氧化铈微纳结构材料的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铈(CeO2)作为一种重要的催化剂载体,其不同纳米结构的制备和性质已经引起广泛的研究和探索。本论文主要用水热法合成氧化铈纳米材料,主要内容包括单分散氧化铈纳米颗粒的形貌可控合成,由纳米八面体构建的氧化铈单分散空心球的制备,以及具有介孔壳壁的氧化铈微纳空心球的制备。并分别从材料制备、形成机理以及性能测试等几个方面进行了研究。
     1.单分散氧化铈纳米颗粒的制备研究
     首先以硝酸铈作为铈源,利用丙烯酰胺在水热条件下强制水解而释放出的氨和丙烯酸分别作为沉淀剂和包覆剂,成功制备出单分散状CeO2纳米立方块。对比实验发现,不同的铈源对产物形貌具有决定性的作用,当采用Ce(Ⅳ)的(NH4)2Ce(NO3)6作为铈源时,产品为单分散状纳米球。并基于上述研究,通过在Ce(Ⅲ)作为铈源的条件下加入强氧化剂KBrO3,可以制备出尺寸为60nm单分散状的CeO2纳米球。并结合了TEM、HRTEM、IR等表征手段分析了单分散状纳米颗粒的生成过程。
     2.在无模板条件下制备单分散状由纳米八面体构建的CeO2空心球
     以CeCl3·7H2O为铈源,以聚乙烯吡咯烷酮(PVP)、H2O2以及甲酰胺为反应物,在无模板条件下制备出了单分散状由纳米八面体构建的CeO2空心球。基于实验过程提出了新型空心球结构的形成机理,并分析了H2O2、聚乙烯吡咯烷酮(PVP)在合成新型空心球结构中所起的作用。最后对制备的空心球进行CO催化氧化性能评价,结果显示在同等条件下空心球的催化效率要明显优于商品氧化铈。
     3.具有介孔壳壁的氧化铈微纳空心球的制备
     在上述成功制备出由纳米八面体构建的CeO2空心球的基础上,探索利用H2O2制备具有介孔壳壁的CeO2空心球,实现高比表面并具有良好通透性的纳米结构的合成。将所制备的CeO2空心球进行水处理和CO催化性能评价,结果显示制备的CeO2空心球具有较大的饱和吸附能力(84 mg Congo red/g)以及较高的CO催化氧化效率。此外,我们选取了生物小分子天门冬酰胺作为反应物,设计出由天门冬酰胺辅助的水热合成CeO2微米空心球,通过N2吸附脱附实验结果显示CeO2微米空心球同样具有介孔壳壁。
Nanostructured ceria (CeO2) has been attracting great interest because of the effective and the potential technological applications in catalysis. This paper focused on the fabrication of ceria nanostructured materials through hydrothermal method, including synthesis of CeO2 monodisperse nanoparticles, fabrication of monodisperse CeO2 hollow spheres constructed by nano-octahedra, and preparation of micro/nano CeO2 hollow spheres with mesoporous shells. Furthermore, the synthesis procedure, formation mechanism, and properties are also investigated. The detailed content of the dissertation is listed as follows:
     1. Controlled Synthesis of CeO2 Monodisperse Nanoparticles
     In the first part, monodisperse CeO2 nanocubes have been fabricated via an acrylamide-assisted hydrothermal route. NH3 and acrylic acid from the hydrolysis of acrylamide act as OH-provider and capping reagent, respectively. On the basis of the experimental results, the formation of different morphologies could be ascribed to the initial valence state of cerium. When (NH4)2Ce(NO3)6 was used instead of Ce(NO3)3·6H2O, the resulting product was mainly uniform spherical particles. Moreover, KBrO3 was used as strong oxidizing agents to oxidize Ce3+to Ce4+. Thus CeO2 colloidal nanospheres with an average diameter of 60 nm have been fabricated. The structure and morphology of the samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FE-SEM) and Fourier transformed infrared (FT-IR).
     2. Fabrication of Monodisperse CeO2 Hollow Spheres Constructed by Nano-octahedra
     Monodisperse CeO2 hollow spheres constructed by nano-octahedra have been synthesized by using CeCl3·7H2O as cerium source, and PVP, H2O2, and formamide as the reagent. A possible crystal growth and hollowing mechanism was suggested based on the detailed experiment. In addition, both the role of H2O2 and PVP in the formation of novel structured hollow spheres was investigated. The CO oxidation properties were investigated, and the novel structured CeO2 hollow spheres exhibited a higher catalytic properties compared to the commercial CeO2 powders.
     3. Preparation of Micro/Nano CeO2 Hollow Spheres with Mesoporous Shells.
     Based on the above successfully preparation of novel hollow spheres, we explore a new route of fabrication of micro/nano CeO2 hollow spheres with mesoporous shells, and the mesoporous hollow structures are of great interest owing to their high specific surface area and better permeation. The mesoporous CeO2 hollow spheres showed excellent adsorption capacity of organic pollutants (Congo red) from wastewater (about 84 mg Congo red/g). Furthermore, compared to commercial CeO2 powders, the prepared CeO2 hollow spheres exhibited a higher catalytic activity toward CO oxidation. Besides, CeO2 hollow microspheres with a mean diameter of 1.5 um and a shell thickness of 90 nm were prepared via a biomolecule (L-asparagine)-assisted hydrothermal route. N2 adsorption/desorption results revealed that the shells of the hollow microspheres were mesoporous structures.
引文
1. Brringer R.; Gleiter H.; Klwin H. P.; Marquit P.; Nanocrystalline materials-an approach to a novel solid structure with gas-like disorder [J]. Phys. Lett.1984, 102A,365-369.
    2.张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001,3.
    3. Mulvaney P.; Book Review:The Chemistry of Nanomaterials. By C.N.R.Rao, Achim Miiller, and Anthony K. Cheetham (Eds.)[J]. Adv. Mater.2005,17, 1203-1204.
    4. Welch C. W.; Compton R. G; The use of nanoparticles in electroanalysis:a review [J].Anal. Bioanal. Chem.2006,384,601-619.
    5. Bakunin V. N.; Suslov A. Y.; Kuzmina G. N.; Parenago O. P. Synthesis and application of inorganic nanoparticles as lubricant components-a review [J]. J Nanopart. Res.2004,6,273-284.
    6. M. Lazzari, M. A. L.-Q.; Block Copolymers as a Tool for Nanomaterial Fabrication [J].Adv. Mater.2003,15,1583-1594.
    7. Qadri S. B.; Skelton E. F.; Dinsmore A. D.; Hu J. Z.; Kim W. J.; Nelson C; Ratna B. R. The effect of particle size on the structural transitions in zinc sulfide [J]. J. Appl. Phys.2001,89,115-119.
    8. Banerjee R.; Jayakrishnan R.; Ayyub P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles [J]. J. Phys.:Condens. Matter 2000,12,10647-10654.
    9. Zhou P. H.; Xue D. S. Finite-size effect on magnetic properties in Prussian blue nanowire arrays [J]. J. Appl. Phys.2004,96,610-614.
    10. Luo W. H.; Hu W. Y.; Xiao S. F. Size effect on the thermodynamic properties of silver nanoparticles [J].J. Phys. Chem. C 2008,772,2359-2369.
    11. Ercolessi F.; Andreoni W.; Tosatti E. Melting of small gold particles:Mechanism and size effects [J]. Phys. Rev. Lett.1991,56,911-914.
    12. Ledoux G; Gong J.; Huisken F.; Guillois O.; Reynaud, C. Photoluminescence of size-separated silicon nanocrystals:Confirmation of quantum confinement [J]. Appl. Phys. Lett.2002,50,4834-4836.
    13. Xu L.; Wang L.; Huang X.F.; Zhu J.M.; Chen H.M.; Chen K.J. Surface passivation and enhanced quantum-size effect and photo stability of coated CdSe/CdS nanocrystals [J]. Physica E.2000,5,129-133.
    14. Kim T.Y.; Park N.M.; Kim K.H.; Sung G.Y.; Ok Y.W.; Seong T.Y.; Choi C. J. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films [J].Appl. Phys. Lett.2004,55,5355-5357.
    15. Iglesias O.; Labarta A. Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations [J]. Phys. Rev. B 2001,63,184416.
    16. Kachkachi H.; Nogues M.; Tronc E.; Garanin D.A. Finite-size versus surface effects in nanoparticles [J]. J. Magn. Magn. Mater.2000,227,158-163.
    17. Kachkachi H.; Ezzir A.; Nogues M; Tronc E. Surface effects in nanoparticles: application to maghemite gamma-Fe2O3 [J]. Eur. Phys. J.2000,74,681-689.
    18. Cai W.P.; Hofmeister H.; Rainer T. Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica [J]. Physica E-Low-Dimensional Systems & Nanostructures.2001,11,339-344.
    19. Linderoth S.; Morup S. Chemically prepared amorphous Fe-B particles:influence of pH on the composition [J]. J. Appl. Phys.,1990,57,4472-4474.
    20.傅英,须文兰,陆卫,半导体量子电子和光电子器件[J],物理学进展,2001,21,255-277.
    21. Matijevic E; Monodispersed colloids:art and science [J]. Langmuir,1986,2,12-20.
    22. Han W. Q.; Wu L. J.; Zhu Y. M.; Formation and oxidation state of CeO2-x nanotubes [J]. J. Am. Chem. Soc.2005,727,12814-12815.
    23. Du N.; Zhang H.; Chen B. D.; Ma X. Y.; Yang D. R.; Ligand-free self-assembly ceria nanocrystals into nanorods by oriented attachment at low temperature [J]. J. Phys. Chem. C,2007,111,12677-12680.
    24.侯文华,陈静,采用不同方法制备CeO2超细粒子:Ⅱ.冰冻脱水法和尿素水解 法[J],南京大学学报:自然科学版,2000,26,100-103.
    25.杜玉成,孙立柏,张久兴,纳米颗粒氧化铈的制备研究[J],北京矿冶研究总院学报,2003,12,51-53.
    26.侯文华,徐林,采用不同方法制备CeO2超细粒子:Ⅰ.溶胶-凝胶法[J],南京大学学报:自然科学版,1999,35,486-590.
    27. Robert C. L.; Long J. W.; Lucas E. M.; Pettigrew K. A.; Stroud R. M.; Doescher M. S.; Rolison D. R.; Sol-gel derived ceria nanoarchitectures:synthesis, characterization, and electrical properties [J]. Chem. Mater.2006,18,50-58.
    28.张哗,胡耿源,表面活性剂物理化学[M],浙江大学出版社,1996,173-185.
    29. Zhang J.; Ju X.; Wu Z. Y.; Liu T.; Hu T. D.; Xie Y. N.; Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method [J]. Chem. Mater.2001,73,4192-4197.
    30. Bumajdad A.; Zaki M. I.; Eastoe J.; Pasupulety L.; Microemulsion-based synthesis of CeO2 powders with high surface area with high-temperature stabilities [J]. Langmiur,2004,20,11223-11233.
    31. Tang B.; Zhuo L. H.; Ge J. C.; Wang G. L.; Shi Z. Q.; Niu J. Y.; A surfactant-free route to single-crystalline CeO2 nanowires [J]. Chem. Commun,2005,3565-3567.
    32. Wang C. Y.; Qian Y T.; Xie Y.; Wang C. S.; Li Y.; Zhao G W.; A novel method to prepare nanocrystalline (7nm) ceria [J]. Mater. Sci. Eng. B 1996,39,160-162.
    33. Si R.; Zhang Y W.; You L. P.; Yan C. H.; Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone) [J]. J. Phys. Chem. B, 2006,110,5994-6000.
    34. Zhang D. S.; Fu H. X.; Shi. L. Y.; Pan C. S.; Li Q.; Chu Y L.; Yu W. J.; Synthesis of CeO2 nanorods via ultrasonication assisted by polyethelene glycol [J], Inorg. Chem.2007,45,2446-2451.
    35. Zhou K. B.; Yang Z. Q.; Yang S.; Highly reducible CeO2 nanotubes [J]. Chem. Mater.2007,79,1215-1217.
    36. Chen G Z.; Xu C. X.; Song X. Y.; Zhao W.; Ding Y.; Sun S. X.; Interface reaction route to two different kinds of CeO2 nanotubes [J]. Inorg. Chem.2008,47, 723-728.
    37. Chen G. Z.; Sun S. X.; Sun X.; Fan W. L.; You T.; Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through Kirkendall diffusion [J]. Inorg Chem. 2009,45,1334-1338.
    38.杨春生,陈建华,氧化铈和氧化镧在汽车尾气净化催化剂中的应用[J],中国稀土学报,2003,2,129-132.
    39.王敏炜,魏文龙,罗来涛,CeO2的制备及其在催化剂载体中的应用研究进展[J],化工进展,2006,25,517-519.
    40. Feng X. D.; Sayle D. C; Wang Z. L.; Paras M. S.; Santora B.; Sutorik A. C; Sayle T. X. T.; Yang Y; Ding Y; Wang X. D.; Her Y. S.; Converting ceria polyhedral nanoparticles into single-crystal nanospheres [J]. Science,2006,572,1504-1508.
    41. Ye X. F.; Wang S. R.; Hu, Q.; Chen J. Y.; Wen T. L.; Wen Z. Y.; Improvement of Cu-CeO2 anodes for SOFCs running on ethanol fuels [J]. Solid State Ionics, 2009,180,276-281.
    1. Caruso F.; Caruso R.A.; Mohwald H.; Fan S. Photonic crystals:putting a new twist on light [J]. Nature 1997,386,143-149.
    2. Xia Y. N.; Gates B.; Yin Y.D.; Lu Y. Monnodispersed colloidal spheres:old materials with new applications [J]. Adv. Mater.2000,72,693-713.
    3. Zhang J.T.; Liu J.F.; Peng Q.; Wang X.; Li YD. Nearly monodisperse Cu2O and CuO nanospheres:preparation and application for sensitive gas sensors [J]. Chem. Mater.2006,18,867-871.
    4. Sun Y.G.; Xia Y.N.; Shape-controlled synthesis of gold and silver nanoparticles [J]. Science 2002,298,2176-2179.
    5. Herricks T.; Chen J.Y.; Xia Y.N. Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate [J]. Nano Lett 2004,4,2367-2371.
    6. Im S.H.; Lee Y.T.; Wiley B.; Xia Y.N. Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity [J]. Angew. Chem. Int. Ed.2005,44,2154-2157.
    7. Wiley B.; Sun Y.G.; Mayers B. Xia Y.N.; Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver [J]. Chem. Eur. J.2005,11,454-463.
    8. Sun X.M.; Li YD. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles [J]. Angew. Chem. Int. Ed.2004,43,597-601.
    9. Deng H.; Li X.L.; Peng Q.; Wang X.; Chen J.P.; Li YD. Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed.2005,44, 2782-2785.
    10. Si R.; Zhang Y.W.; Li S.J.; Lin B.X.; Yan C.H. Urea-Based Hydrothermally Derived Homogeneous Nanostructured Cel-xZrxO2 (x=0-0.8) Solid Solutions:A Strong Correlation between Oxygen Storage Capacity and Lattice Strain [J]. J. Phys. Chem.B 2004,108,12481-12488.
    11. Masui T.; Fujiwara K.; Machida K.I.; Adachi G Y. Characterization of
    Cerium(IV)Oxide Ultrafine Particles Prepared Using Reversed Micelles [J]. Chem. Mater.1997,9,2197-2204.
    12. Steele B.C.H. Fuel-cell technology:running natural gas [J]. Nature 1999,400, 619-621.
    13. Zhong, L. S.; Hu, J. S.; Cao, A. M.; Liu, Q.; Song W. G.; Wan, L. J.3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal [J]. Chem. Mater.2007,19,1648-1655.
    14. Hsu W.P.; Ronquist L.; Matijevic E. Preparation and properties of monodispersed colloidal particles of lanthanide compounds.2. cerium(IV) [J]. Langmiur 1988, 4,31-37.
    15. Mai H.X.; Sun L.D.; Zhang Y.W.; Si R.; Feng W.; Zhang H.P.; Liu H.C.; Yan C.H. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes [J]. J. Phys. Chem. B 2005,709,24380-24385.
    16. Yang S. W.; Gao L. Controlled synthesis and self-assembly of CeO2 nanocubes [J]. J. Am. Chem. Soc.2006,725,9330-9331.
    17. Yang Z.Q.; Zhou K.B.; Liu X.W.; Tian Q.; Lu D.Y.; Yang S. Single-crystalline ceria nanocubes:size-controlled synthesis, characterization and redox property [J]. Nanotechnology 2007,18,185606.
    28. Zhang J.; Ohara S.; Umetsu M.; Naka T.; Hatakeyama Y.; Adschiri T. Colloidal Ceria Nanocrystals:A Tailor-Made Crystal Morphology in Supercritical Water [J]. Adv. Mater.2007,19,203-206.
    19. Ho C.M.; Yu J.C.; Kwong T.; Mak A.C.; Lai S. Morphology-controllable synthesis of mesoporous nano-and microstructures [J]. Chem. Mater.2005,17,4514-4522.
    1. Kim S.W.; Kim M.; Lee W.Y.; Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions [J]. J. Am. Chem. Soc.2002,124,7642-7643.
    2. Sun X.M.; Li YD. Ga2O3 and GaN semiconductor hollow spheres [J]. Angew. Chem. Int. Ed.2004,43,3827-3831.
    3. Selvakannan P.R.; Sastry M. Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution [J]. Chem. Commun.2005, 1684-1686.
    4. Yin Y.D.; Rioux R. M.; Erdonmez C. K.; Hughes S.; SomorjaiG. A.; Alivisatos A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect [J]. Science 2004,304,711-714.
    5. Sun Y.G.; Xia YN. Science Shape-controlled synthesis of gold and silver nanoparticles [J].2002,298,2176-2179.
    6. Caruso F.; Caruso R.A.; Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science 1998,282,1111-1114.
    7. Lou X.W.; Yuan C.L.; Archer L.A. Shell-by-Shell synthesis of tinoxide hollow colloids with nanoarchitectured walls:cavity size tuning and functionalization [J]. Small 2007,3,261-265.
    8. Sun X.M.; Liu J.F.; Li YD. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres [J]. Chem. Eur. J.2006,12, 2039-2047.
    9. Fowler C.E.; Khushalani D.; Mann S. Interfacial synthesis of hollow microspheres of mesostructured silica [J]. Chem. Commun.2001,2028-2029.
    10. Li Y.S.; Shi J.L.; Hua Z.L.; Chen H.R.; Ruan M.L.; Yan D.S. Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability [J]. Nano Lett.2003,5,609-612.
    11. He T.; Chen D. R.; Jiao X. L.; Xu Y. Y.; Gu Y X. Surfactant-assisted solvothermal synthesis of CO3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size [J]. Langmuir 2004,20,8404-8408.
    12. Jiao S.; Xu L.; Jiang K.; Xu D.; Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating [J].Adv. Mater.2006,18,1174-1177.
    13. Yang H.G.; Zeng H.C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening [J]. J. Phys. Chem. B 2004,108,3492-3495.
    14. Chang Y.; Teo J. J.; Zeng H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres [J]. Langmuir 2005,21,1074-1079.
    15. Liu B.; Zeng H.C. symmetric and asymmetric Ostwald ripening in fabrication of homogeneous core-shell semiconductors [J]. Small 2005,1,566-571.
    16. Zhou L.; Wang W.Z.; Xu H.L.; Sun S.M. Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property [J]. Cryst. Growth Des.2008,8,3595-3601.
    17. Yu H.Y.; Yu J.G.; Liu S.W.; Mann S. Template-Free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres [J]. Chem. Mater.2007,19, 4327-4334.
    18. Lou X.W.; Wang Y; Yuan C.; Lee J.Y.; Archer L.A. Template-free synthesis of SnO2 hollow nanostructures with high Lithium Storage Capacity [J]. Adv. Mater. 2006,18,2325-2329.
    19. Chiang, R.K.; Chiang, R.T. Formation of Hollow Ni2P Nanoparticles Based on the Nanoscale Kirkendall Effect [J]. Inorg. Chem.2007,46,369-371.
    20. Liu, B.; Zeng, H.C. Mesoscale Organization of CuO Nanoribbons:Formation of "Dandelions" [J].J. Am. Chem. Soc.2004,126,8124-8125.
    21. Yang, H.G.; Zeng, H.C. Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J]. Angew. Chem. Int. Ed. 2004,43,5930-5933.
    22. Zhou K.B.; Wang X.; Sun X.M.; Peng, Q.; Li YD. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes [J]. J. Catal.2005,229, 206-212.
    23. Dutta P.; Pal S.; Seehra M.S.; Shi Y.; Eyring E.M.; Ernst R.D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles [J]. Chem. Mater.2006, 18,5144-5146.
    24. Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles [J]. J. Appl. Phys.2000,87, 1318-1321.
    25. Kumar P.; Sun Y.; Idem R.O. Nickel-based ceria,zirconia, and ceria-zirconia catalytic systems for low temperature carbon dioxide reforming of methane [J]. Energy Fuels 2007,21,3113-3123.
    26. Feng X.D.; Sayle D.C.; Wang Z.L.; Paras M.S.; Santora B.; Sutorik A.C.; Sayle T.X.T.; Yang Y.; Ding Y.; Wang X. D.; Her Y.S.; Converting ceria polyhedral nanoparticles into single-crystal nanospheres [J], Science,2006,312, 1504-1508.
    27. Zhong, L.S.; Hu, J.S.; Cao, A.M.; Liu, Q.; Song W.G.; Wan, L.J.3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal [J]. Chem. Mater.2007,19,1648-1655.
    28. Maensiri, S.; Masingboon, C.; Laokul, P.; Jareonboon, W.; Promarak, V.; Anderson, P.L.; Seraphin, S. Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles [J]. Cryst. Growth. Des.2007,7, 950-955.
    29. Ho C.; Yu J.C.; Kwong T.; Mak A.C.; Lai S. Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures [J]. Chem. Mater.2005,17, 4514-4522.
    30. Yu, T.; Joo, J.; Park, Y.I.; Hyeon, T. Large-Scale Nonhydrolytic Sol-Gel Synthesis of Uniform-Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes [J]. Angew. Chem. Int. Ed. 2005,44,7411-7414.
    31. Titirici, M.M.; Antonietti, M; Thomas, A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach [J]. Chem. Mater.2006,18, 3808-3812.
    32. Liang X.; Wang X.; Zhuang Y.; Xu B.; Kuang S.M.; Li YD. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect [J]. J. Am. Chem. Soc.2008,130,2736-2737
    33. Chang-Chien C.Y.; Hsu C.H.; Lee T.Y.; Liu C.W.; Wu S.H.; Lin H.P.; Tang C.Y.; Lin Y.Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend [J]. Eur. J. Inorg. Chem.2007,3798-3804.
    34. Chen, G.Z.; Xu, C.X.; Song, X.Y; Xu, S.L.; Ding, Y.; Sun, S.X. Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes [J]. Cryst. Growth Des.2008,8,4449-4453.
    35. Han, W.Q.; Wu, L.J.; Zhu, YM. Formation and oxidation state of CeO2-x nanotubes [J]. J. Am.Chem. Soc.2005,127,12814-12815.
    36. Chen, L.Y.; Zhang, Z.D. Biomolecule-Assisted Synthesis of In(OH)3 Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C-In2O3 [J]. J. Phys. Chem. C 2008,112,18798-18803.
    37. Wang X.; Yuan F.L.; Hu P.; Yu L. J.; Bai L.Y. Self-Assembled Growth of Hollow Spheres with Octahedron-like Co Nanocrystals via One-Pot Solution Fabrication [J]. J. Phys. Chem. C 2008,112,8773-8778.
    38. Zhang, F.; Wang, P.; Koberstein J.; Khalid S.; Chan S.W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy [J]. Surf. Sci.2004,563,74-82.
    39. Wang Z.L.; Feng X.D. Polyhedral shapes of CeO2 nanoparticles [J]. J. Phys. Chem. B 2003,107,13563-13566.
    40. Kuchibhatla S. V.N.T.; Karakoti A.S.; Seal S. S. Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures-a true template-free self-assembly [J]. Nanotechnology 2007,075303.
    41. Pacchioni G. Oxygen vacancies:the invisible agent on the oxide surfaces [J]. ChemPhysChem 2003,4,1041-1047.
    1. Rajakovic V.N.; Mintova S.; Senker J. Synthesis and characterization of V-and Ti-substituted mesoporous materials [J]. Mater. Sci. Eng. C2003,23,817-821.
    2. Park S.; Lim J.H.; Chung S.W.; Mirkin C.A. Self-assembly of mesoscopic metal-polymer amphiphiles [J]. Science 2004,303,348-351.
    3.王中林,曹茂盛(译),李金刚(译),纳米材料表征[M],2005,化学工业出版社,258-289.
    4. Wang X.; Zhuang J.; Peng Q.; Li YD. A general strategy for nanocrystal synthesis [J]. Nature 2005,437,121-124.
    5. Goldberger J.; He R.R.; Zhang Y.F.; Lee S.; Yan H.Q.; Choi H.J.; Yang P.D. Single-crystal gallium nitride nanotubes [J]. Nature 2003,422,599-602.
    6. Lou X.W.; Wang Y; Yuan C.; Lee J.Y.; Archer L.A. Template-free synthesis of SnO2 hollow nanostructures with high Lithium storage capacity [J]. Adv. Mater. 2006,18,2325-2329.
    7. Li X.X.; Xiong Y. J.; Li Z. Q.; Xie Y. Large-scale fabrication of TiO2 hierarchical hollow spheres [J]. Inorg. Chem.2006,45,3493-3495.
    8. Cao X.B.; Gu L.; Gao W.J.; Wang W. C.; Wu S. F. Template-free preparation of hollow Sb2O3 microspheres as suppouts for Ag nanoparticles and photocatalytic properties of the constructed metal-semiconductor nanostructures [J]. Adv. Func. Mater.2006,16,896-902.
    9. Liu Z.Y.; Sun D.D.; Guo P.; Leckie J.O. One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates [J]. Chem. Eur. J.2007, 75,1851-1855.
    10. Zhou J.; Wu W.; Caruntu D.; Yu M. H.; Martin A.; Chen J. F.; O'Connor C. J.; Zhou, W. L. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application [J]. J. Phys. Chem. C 2007,111,17473-17477.
    11. Xu Y.Y.; Chen D.R.; Jiao X.L.; Xue K. Y. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells [J]. J. Phys. Chem. C 2007,111,16284.
    12. Cao S.W.; Zhu Y.J. Hierarchically nanostructured a-Fe2O3 hollow spheres:preparation, growth mechanism, photocatalytic property, and application in water treatment [J]. J. Phys. Chem. C2008,112,6253-6257.
    13. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials [J]. Catal. Rev. Sci. Eng.1996,38,439-520.
    14. Harrison P.G.; Ball I.K.; Azelee W.; Daniell W.; Goldfarb D. Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO-oxidation catalysts [J]. Chem. Mater.2000,12,3715-3725.
    15. Zhan Z.; Barnett S.A. An octane-fueled solid oxide fuel cell [J]. Science 2005,308, 844-847.
    16. Di Z.C.; Ding J.; Peng X.J.; Li Y.H.; Luan Z.K.; Liang J. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles [J]. Chemosphere 2006, 62,861-865.
    17. Zhang, R.; Jin, Q.; Chan, S. W. J. Appl. Phys. Ceria nanoparticles:size, size distribution, and shape [J].2004,95,4319-4326.
    18. Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes [J]. J. Am. Chem. Soc.2006,128,9330-9331.
    19. Zhou, R.; Zhao, X. M.; Xu, H.; Yuan, C.G. CeO2 spherical crystallites:synthesis, formation mechanism, size control, and electrochemical property study [J]. J. Phys. Chem. C 2007,111,1651-1657.
    20. Sun C.; Li H.; Zhang H.; Wang Z.X.; Chen L.Q. Controlled synthesis of CeO2 nanorods by a solvothermal method [J]. Nanotechnology,2005,16,1454.
    21. Tang B.; Zhuo L.H.; Ge J.C.; Wang G.L.; Shi Z.Q.; Niu J.Y.; A surfactant-free route to single-crystalline CeO2 nanowires [J], Chem. Commun,2005,3565-3567.
    22. Chen C.H.; Abbas S.F.; Morey A.; Sithambaram S.; Xu L.-P.; Garces H.F.; Hines W.A.; Suib S.L. Controlled synthesis of self-assembled metal oxide hollow spheres via tuning redox potentials:versatile nanostructured cobalt oxides [J]. Adv. Mater.2008,20,1205-1209.
    23. Titirici M.M.; Antonietti M; Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach [J]. Chem. Mater.2006,18, 3808-3812.
    24. Liang X.; Wang X.; Zhuang Y; Xu B.; Kuang S.M.; Li Y.D. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect [J]. J. Am. Chem. Soc.2008,130,2736-2737.
    25. Chang-Chien C.Y; Hsu C.H.; Lee T.Y; Liu C.W.; Wu S.H.; Lin H.P.; Tang C.Y; Lin Y Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend [J]. Eur. J. Inorg. Chem. 2007,3798-3804.
    26. Chen G.Z.; Xu C. X.; Song X.Y.; Xu S.L.; Ding Y; Sun S.X. Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes [J]. Cryst. Growth Des. 2008,8,4449-4453.
    27. Guo Z.Y.; Du F.L.; Li G.C.; Cui Z.L. Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates [J]. Inorg. Chem.2006, 45,4167-4169.
    28. Chen S.F.; Yu S.H.; Ren L.; Yao W.T.; Colfen H. Solvent Effect on Mineral Modification:Selective Synthesis of Cerium Compounds by a Facile Solution Route [J]. Chem. Eur. J.2004,10,3050-3058.
    29. Zhong L.S.; Hu J.S.; Cao A. M.; Liu Q.; Song W.G.; Wan L.J.3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal [J]. Chem. Mater.2007,19,1648-1655.
    30. Groen J.C.; Peffer L. A.A.; Perez-Ramirez J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis [J]. Micropor. Mesopor. Mater.2003,60,1-17.
    31. Liu B.; Zeng H.C. Mesoscale Organization of CuO Nanoribbons:Formation of "Dandelions" [J]. J. Am. Chem. Soc.2004,126,8124-8125.
    32. Qiao R.; Zhang X.L.; Qiu R.; Kim J.C.; Kang Y.S. Morphological transformation of Co(OH)2 microspheres from solid to flowerlike hollow core-shell structures [J]. Chem. Eur. J.2009,15,1886-1892.
    33. Campbell C.T.; Peden C.H.F. Oxygen vacancies and catalysis on ceria surfaces [J]. Science 2005,309,713-714.
    34. Esch F; Fabris S.; Zhou L.; Montini T.; Africh C; Fornasiero P.; Cornelli G.; Rosei R. Electron localization determines defect formation on ceria substrates [J]. Science 2005,309,752-755.
    35. Chen L.Y.; Zhang Z.D. Biomolecule-Assisted Synthesis of In(OH)3 Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C-In2O3 [J]. J. Phys. Chem. C 2008,112,18798-18803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700