Pim1表达与弥漫大B细胞淋巴瘤预后的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     细胞过度增殖和凋亡受阻是肿瘤发生的关键,对DLBCL肿瘤细胞进行增殖和凋亡的研究,有助于揭示DLBCL发生发展的机制,了解肿瘤的生物学特性,为肿瘤的诊断、治疗和预后提供有价值的指标。Pim1在大多数肿瘤组织表达,具有抑制肿瘤细胞凋亡,促进肿瘤细胞增殖的功能。本研究针对国人NHL的流行病学特点,选取了我国患者好发的病理类型DLBCL,采用免疫组化技术,检测Pim1在DLBCL中的表达,探讨pim1与原发性结节性弥漫大B细胞淋巴瘤(DLBCL)预后的关系。
     材料和方法
     选取上海第六人民医院和南通大学附属医院2002年1月-2006年2月确诊的初发淋巴结起源的DLBCL 53例进行回顾性分析。应用兔抗人pim1多克隆抗体,采用免疫组化SP方法,根据抗原抗体反应的原理,检测53例DLBCL患者pim1的表达情况,结合临床及病理资料进行统计分析。
     结果
     1.Pim1在DLBCL患者中的表达情况:在53例DLBCL患者中,有24(45.2%)例pim1高表达,pim1高表达在年龄、性别、LDH水平、分期、B(有无)症状之间无明显差异(P>0.05),在IPI分组、生发中心表型、骨髓侵犯(有无)、化疗的完全缓解率相关存在差异(P<0.05)。
     2. Pim1的表达对患者化疗完全缓解率的影响:所有的53个患者全部接受了至少6-8个周期的CHOP方案的化疗,Pim1高表达的患者化疗完全缓解率是29.2%,pim1低表达患者的化疗完全缓解率是68.9%(p = 0.006)。在单因素logistic回归分析中显示pim1高表达患者的化疗完全缓解率的OR=0.263(95% CI, 0.084–0.825; P=0.022)。在包括pim1和IPI多因素logistic回归分析中,pim1高表达患者的化疗完全缓解率的OR=0.374(95% CI, 0.110–1.278; P=0.117) ,高-IPI组OR=0.235(95% CI, 0.069–0.801; P=0.021)。
     3. Pim1的表达对患者预后的影响:所有的53个患者全部接受了至少6-8个周期的CHOP方案的化疗,平均随访时间32个月(1-86个月),3年的总生存率是47.2%。Kaplan-Meier分析显示:Pim1高表达的患者比pim1低表达的患者3年总生存低(P<0.001)。单因素Cox回归分析表明,pim1高表达的RR=3.755(95% CI,1.684-8.375;P<0.001)。在包括pim1和IPI多因素Cox回归分析表明,pim1高表达的RR=2.756(95% CI,1.197-6.347;P=0.017);IPI的RR=2.947(95% CI,1.203-7.219;P=0.018)。
     结论
     1.Pim1的表达与性别、年龄、临床分期、B症状有无、LDH水平、≥2个结外受累部位无关,与IPI分组、生发中心表型、骨髓侵犯(有无)、化疗的完全缓解率相关。
     2.Pim1高表达的患者化疗后完全缓解率较pim1低表达患者低。3.Pim1高表达的患者3年总生存较pim1低表达的患者低。
Objective
     Cell–immortalization and apoptosis-hindered are the tumorigenic foundation. The research about the proliferation and apoptosis of tumor cells is helpful to reveal the pathogenesis of tumor,understand the biology of tumor,provide valuable targets for the diagnosis, treatment and prognosis of the tumor. Pim1 is a proto-oncogene,expressed in most tumor tissues, while it may inhibit the apoptosis of tumor cells, promote the proliferation of tumor cells. According to the epidemiological characteristic of NHL in china, we have chosen DLBCL as objects of study, most common pathological type of NHL. We detected the expression of pim1 in DLBCL with immunohistochemistry. The purpose of this study was to investigate the prognostic significance of pim1 protein expression in primary nodal diffuse large B-cell lymphoma (DLBCL).
     Methods
     From November 1993 to April 2001, 53 patients with histologically proven diagnoses of DLBCL were enrolled at Shanghai Sixth People's Hospital and Hospital affiliated to Nantong University. According to the principle of antigen-antibody reaction, we detected the expression of pim1 in 53 cases with DLBCL with rabbit anti-human pim1 polyclonal antibody and the SP method of immunohistochemistry. Finally, we did statistical analysis combining with clinical and pathological data.
     Results
     1. Pim1 expression in DLBCL patients. In the DLBCL, there is 24 (45.2%) patients with high pim1 expression. There were no significant differences in terms of LDH, gender, age, B symptoms and stage according to the expression of pim1(P>0.05). However, there existed significant differences in terms of IPI, germinal center phenotype, complete remission of chemotherapy ,bone involvement(P<0.05).
     2. Pim1 expression and response to chemotherapy in DLBCL patients. All patients were treated with 6-8 cycles of CHOP regimens at least. The complete remission rate after chemotherapy was 29.2% for patients with high pim1 expression and 68.9% for those with low pim1 expression (p = 0.006). In the univariate logistic analysis, the odds ratios for complete remission rate were 0.263 for high pim1 expression (95% CI, 0.084–0.825; P=0.022). In the multivariate logistic analysis included pim1 and IPI, these odds ratios were 0.374 for high pim1 expression (95% CI, 0.110–1.278; P=0.117) and 0.235 for high IPI (95% CI, 0.069–0.801; P=0.021).
     3. Prognostic significance of pim1 expression in DLBCL patients. All patients were treated with 6-8 cycles of CHOP regimens at least and followed up 32 months(range from 1 to 86 months). The 3-year overall survival rate of patients was 47.2%. Kaplan-Meier analysis revealed that the 3-year overall survival rate was higher in the pim1 low expression group than that in the pim1 high expression group. In the univariate Cox analysis, the relative risk for death was 3.7 for high pim1 expression. In the multivariate Cox analysis that included pim1 and IPI, the relative risk for death was 2.7 for high pim1 expression (95% CI, 1.2–6.3; P= 0.013) and 2.9 for high IPI (95% CI, 1.2–7.2; P = 0.012).
     Conclusion
     1. There were no significant differences in terms of LDH, gender, age, B symptoms and stage according to the expression of pim1. There existed significant differences, in terms of IPI, germinal center phenotype, complete remission of chemotherapy, bone involvement.
     2. In DLBCL, the complete remission rate after chemotherapy of patients with high pim1 expression is lower than low pim1 expression.
     3. In DLBCL, 3-year overall survival rate of patients was higher in the pim1 low expression group than that in the pim1 high expression group.
引文
[1] Rossi D, Gaidano G. Molecular heterogeneity of diffuse large B -cell lymphoma: implications for disease management and prognosis[J]. Hematology, 2002, 7(4):239-252.
    [2] The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma[J]. N Engl J Med, 1993, 329(14):987–994.
    [3] Shipp MA, Ross KN, Tamayo P, et al. Diffuse large Bcell lymphoma outcome prediction by gene-expression profiling and supervised machine learning[J]. Nat Med, 2002, 8(1):68–74.
    [4] Allen JD, BERNS A. Complementation tagging of cooperating oncogenes in knockout mice[J]. Semin Cancer Biol, 1996, 7(5):299–306.
    [5] Wang Z, Bhattacharya N, Weaver M, et al. Pim-1: A serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis[J]. J Vet Sci, 2001, 2(3):167–179.
    [6] Aho TL, Sandholm J, Peltola KJ, et al. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site[J]. FEBS Lett, 2004, 571(1-3):43–49.
    [7] Losman JA, Chen XP, Vuong BQ,et al. Protein phosphatase 2A regulates the stability of Pim protein kinases[J]. J Biol Chem, 2003,278(7):4800–4805.
    [8] Wang Z, Bhattacharya N, Mixter PF, et al. Phosphorylation of the cell cycle inhibitorp21Cip1/WAF1 by Pim-1 kinase[J]. Biochim Biophys Acta, 2002, 1593(1):45–55.
    [9] Bachmann M, Hennemann H, Xing PX, et al. The oncogenic serine/threonine Pim-1 phosphorylates and inhibits the activity of C-TAK1: A novel role for Pim-1 at the G2/M cell cycle checkpoint[J]. J Biol Chem, 2004, 279(46):48319-48328.
    [10] Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multipleproto-oncogenes in B-cell diffuse large-cell lymphomas[J]. Nature, 2001, 412(6844):341–346.
    [11] Akasaka H, Akasaka T, Kurata M, et al. Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays[J]. Cancer Res, 2000, 60(9):2335–2341.
    [12] Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray[J]. Blood, 2004, 103(1):275-282.
    [13]张之南,沈悌.血液病诊断及疗效标准[M].天津:天津科学技术出版社, 1990,303~307.
    [14] Filipits M, Jaeger U, Pohl G, et al. Cyclin D3 Is a Predictive and Prognostic Factor in Diffuse Large B-cell Lymphoma[J]. Clin Cancer Res, 2005, 8(3):729–733.
    [15]邓欢,刘亮明,张吉翔.丝/苏氨酸激酶Pim1与肿瘤[J].医学分子生物学杂志,2006, 3(3):227-23.
    [16] Qian KC, Wang L, Hickey ER, et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase[J]. J Biol Chem, 2004, 280(7):6130–6137.
    [17] Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG[J]. EMBO J, 1991, 10(3):655–664.
    [18] Bhattacharya N, Wang Z, Davitt C, et al. Pim-1 associates with protein complexes necessary for mitosis[J]. Chromosoma, 2002, 111(2): 80–95.
    [19] Koike N, Maita H, Taira T, et al. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1)[J]. FEBS Lett, 2007, 467(1):17–21.
    [20] Maita H, Harada Y, Nagakubo D, et al. PAP-1, a novel target protein of phosphorylation by pim-1 kinase[J]. Eur J Biochem, 2005, 267(16): 5168–5178.
    [21] Ishibashi Y, Maita H, Yano M, et al. Pim-1 translocates sorting nexin6/TRAF4-associated factor 2 from cytoplasm to nucleus[J]. FEBS Lett, 2007, 506(1):33–38.
    [22] Heinrich PC, Behrmann I, Haan S,et al. Principles of interleukin(IL)-6-type cytokine signaling and its regulation[J]. J Biol Chem, 2003, 374(pt1):1-20.
    [23] Peltola KJ, Paukku K, Aho TL, et al. Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3[J]. Blood, 2008, 103(10):3744–3750.
    [24] Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J]. Oncogene,2007, 26(9):1324–1337.
    [25] Fernandez-luna JL. Regulation of pro-apoptotic BH3-only proteins and its contribution to cancer progression and chemoresistance[J]. Cell Signal, 2008, 20(11):1921–1926.
    [26] Xie Y, Xu K, Dai B, et al. The 44 kDa pim-1 kinase directly intera cts with tyrosine kinase etk/bmx and protects human prostate cancer cells form apoptosis induced by chemotherapeutic drugs[J]. Oncogene, 2005, 26(1):70-78.
    [27] Xu Y, Zhang T, Tang H, et a1.Overexpression of Pim1 is a Potential Biomarker in Prostate Carcinoma[J]. J Surg Oneol,2005, 92(4):326-330.
    [28] Chiang WF,Yen CY,Lin CN,et a1.Up regulation of A Serine/theronine Kinase Pro-oneogene Piml in Oral Squamous Cell Carcinoma[J].Int J Oral Marillofae Surg, 2006, 35(8):740—745.
    [29] Beier UH,Weise JB,I audien M,et a1.Overexpression of piml in Head and Neck Squamous Cell Carcinomas[J].Int J Oncol,2007, 30(6):l381-l387.
    [30] Montesinos RM, Van RD, Schaller C, et al. Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation[J]. Blood, 2004, 103(5):1869–1875.
    [31] Gaidano G, Pasqualucci L, Capello D, et al. Aberrant somatic hypermutation inmultiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood, 2003, 102(5):1833–1841.
    [32] Sivertsen EA, Galteland E, Mu D, et al. Gain of chromosome 6p is an infrequent cause of increased PIM1 expression in B-cell non-Hodgkin’s lymphomas[J]. Leukaemia, 2006, 20(3):539–542.
    [33] Hoefnagel JJ, Dijkman R, Basso K, et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling[J]. Blood, 2005, 105(9):3671–3678.
    [34] Ionov Y, Le X, Tunquist BJ, et al. PIM1 protein kinase is nuclear in Burkitt’s lymphoma: nuclear localization is necessary for its biologic effects[J]. Anticancer Res, 2003, 23(1A):167–178.
    [35] White E. The pims and outs of survival signaling: Role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines[J]. Genes Dev, 2003, 17(15):1813–1816.
    [36] Blatt NB, Boiano AE, Lyssiotis CA, et al.Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax[J]. Biochem Pharmacol, 2009, 78(8):966–973.
    [37] Shah N, Pang B, Yeoh K G, et al. Potential roles for the PIM1 kinase in human cancer– A molecular and therapeutic appraisal[J]. Eur J Cancer, 2008, 44(15): 2144–2151.
    [1]. Rossi D, Gaidano G. Molecular heterogeneity of diffuse large B–cell lymphoma:implications for disease management and prognosis[J]. Hematology, 2002, 7(4):239 -252.
    [2]. Wisenfield D, Ferguson MM, Allan GJ, et al. Bilateral parotid Gland aplasia[J]. BrJ Oral Surg, 1983, 21(3):175-178.
    [3].杨茂功,陈殿廉.先天性腮腺缺如一例[J].华西口腔医学杂志, 1983, 1(1):34-38.
    [4]. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma[J]. N Engl J Med, 1993, 329(14):987–994.
    [5].王焱,周晓军.弥漫性大B细胞淋巴瘤[J].医学研究生学报, 2006, 18(3):277-280.
    [6]. Harris NL, Jaffe ES, Stein H, et al. A revised European– American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group[J]. Blood, 1994, 84(5):1361-1392.
    [7]. Rosenwald A,Wright G,Chan WC,et al. The use of molecular profiling to predictsurvival after chemotherapy for diffuse large B-cell lymphoma[J]. N Engl J Med, 2002, 346(25):1937-1947.
    [8]. Jaffe ES,Harris NL,Stein H,et al. WHO Classification of tumors. Pathology and genetics of tumors of haematopoietic and lymphoid tissues[M]. Lyon:IARC Press, 2001, 4(25):171-180.
    [9]. Ichikawa A, Kinoshita T, Watanabe T, et al. Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma[J]. N Engl J Med, 1997, 337(8): 529-534.
    [10]. Leroy K, Haioun C, Lepage E, et al. p53 gene mutations are associated with poor survival in low and low-intermediate risk diffuse large B-cell lymphomas[J]. Ann Oncol, 2002, 13(6):1108-1115.
    [11]. Saez A, Sanchez E, Sanchez-Beato M, et al.P27KIP1 is abnormally expressed in diffuse large B-cell lymphomas and is associated with an adverse clinical outcome[J]. Br J Cancer, 1999, 80(9):1427-1434.
    [12]. Seki R, Okamura T, Koga H, et al. Prognostic significance of the F-box protein Skp2 expression in diffuse large B-cell lymphoma[J]. Am J Hematol, 2003, 73(4):230-235.
    [13]. Filipits M, Jaeger U, Pohl G, et al. CyclinD3 is a predictive and prognostic factor in diffuse large B-cell lymphoma[J]. Clin Cancer Res, 2002, 8(3):729-733.
    [14]. Hans CP, Weisenburger DD, Greiner TC, et al. Expression of PKC-beta or cyclinD2 predicts for inferior survival in diffuse large B-cell lymphoma[J]. Mod Pathol, 2005, 18(10):1377-1384.
    [15]. Jerkeman M, Anderson H, Dictor M, et al. Assessment of biological prognostic factors provides clinically relevant information in patients with diffuse large B-cell lymphoma: A Nordic Lymphoma Group study[J]. Ann Hematol, 2004, 83(7):414-419.
    [16]. Winter J, Weller E, Horning S, et al. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study[J]. Blood, 2006, 107(11):4207-4213.
    [17]. Colomo L, Lopez-Guillermo A, Perales M, et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-celllymphoma[J]. Blood, 2003, 101(1):78-84.
    [18]. Adida C, Haioun C, Gaulard P, et al. Prognostic significance of survivin expression in diffuse large B-cell lymphomas[J]. Blood, 2000, 96(5):1921-1925.
    [19]. Watanuki-Miyauchi R, Kojima Y, Tsurumi H, et al. Expression of survivin and of antigen detected by a novel monoclonal antibody, T332, is associated with outcome of diffuse large B-cell lymphoma and its subtypes[J]. Pathol Int, 2005, 55(6):324-330.
    [20]. Hill ME, MacLennan KA, Cunningham DC, et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: A British National Lymphoma Investigation Study[J]. Blood, 1996, 88(3):1046-1051.
    [21]. Hermine O, Haioun C, Lepage E, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma: Groupe d’Etudedes Lymphomes de l’Adulte (GELA) [J]. Blood, 1996, 87(1):265-272.
    [22]. Lossos IS,Jones CD,Warnke R,et al. Expression of a single gene,BCL6, Strongly Predicts survival in Patients with diffuse large B-eell lymPhoma[J]. Blood,2001,98(4):945-951.
    [23]. Gascoyne RD, Adomat SA,Krajewski S, et al. Prognostic significance of BCL-2 Protein expression and BCL-2 gene rearrangement in diffuse large B-eell lymphoma[J]. Blood, 1997, 90(1):244一251.
    [24]. Colomo L, Lopez-Guillermo A, Perales M, et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma[J]. Blood, 2003, 101(1):78-84.
    [25]. Ohshima K, Kawasaki C, Muta H, et al. CD10 and Bcl10 expression in diffuse large B-cell lymphoma: CD10 is a marker of improved prognosis[J]. Histopathology, 2001, 39(2):156-162.
    [26]. Fabiani B, Delmer A, Lepage E, et al. CD10 expression in diffuse large B-cell lymphomas does not influence survival[J]. Virchows Arch, 2004, 445(6):545-551.
    [27]. Lossos IS, Alizadeh AA, Rajapaksa R, et al. HGAL is a novel interleukin-4-induciblegene that strongly predicts survival in diffuse large B-cell lymphoma[J]. Blood, 2003, 101(2):433-440.
    [28]. Yamaguchi M, Seto M, Okamoto M, et al. De novo CD5-diffuse large B-cell lymphoma: A clinicopathologic study of 109 patients[J]. Blood, 2002, 99(3):815-821.
    [29]. Katzenberger T, Lohr A, Schwarz S, et al. Genetic analysis of de novo CD5-diffuse large B-cell lymphomas suggests an origin from a somatically mutated CD5- progenitor B cell[J]. Blood, 2003, 101(2): 699-702.
    [30]. Banham AH, Connors JM, Brown PJ, et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma[J]. Clin Cancer Res, 2005, 11(3):1065-1072.
    [31]. Barrans SL, Fenton JA, Banham A, et al. Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome[J]. Blood, 2004, 104(9):2933-2935.
    [32]. Wlodarska I, Veyt E, De Paepe P, et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations[J]. Leukemia, 2005, 19(8):1299-1305.
    [33]. Chang CC, Meclintock S Cleveland PP, et al. Immunohistoehemical expression patterns of germinal center and aetivation B- cell markers correlate with Prognosis in diffuse large B-cell lymPhoma[J]. Amj surg Pathol, 2004, 28(4):464一470.
    [34]. Uranishi M, Iida S, Sanda T, et al. Multiple myeloma oncogene 1 (MUM1)/interferon Regulatory factor 4(IRF4) upregulates monokine induced by interferon-gamma(MIG)gene expression in B-cell malignancy[J]. Leukemia, 2005, 19(8):1471-1478.
    [35]. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma[J]. N Engl Med, 2002, 346(25):1937-1947.
    [36]. Su TT, Guo B, Kawakami Y, et al. PKC-beta controls I kappa B kinase lipid raftrecruitment and activation in response to BCR signaling[J]. Nat Immunol, 2002, 3(8):780-786.
    [37]. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature, 2000, 403(6769):503-511.
    [38]. Otsuka M, Yakushijin Y, Hamada M, et al. Role of CD21 antigen in diffuse large B-cell lymphoma and its clinical significance[J]. Br J Haematol, 2004, 127(4):416-424.
    [39]. Ogawa S, Yamaguchi M, Oka K, et al: CD21S antigen expression in tumour cells of diffuse large B-cell lymphomas is an independent prognostic factor indicating better overall survival[J]. Br J Haematol, 2004, 125(2):180-186.
    [40]. Drillenburg P, Pals ST. Cell adhesion receptors in lymphoma dissemination[J]. Blood, 2000, 95(6):1900-1910.
    [41]. Terol MJ, Tormo M, Martinez-Climent JA, et al. Soluble intercellular adhesion molecule-1 (S-ICAM-1/S-CD54) in diffuse large B-cell lymphoma: Association with clinical characteristics and outcome[J]. Ann Oncol, 2003, 14(3):467-474.
    [42]. Ristamaki R, Joensuu H, Salmi M, et al. Serum CD44 in malignant lymphoma: An association with treatment response[J]. Blood, 1994, 84(1):238-243.
    [43]. Salven P, Teerenhovi L, Joensuu H. A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin,s lymphoma[J]. Blood, 1997, 90(8):3167-3172.
    [44]. Salven P, Orpana A, Teerenhovi L, et al. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: A single-institution study of 200 patients[J]. Blood, 2000, 96(12):3712-3718.
    [45]. Sakata K, Satoh M, Someya M, et al. Expression of matrix metalloproteinase 9 is a prognostic factor in patients with non-Hodgkin lymphoma[J]. Cancer, 2004,100(2):356-365.
    [46]. Niitsu N, Okabe-Kado J, Okamoto M, et al. Serum nm23-H1 protein as a prognostic factor in aggressive non-Hodgkin lymphoma[J]. Blood, 2001, 97(5):1202-1210.
    [47]. Niitsu N, Nakamine H, Okamoto M, et al. Clinical significance of intracytoplasmic nm23-H1 expression in diffuse large B-cell lymphoma[J]. Clin Cancer Res, 2004, 10(7):2482-2490.
    [48]. Lech-Maranda E, Baseggio L, Bienvenu J, et al. Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma[J]. Blood, 2004, 103(9):3529-3534.
    [49]. Kawano R, Ohshima K, Karube K, et al. Prognostic significance of hepatocyte growth factor and c-MET expression in patients with diffuse large B-cell lymphoma[J]. Br J Haematol, 2004, 127(3):305-307.
    [50]. Rimsza LM, Roberts RA, Miller TP, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: A follow-up study from the Leukemia and Lymphoma Molecular Profiling Project[J]. Blood, 2004, 103(11):4251-4258.
    [51]. Muris JJ, Meijer CJ, Cillessen SA, et al. Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas[J]. Leukemia, 2004, 18(3):589-596.
    [52]. Mounier N, Briere J, Gisselbrecht C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL) [J]. Blood, 2003, 101(11):4279-4284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700