-313.
    19. H.Weh, H.May. Achievable force densities for permanent magnet excited machines in new configurations. Proceedings of International Conference on Electrical Machines, Germany, Vol.3,1986:1107-1111.
    20. B.C.Mecrow, A.G.Jack, C.P.Maddison. Permanent magnet machines for high torque low speed applications. Proceedings of the International Conference on Electrical Machines and Drives, 1996:461-466.
    21. Eugen Nolle. Multi-phase transverse magnetic flux machine[P]. United States Patent:5854521,1998.
    22. 郑文鹏,江建中等.基于三维磁网络法E型铁心横向磁场电机的设计与研究. 中国电机工程学报,2004,24(8):138-141.
    23. R. Kruse, G. Pfaff, C. Pfeiffer. Transverse Flux Reluctance Motor for Direct Servo-drive Applications. Industry Applications Conference, Vol. 1, 1998: 655-662.
    24. 李永斌,高瑾,江建中.横向磁场开关磁阻电机永磁屏蔽技术研究.中国电机工程学报,2003,23(11):164-168.
    25. Waqas M.Arshad, T.Backstrom,C.Sadarangani. Investigating a transverse flux machine with intermediate poles. Power Electronics, Machines and Drives Conference,2002:325-328.
    26. 叶云岳,林友仰.计算机辅助电机优化设计与制造[M].浙江大学出版社, 1998.
    27. 俞鑫昌.电机、电器优化设计[M].机械工业出版社,1988.
    28. 丘昌涛,胡冰.计算机辅助优化设计系统.中国电机工程学报,1995,15(4):261-266.
    29. 杨仕友,倪光正.电机电磁场逆问题数值计算的改进Tabu算法.中国电机工程学报,1998,18(2):83-86.
    30. G.F.Uler, O.A.Mohammed, Chang-Seop Koh. Utilizing Genetic Algorithms for Optimization Design of Electromagnetic Devices. IEEE Trans.on Magnetics,Vol.30, Issue 6, 1994: 4296-4298.
    31. 石山,励庆孚,王兴华.基于自适应遗传算法的无刷直流电机的优化设计.西安交通大学学报,2002,36(12):1215-1218.
    32. 汪洁,樊叔维、鱼振民等.遗传算法的改进及其在电机全局优化中的应用. 西安交通大学学报,1998,32(1):5-8.
    33. Han,Ki-Jin, Cho,Han-Sam, Cho,Dong-Hyeok. Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm. IEEE Trans. on Magnetics, Vol.36, Jul, 2000:1927-1931.
    34. 卢琴芬,陈宇,叶云岳等.遗传模拟退火算法在圆筒型直线感应电机优化设计中的应用.中小型电机,2002,29(5):17-19.
    35. 孟朔,赵争鸣.异步电机的优化设计新方法.清华大学学报(自然科学版),2001, 41(6):120-123.
    36. 王凌.智能优化算法及其应用[M]北京:清华大学出版社,2001
    37. David H, Wolpert, William G. Macready. No free lunch theorems for optimization. IEEE Trans. On Evolutioary computatuin, Vol. 1,No. 1,1997:67-82.
    38. Eberhart, R. and Kennedy, J. A New OptimizerUsing Particle Swarm Theory, Proc.Sixth Internatioal Symposium on Micro Machine and Human Science(Nagoya, Japan), IEEE Service Center, Piscataway, NJ, 1995: 39-43.
    39. Efren Mezura-Montes,Carlos A. Coello Coello. Engineering optimization using a simple evolutionary algorithm. Proceedings of the International Conference on Tools with Artificial Intelligence, 2003:149-156.
    40. Gabriela Ciuprina, Daniel Ioan and Irina Munteanu. Use of Intelligent-Particle Swarm Optimization in Electromagnetics. IEEE Trans.on Magn.Vol.38, No2, March, 2002:1037-1040.
    41. 夏永明,付子义,袁世鹰等.粒子群优化算法在直线感应电机优化设计中的应用.中小型电机,2002,29(6):14-16.
    42. Jiang Jianzhong. Analytische und Dreidimensionale Numerische Berechnung Von Transversalflux Maschinen[D]. PhD Dissertation, Technisch Universiteat Braunschweig, Germany, 1988.
    43. Laithwaite E R. Equivalent magnetic circuits for electric machines. Pro.IEE,1967,114(11): 1806-1809.
    44. 胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1982.
    45. G. Henneberger, M. Bork, Development of a new transverse flux motor. IEE Colloquium on New Topologies for Permanent Magnet Machines (Digest No: 1997/090), 1997(6): 1/1-1/6.
    46. K.Y. Lu, E. Ritchie, P.O. Rasmussen, et al. Modelling a Single Phase Surface Mounted Permanent Magnet Transverse Flux Machine Based on Fourier Series Method. Electric Machines and Drives Conference, IEMDC'03. Vol.1, 2003: 340-345.
    47. M.R. Harris, G.H. Pajooman, S.M. Abu Smarkh. Performance and design optimization of electric motors with heteropolor surface magnets and homopolar windings. Electric Power Applications, IEE Proceedings, Vol.143 ,Issue 6,1996: 429-436.
    48. M.R. Harris, G.H. Pajooman, S.M. Abu Sharkh. The problem of power factor in VRPM (transverse-flux) machines. International Conference on Electrical Machines and Drives, 1997 Eighth (Conf. Publ. No. 444), 1997:386-390.
    49. Mitcham A J, John Rickman, Colin J Grime. Rotor disc construction for use in an electrical machine[P]. United States Patent: 5877578, 1999.
    50. S.M. Husband, C.G. Hodge. The Rolls-Royce transverse flux motor development. IEEE International Electric Machines and Drives Conference, Vol.3,2003: 1435-1440.
    51. Youguang Guo, Jian guo Zhu, P.A. Watterson et al. Design and analysis of a transverse flux machine with soft magnetic composite core. Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003. Vol. 1, 2003:153-157.
    52. 江建中.聚磁式横向磁场电机[P],No:02112212.1.
    53. 施进浩.新型横向磁场电机设计与研究[D],2006.
    54. 郑文鹏.基于标量磁位三维有限元法新型横向磁场电机设计与研究[D], 2006.
    55. 西安交通大学电机与电器制造教研室组编译.电机设计(下册)[M].中国工业出版社,1963.
    56. Dinyu Qin,Ronghai Qu, Thomas A.Lipo. A Novel Electric Machine Employing Torque Magnification and Flux Concentration Effects. Conf. Rec. IEEE-IAS Annual Meeting, Vol. 1, Phonix, AZ, 1999: 132-139.
    57. H. Polinder, B.C. Mecrow, A.G. Jack et al. Conventional and TFPM Linear Generators for Direct-Drive Wave Energy Conversion. IEEE Transactions on Energy Conversion, Vol. 20, 2005:260-267.
    58. Capolino, G.A., Golea, A., Henao, H. Methodology for computer-aided design of electrical drives, IEEE workship on Computers in power electronics Aug. 1992:239-250.
    59. Uler, G.F., Mohammed, O.A., Chang-Seop Koh. Design optimization of electrical machines using genetic algorithms, IEEE Transactions on Magnetics, Vol.31, Issue3, May 1995:2008-2011.
    60. Liu, X., Slemon, G.R.. An improved method of optimization for electrical machines. IEEE Transactions on Energy Conversion, Vol. 6, Issue 3, Sept. 1991:492-496.
    61. Guo Cuangxin,Hu Jiasheng,YeBin. Swarm intelligence for mixed-variable design optimization. Journal of Zhejiang University Science.2004 5(7):851-860.
    62. Furong Li, Pilgrim, J.D., Dabeedin, C, Chebbo, A., Aggarwal, R.K. Genetic algorithms for optimal reactive power compensation on the national grid system. IEEE Transactions on Power systems. Vol 20, Issue 1, Feb 2005:493 - 500.
    63.林荛瑞,马少平.人工智能导论[M].清华大学出版社,1998.
    64. Groenwold, Albert A. , Fourie, P.C. The particle swarm optimization algorithm in size and shape optimization Structural and Multidisciplinary Optimization, Vol.23, No.4, May, 2002: 259-267.
    65. Coello Coello, Carlos A. Pulido, Gregorio Toscano; Lechuga, Maximino Salazar. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, June, 2004, Particle Swarm Optimization:256-279.
    66. Venter, Gernard Sobieszczanski-Sobieski, Jaroslaw. Particle swarm optimization AIAA Journal, Vol.41, No.8, August, 2003: 1583-1589.
    67. Yuan, Xiao-HuiWang, Cheng, Zhang;Yong-Chuan;Yuan, Yan-Bin. A survey on application of particle swarm optimization to electric power systems. Power System Technology, Vol. 28, No.19, Oct 5, 2004: 14-19.
    68. Baumgartner, U. Magele, Ch., Renhart, W. Pareto optimality and particle swarm optimization. IEEE Transactions on Magnetics, Vol.40,No.2, March, 2004:1172-1175.
    69. Maxime R.Dubois, Henk Polinder, A. Ferreira. Influence of Air Gap in Transverse Flux Permanent Magnet (TFPM) Generators for Wind Turbine Application. NORPIE 2000:1-7.
    70. B.E. Hasubek, E.P. Nowicki. Design Limitations of Reduced Magnet Material Passive Rotor Transverse Flux Motors Investigated using 3D Finite Element Analysis.Canadian Conference on Electrical and Computer Engineering, Vol.1, 2000: 365-369.
    71. Ronghai Qu, Metin Aydin, Thomas A.Lipo. Performance Comparison of Dual-Rotor Radial-Flux and Axial-Flux Permanent-Magnet BLDC Machines. Electric Machines and Drives Conference, IEEE International , IEMDC,Vol.3. 2003:1948-1954.
    72. Kang D H, Chun Y H, Weh H. Analysis and optimal design of transverse flux linear motor with PM excitation for railway traction. IEE Proceedings-Electric Power Applications, 2003(4): 493 -499.
    73. Chang Junghwan, Kang, Dohyun. Development of transverse flux linear motor with permanent-magnet excitation for direct drive applications. IEEE Transactions on Magnetics, Vol. 41, No. 5,2005: 1936-1939.
    74. Hasubek B E, Nowicki E P. Two dimensional finite element analysis of passive rotor transverse flux motors with slanted rotor design. IEEE Canadian Conference on Electrical and Computer Engineering, 1999 (2): 1199 -1204.
    75. M.R. Dubois, H. Polinder, J.A. Ferreira. Transverse-flux permanent magnet (TFPM) machine with toothed rotor. International Conference on Power Electronics, Machines and Drives (Conf. Publ. No. 487), 2002: 309-314.
    76. Y.H. Jeong, D.H. Kang, J.M. Kim, et al. A design of transverse flux motor with permanent magnet shield. IEEE International Symposium on Industrial Electronics, Vol.2, 2001: 995-999.
    77. W.M. Arshad, T. Backstrom, C. Sadarangani, Analytical design and analysis procedure for a transverse flux machine. IEEE International Electric Machines and Drives Conference, 2001: 115-121.
    78. Masmoudi, A., Njeh, A., Mansouri, A. et.al. A. Optimizing the overlap between the stator teeth of a claw pole transverse-flux permanent magnet Machine. IEEE Transactions on Magnetics.Vol. 40, Issue 3, May 2004:1573 - 1578.
    79. M.R. Harris, G.H. Pajooman, S.M.A. Sharkh. Comparison of alternative topologies for VRPM (transverse-flux) electrical machines. IEE Colloquium on New Topologies for Permanent Magnet Machines (Digest No: 1997/090), 1997: 2/1-2/7.
    80. Y.G Guo, J.G Zhu. Magnetic Field Calculation of Claw Pole Permanent Magnet Machines Using Magnetic Network Method. Journal of Electrical and Electronics Engineering, Australia, Vol. 22, No. 1, 2002: 69-77.
    81. Ho, S.L., Yang, S.; Ni, G, Wong, H.C. A Particle Swarm Optimization Method With Enhanced Global Search Ability for Design Optimizations of Electromagnetic Devices, IEEE Transactions on Magnetics, Vol.42, Issue 4, April 2006:1107 - 1110.
    82. Ho,S.L., Shiyou Yang, Guangzheng Ni,Lo, E.W.C.,Wong, H.C. A particle swarm optimization-based method for multi-objective design optimizations, IEEE Transactions on Magnetics, Vol. 41, Issue 5, May 2005:1756 - 1759.
    83. Masmoudi, A. Elantably. A simple assessment of the cogging torque in a transverse flux permanent magnet machine. Electric Machines and Drives Conference, IEMDC 2001. IEEE International ,2001: 754-759.
    84. Marcelo Godoy Simoes, Petroni Vieira, Jr. A high-torque low-speed multiphase brushless machine—A perspective application for electric vehicles. IEEE Trans, on industrial electronics,Vol.49,No.5,2002:1154-1164.
    85. R. P. Deodhar, D. A. Staton, T. J. E. Miller. Prediction of cogging torque using the flux-MMF diagram technique. IEEE Trans. IA, Vol.32, Issue 6,1996: 569-576.
    86. Touzhu Li, G. Slemon. Reduction of cogging torque in permanent magnet motors. IEEE Transactions on Magnetics, Vol. 24, Issue 6, 1988: 2901-2903.
    87. Sang-Moon Hwang, Jae-Boo Eom, Geun-Bae Hwang, et al. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Transactions on Magnetics. Vol.36, Issue 5, 2000:3144-3146.
    88. N. Bianchi, S. Bolognani. Design techniques for reducing the cogging torque in surface-mounted PM motors. Industry Applications Conference, Vol.1, 2000:179-185.
    89. Z.Q. Zhu, D. Howe. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Transactions on Energy Conversion, Vol. 15, Issue 4, 2000:407-412.
    90. G. Kastinger, A. Schumacher. Reducing torque ripple of Transverse Flux Machine by structural design. International Conference on Power Electronics, Machines and Drives. 2002:320-324.
    91. G.Q.Bao, J.H.Shi, and J.Z.Jiang. A new transverse flux permanent motor for direct drive application Power The 4th International Electronics and Motion Control Conference, 2004. Vol. 1, 2004:260-263.
    92. Cheng-Tsung Liu, Jian-Long Kuo. Improvements on transient characteristics of transverse flux homopolar linear machines using artificial knowledge-based strategy. IEEE Transactions on Energy Conversion, Vol. 10, Issue 2, 1995: 275-285.
    93. B.S. Payne; S.M. Husband,; A.D. Ball. Development of condition monitoring techniques for a transverse flux motor. International Conference on Power Electronics, Machines and Drives, 2002. (Conf. Publ. No. 487), 2002: 139-144.
    94. C.D. French; C. Hodge; M. Husband. Optimised torque control of marine transverse-flux propulsion machines. International Conference on Power Electronics, Machines and Drives 2002(Conf. Publ. No. 487), 2002: 1-6.
    95. 陈阳生,林友仰,陶志鹏.无刷直流电机力矩的解析计算.中国电机工程学报,1995,15(4):253-260.
    96. 崔巍.各相解耦永磁同步电机设计及控制技术的研究[D].上海大学博士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700