Rab25在卵巢癌中的表达及其基因沉默诱导卵巢癌细胞凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌由于发病率不断上升,而治疗效果提高缓慢,目前已跃居为妇科第一位的致死疾病。尽管手术技巧的提高可以做到最大程度的肿瘤减灭,而铂类、紫杉醇类以及众多二线化疗药物的临床应用给化学治疗带来多重生机,但是卵巢癌患者的5年生存率仍然停滞不前。因此众多学者致力于寻求新的治疗途径和靶点。
     Rab蛋白家族是Ras超家族中最大的亚家族,为小GTP结合蛋白。动物的体内体外实验都发现Rab GTPases在调节细胞间的囊泡运输的分子开关中起极其关键的作用。目前越来越多证据表明在多重人类疾病包括癌症中Rab small GTPases和它们相关调节蛋白及受动器发生改变,这些改变与众多疾病的发生发展密切相关。Rab25是近年新发现的Rab家族的蛋白,国外有研究报道Rab25的高表达参与卵巢癌的发病,与疾病的发展及不良预后密切相关。因此,有学者提出对Rab25的深入研究有望成为卵巢癌治疗的新途径。
     随着分子生物学各项技术的日趋成熟,基因治疗作为一种可特异性阻断或调节致病基因表达的方法,成为卵巢癌治疗的新途径。而RNA干涉(RNAi)技术阻断基因表达具有高稳定、高效率和高特异的特点,目前为肿瘤基因治疗的新手段。
     研究目的
     本实验主要研究Rab25在卵巢癌组织中的表达,并观察RNA干涉技术对Rab25的抑制情况并探讨其可能的作用机制。
     研究方法
     第一部分Rab25在卵巢癌中的表达及意义
     本实验采用免疫组织化学方法,检测了Rab25在正常卵巢组织、卵巢良性组织、卵巢恶性组织中的表达情况,分析其表达与临床分期、病理分级、组织学分型和转移的相关性。
     第二部分运用RNAi特异阻断Rab25在卵巢癌中基因表达的研究及作用途径的探讨
     本研究运用RNA(iRNA interference,RNA干涉)方法,构建Rab25 siRNA表达载体,借助脂质体转染卵巢癌细胞,封闭细胞中Rab25的表达,并观察其生物学行为的变化情况及发生变化的作用途径。
     主要实验方法:
     实验一、Rab25 siRNA转染的卵巢癌细胞株的建立
     利用RNAi技术,成功构建其Rab25 siRNA表达载体pSUPER/Rab25 siRNA并进行酶切鉴定及DNA全长测序。转染A2780细胞,G418筛选稳定转染的细胞系。RT-PCR、间接免疫荧光法及Western blot分别检测Rab25的mRNA和蛋白水平的变化。
     实验二、Rab25表达与卵巢癌细胞生物学行为的关系研究
     在卵巢癌细胞中封闭Rab25表达后,我们观察了包括细胞增殖与凋亡,侵袭粘附以及形态学等方面的细胞生物学行为的变化情况。
     1. Rab25 siRNA对卵巢癌细胞形态学的影响
     以倒置显微镜及透视电镜观察贴壁状态下的各组细胞,比较细胞形态的差异,尤其是树突及胞体的大小及形态变化和典型的凋亡细胞。
     2. Rab25 siRNA对卵巢癌细胞增殖与凋亡的影响
     各转染组细胞及未转染正常卵巢癌细胞分别行MTT比色试验,依据测定的A490值,绘制生长曲线;流式细胞仪测定各组细胞凋亡率和细胞周期的变化;TUNEL(TdT介导的dUTP缺口末端标记)法检测卵巢癌细胞凋亡指数等。
     3. Rab25 siRNA对卵巢癌细胞侵袭与粘附的影响
     利用细胞基质粘附实验检测各组细胞间的粘附能力;利用transwell小室实验及划痕实验检测各组细胞的侵袭能力。
     4.卵巢癌裸鼠移植瘤模型的建立及Rab25 siRNA对卵巢癌裸鼠移植瘤的作用
     使用BALB/c遗传背景的雌性裸小鼠作为实验动物,4- 6周龄。于每只裸鼠背部皮下注射106 ~ 2×106个细胞,建立卵巢癌裸鼠皮下移植瘤模型。观察30-45d处死裸鼠,观察裸鼠成瘤情况。
     实验三、Rab25作用途径的初步探讨
     利用免疫组织化学、RT-PCR、Western blot方法检测各组细胞中Bcl-2及Bax的表达,探讨Rab25的作用途径。
     研究结果
     1. Rab25蛋白在卵巢交界性肿瘤与恶性肿瘤中呈高水平表达,而在卵巢良性肿瘤及正常卵巢组织中仅少量表达或无表达,差异显著(P<0.05)。Rab25的表达与卵巢癌有无转移及临床分期密切相关(P<0.05)。
     2.通过双酶切鉴定和测序验证,成功克隆了Rab25基因的siRNA表达载体,并通过基因转染实现了siRNA在卵巢癌细胞内的持续表达。RT-PCR和间接免疫荧光法及Western blot结果表明,siRNA明显抑制了Rab25基因的表达;光镜观察细胞形态的结果进一步佐证了Rab25被封闭以后,细胞发生了生物学活性及形态学改变;在透视电镜下见到典型的凋亡细胞;通过MTT、流式细胞仪、TUNEL法等方法研究了Rab25 siRNA对卵巢癌细胞增殖与凋亡的影响,结果显示Rab25 siRNA可以明显抑制卵巢癌细胞的增殖,促进凋亡;通过侵袭和粘附实验结果表明Rab25 siRNA可以明显抑制卵巢癌细胞的侵袭粘附能力;成功建立裸小鼠移植瘤模型,观察30-45d后,发现转染了Rab25 siRNA的细胞体内成瘤能力显著下降。RT-PCR、免疫组织化学方法、Western blot方法从mRNA到蛋白水平检测Bcl-2和Bax表达,结果显示,与对照组相比,Bcl-2蛋白的表达水平显著降低,而Bax蛋白的表达水平明显增强。
     结论
     1. Rab25在卵巢癌中呈高表达,且Rab25的表达随卵巢癌分期的升高而增高。
     2. Rab25的高表达参与了卵巢癌的转移。
     3. Rab25 siRNA有效阻断卵巢癌细胞中Rab25 mRNA及蛋白水平的表达并影响细胞的生长增殖,促进凋亡,抑制细胞的侵袭粘附能力,抑制肿瘤生长。
     4.Rab25 siRNA对卵巢癌的生长及其侵袭能力的抑制是通过启动卵巢癌细胞程序化死亡信号通路而实现的。
Ovarian cancer is a leading cause of death among gynecologic malignancies. In spite of advances in surgery and chemotherapy, its mortality rate remains relatively unchanged during recent several decade. The current optimum approach to therapy consists of cytoreductive surgery followed by combination chemotherapy. Clinical trial have established that carboplatin plus a taxane(usually paclitaxel) can be considered to be the treatment of choice for meet patients with advanced disease. Most patients will achieve a clinical complete remission with such a combination. However the median time to progression is less than 2 years, and for patients with optimal stage III disease, median survival will be approxi- mately 5 years. Therefore, new adjunctive therapy is of great importance.
     Rab proteins are Ras-like small GTPases, which have crucial roles in vesicle trafficking, signal transduction, and receptor recycling which in turn regulate normal cellular activity. Recent studies have shown multiple links between Rab GTPase dysfunction and associated regulatory proteins in human diseases including cancer, and these changes are closely correlation with development of numerous diseases. The study have recently shown that Rab25, located at chromosome 1q22, is amplified at the DNA level and overexpressed at the RNA level in ovarian and breast cancer. These changes correlated with a worsened outcome in both diseases. In addition, enforced expression of Rab25 in both breast and ovarian cancer cells decreased apoptosis and increased proliferation and aggressiveness in vivo, potentially explaining the worsened prognosis. So, a better understanding of genetic alterations as well as the physiologic and pathophysiologic roles of Rab GTPases may open new opportunities for therapeutic intervention and better outcomes.
     With molecular biology technology gradually mature, gene therapy as a way that specificity block or regulate virulence gene is becoming new therapeutic way of ovarian cancer. RNA interference(RNAi) technology may be a optimized means with following important features: High stability, High efficiency, High specifi- city. Hence, it may become a new means of tumor gene therapy.
     Objective
     To investigate the expression of Rab25 in ovarian cancer tissue and the inhibition of Rab25 gene expression by RNA interference technology, discuss the mechanism of action of Rab25 on ovarian cancer.
     Methods
     Part One The expression and significant of Rab25 in ovarian malignant tumor
     Immunohistochemical method was employed to detect the expression of Rab25 in normal ovary, carcinoid and carcinoma ovarian tissues, then analyzed with regard to clinical stage, pathological, histology type and metastatic.
     Part Two The study of inhibiting the expression of Rab25 gene in ovarian cancer by RNA interference and pathway of action.
     Construction of Rab25 siRNA eukaryotic expression vectors and the confirmation on the transfected cells. The Rab25 siRNA eukaryotic expression vectors pSUPER /Rab25 siRNA was constructed by Using RNAi technology. The direction was confirmed by endonuclease digestion. Using lipidosome method, the Rab25 highly expressed human malignant ovarian cells (A2780) were transfected with the siRNA recombinant vector. Stable clones cells were obtained after G418 screening. To observe the biologic behavior of ovarian cancer cells.
     一、Construction of Rab25 siRNA eukaryotic expression vectors and the confirmation on the transfected cells
     According to Rab25 mRNA sequence in the Genebank,a pair of 64-nt oligonucleotides, each containing the sites of restriction endonuclease at both ends, were designed and synthesized. Oligonucleotides were annealed and ligated with linearized pSUPER by T4DNA ligase. The recombinants (named pSUPER /Rab25 siRNA ) were finally sequenced and identified by enzyme cutting and sequencing. RT-PCR assay、indirect immunofluore- scence and Western blot studies testified that the protein and mRNA level.
     二、The role of Rab25 Expression in ovarian cancer cells
     Knockdown the expression of Rab25 in ovarian cancer cells, we observed the change of cells proliferation and apoptosis, invasion and adhesion, morphology and so on.
     1. Morphological observations of Rab25 siRNA in ovarian cancer cells Inverted microscope and electron microscope were used to observe changes in cell morphology, especially dendron, cell body and typical apoptotic cell.
     2. Effect on the proliferation and apoptosis of Rab25 siRNA in ovarian cancer cells
     MTT was performed to test effectdof different ovarian cancer cells, OD readings were obtained using an autoreader at 490 nm, draw Growth curve; Flow cytometry analysis was used to determine apoptosis and cell cycle of the cells; Apoptosis index of ovarian cancer cells was tested by TUNEL.
     3. Effect on the invasion and adhesion of Rab25 siRNA in ovarian cancer cells
     To detect the abiliry of adhesion among ovarian cancer cells by cell-adhering method; to detect the ability of invading in vitro by transwell-ECM method and wound-healing method.
     4. The erecting of nude mice model of transplanted ovarian cancer celland the effect on the model of Rab25 siRNA
     We erected the model on subcutaneously implanted tumor in nude mice. 106 ~ 2×106 cells were injected subcutaneously into 4- to 6-week-old athymic female nude mice. The mice were kept in pathogen-free environments and checked every 2 days for about 1-1.5 months. The date at which grossly visible tumor first appeared and the size of the tumor were recorded. The mice were killed when tumors reached 2.5 cm in diameter.
     三、The initial study of mechanism of action on Rab25
     To detect the expression of Bcl-2 and Bax by immunohistochemistery、RT-PCR、Western blot, and to investigate the pathway of Rab25.
     Reults
     1. Rab25 protein evels were high in ovarian borderline epithelial tumors and carcinoma, and it is low in normal ovary and benign tumors, the difference was significant(P<0.05). The expression of Rab25 was correlated with lymph node metastases and TNM stages. It suggested that the high level of Rab25 mignt play an important role in the carcinogenesis, development and prognosis of malignant tumors.
     2. Rab25 siRNA expression vector was successfully constructed and identified by double endonuclease digestion. Sequence analysis of inserted fragment revealed the same sequence as synthesized siRNA oligonucleotides, and achieved continuous siRNA expression in A2780 cells by gene transfection. The result of RT-PCR, indirect immunofluorescence and Western blot showed that, the efficiency of inhibition was related to target selecting. Under light microscope, they displayed large epithelioid perikaryon and stubby dendrites with occasional multidendricity as opposed to slender perikaryon and bipolar dendrites of control cells, and under electron microscope we saw typical apoptosis cells. The alteration in cell morphology suggested abnormal metabolization in Rab25 siRNA transfected cells. Clone-forming ability decreased, the proliferation of Rab25 siRNA transfected cells were inhibited compared with the control cells by using MTT assay. Compared with the controls, Rab25 siRNA transfected cells were retarded in G1 stage and the percent of cells in G1 stage increased significantly. In order to further confirm the apoptosis, flow cytometer detection was used. After the double stain of PI and annexin V FITC, more apoptosis cells could be seen in the siRNA transfected cell group. The difference of annexin V FITC positive cells between the Rab25 siRNA transfected cell groups and the control cells were significant. Statistics showed a significant growth suppression of Rab25 siRNA vector transfected cells. TUNEL showed apoptosis cells obviously. The A2780 cells that transfected Rab25 siRNA vector displayed descended invasiveness, adhesion and metastasis ability in vitro in comparison with the control cells by cell-adhering and transwell-ECM method. Nude mice model with implanted tumor were built successfully, after observeing 30-45 days, the tumors of Rab25 siRNA vector transfected cells groups was much more smaller than those of the control groups. This suggested that Rab25 siRNA suppressed tumor formation in vivo in nude mice xenografts. The results showed that compared with control groups, from mRNA level to protein level, the expression of Bcl-2 significant decreased; the expression of Bax significant increased by RT-PCR、immunohistochemistry and Western blot detection, These show that Rab25 induce cell apoptosis by regulating the level of Bcl-2/Bax.
     Conclusion
     1. In malignant tumors, the expression of Rab25 protein was high by using immunohistochemical methods, and the expression of Rab25 was correlated with TNM stages.
     2. The high expression of Rab25 protein participated in metastasis of ovarian cancer.
     3. Rab25 siRNA can interfere with the protein and mRNA expression of Rab25 in ovarian cancer cells and inhibit their growth and proliferation, enhance apoptosis, inhibit the ability of invasion and adhesion, inhibit tumor growth.
     4.Rab25 siRNA can inhibit growth and invasion of ovarian cancer by induce cell apoptosis signal passway.
引文
1. Novick P,Field C,Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway.Cell, 1980, Aug;21(1):205-215.
    2. Gallwitz D,Donath C,Sander C. A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature,1983, Dec 15-21; 306(5944):704-707.
    3. Touchot N,Chardin P,Tavitian A. Four addition members of the ras gene superfamily isolated by an oligonucleotide strategy:molecular cloning of YPT-related cDNAs from a rat brain library.Proc Natl Acad Sci USA,1987,Dec; 84 (23):8210- 8214.
    4. Zerial M,McBride H.Rab proteins as membrane organizers.Nat Rev Mol Cell Biol,2001,Feb;2:(2)l07-l17.
    5. Lazar T,Gotte M,Gallwitz D. Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell?Trends Biolchem Sci, 1997,Dec;22(12):468-472.
    6. Pereira-Leal JB,Seabra MC. Evolution of the Rab family of small GTP-binding proteins.J Mol Biol,2001,Nov;2;313(4):889-901.
    7. Rutherford S,Moore I. The Arabidopsis Rab GTPase family: another enigma variation.Curr Opin Plant Biol,2002,Dec;5(6):518-528.
    8. Ueda T,Yamaguchi M,Uchimiyta H,Nakano A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana.EMBO J, 2001, Sep 3;20(17):4730-4741.
    9. Pereira-Leal JB,Seabra MC. Evolution of the Rab family of small GTP-binding proteins.J Mol Biol,2001,Nov;2;313(4):889-901.
    10. Pereira-leal JB,Seabra MC.The mammalian Rab family of small GTP -ases:definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily.J Mol Biol,2000,301(4):1077-1087.
    11. Martinez O,Goud B.Rab proteins.Biochim Biophys Acta,1998,1404 (1-2) :101-112.
    12. 管睿,崔英.Rab家族及其在囊泡运输中的作用.国外医学遗传学分册,2005,28(2):91-93.
    13. Dumas JJ,Zhu Z,Connolly JL,Lambright DG.Structural basis of activation and GTP hydrolysis in Rab proteins.Structure Fold Des, 1999, 7(4): 413 – 423.
    14. Chattopadhyay D,Langsley G,Carson JL,Recacha R,Delucas L,Smith C.Structure of the nucleotide-binding domain of Plasmodium falciparum Rab6 in the GDP-bound form.Acta Cryst D Biol Cryst,2000, 56(8):937-944.
    15. Stroupe C,Brunger AT.Crystal structures of a Rab protein in its inactive and active formations.J Mol Biol,2000,304(4):585-598.
    16. Stenmark H,Olkkonen VM.The Rab GTPase family.Genome Biol,200l,2(5):3007.
    17. Tuvim MJ,Adachi R,Hofenberg S,Dickey BF.Trattlc control:rab GTPases and the regulation of interorganellar tranaport.News Physiol Sci, 2001,Apr;16:56-61.
    18. Calero M,Chen CZ,Zhu W,Winand N,Havas KA,Gibert PM,Burd CG, Collins RN.Dual prenylation is required for Rab protein localization and function.Mol Biol Cell,2003,14(5): 1852-1867.
    19. Tuvim MJ,Adachi R,hoffenberg S,Dickey BF. Trattlc control:rab GTPases and the regulation of interorganellar tranaport.News Physiol Sci,2001,Apr;16:56-6l.
    20. Marsh M,McMahon HT.The structural era of endocytosis. Science, 1999,285:(5425):215-220.
    21. Nuofer C,Davidson HW,Matteson J,Meinkoth J,Balch WE.A GDP-bound of Rabl inhibits protein export from the endoplasmic reticulum and transport between golgi compartments. J Cell Biol,1994,125(2):225-237.
    22. Riederer MA,Soldati T,Shapiro AD,Lin J,Pfeffer SR.Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the Trans-golgi network.J Cell Biol,1994,125:573-582.
    23. Jones S,Jedd G,Kahn RA,Franzusoff A,Bartolini F,Seqev N.Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.Genetics, 1999,152(4):1543-1556.
    24. Eehard A,Jollivet F,Martinez O,Lacapere JJ,Rousselet A,Janoueix-Lerosey I,Goud B.Interaction of a Golgi- associated kinesin-like protein with Rab6.Science,1998,279(5350): 580-585.
    25. Waters MG,Pfeffer SR. Membrane tethering in intracellular transport. Curr Opin Cell Biol,1999, 1(4):453-459.
    26. Ungermarm C,Price A,WicknerW.A new role for a SNARE protein as aregulator of the Ypt7/Rab-dependent stage of docking Proc Natl Acad Sci USA,2000,97:8889-8891.
    27. Cao X,Barlowe C.Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes.J Cell Biol,2000,149:55-66.
    28. McBride HM,RybinV,Murphy C,Giner A,Teasdale R,Zerial M. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13.Cell,1999,98(3):377-386.
    29. Rybin V, Ullrich O,Rubino M,Alexandrov K,Simon I,Seabra MC,Goody R,Zerial M. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion.Nature,1996, Sep 19; 383(6597): 266-269.
    30. Takai Y,Sasaki T,Matozaki T. Small GTP-binding proteins.Physiol Rev,2001,81(1):153-208.
    31. Takai Y,Sasaki T,Matozaki T. Small GTP-binding proteins.Physiol Rev,2001,81(1):153-208.
    32. Menasche G,Pastural E,Feldmann J,Certain S,Ersoy F,Dupuis S,Wulffraat N,Bianchi D,Fischer A,Le Deist F,de Saint Basile G.Mutations in RAB27Acause griscelli syndrome associated with haemop hagocytic syndrome.Nat Genet,2000,25(2):173-176.
    33.Rajadhy M,Neti G,Crow Y,Tyagi A. Neurological presentation of Griscelli syndrome: Obstructive hydrocephalus without haematological abnormalities or organomegaly. Brain Dev, 2007 May;29(4):247-250.
    34. Mori T,FukudaY,Kuroda H,Matsumura T,Ota S,SugimotoT,Nakamura Y,Inazawa J.Cloning and characterization of a novel Rab-family gene,Rab36,within the region at 22ql1.2 that is homozygously deleted in malignant rhabdoid tumors.Biochem Biophys Res Commun,1999,254(3):594-600.
    35. Meggouh F,Bienfait HM,Weterman M,de Visser M,Baas F. Charcot- Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology,2006 ,Oct 24;67(8):1476-1478.
    36. Jacobson SG,Cideciyan AV,Sumaroka A,Aleman TS,Schwartz SB,Windsor EA,Roman AJ,Stone EM,MacDonald IM. Remodeling of the human retina in choroideremia: rab escort protein 1 (REP-1) mutations.Invest Ophthalmol Vis Sci, 2006, Sep;47(9):4113-4120.
    37. Seabra MC,Mules EH,HumeAN.Rab GTPases,intracellular traffic and disease.Trends Mol Med,2002,8(1):23-3O.
    38. Culine S,Honore N,Closson V,Lang P,Bertoglio J,Tavitian A,Olofsson B.A possible role for the Ras related Rab2 protein in the immunolo- gical events associated with hematolo- gical malignancies.Nouv Rev Fr Hematol,1993,35(1):41-44.
    39. Culine S,Honore N,Closson V,Droz JP,Extra JM,Marty M,Tavitian A,Olofsson B.A small GTP-binding protein is frequently overexpressed in peripheral blood mononudear cells from patients with solid tumours.Eur J Cancer,1994,30A(5):670-674.
    40. 刘芳莉,高凌寒,李钰,傅松滨,李瑛等.RAB5A正义表达载体对两种人肺腺癌细胞系黏附基底膜成分能力的影响.哈尔滨医科大学学报,2001, 35:327-329.
    41. 陈宇,李钰.胃癌组织中RAB5A蛋白的表达及转移的关系. 中国肿瘤,1999,895):234-236.
    42. He H,Dai F,Yu L,She X,Zhao Y,Jiang J,Chen X,Zhao S.Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues.Gene Expr, 2002, 10 (5-6):231-242.
    43. Munafo DB,Johnson JL,Ellis BA,Rutschmann S,Beutler B,Catz SD.Rab27a is a key component of the secretory machinery of azurophilic granules in granulocytes.Biochem J, 2007, Mar 1;402(2):229-239.
    44. Amillet JM,Ferbus D,Real FX,Antony C,Muleris M,Gress TM, Goubin G. Characterization of human Rab20 overexpressed in exo- crine pancreatic carcinoma.Hum Pathol, 2006 Mar;37(3):256-263.
    45. Shibata D,Mori Y,Cai K,Zhang L,Yin J,Elahi A,Hamelin R,Wong YF,Lo WK,Chung TK,Sato F,Karpeh MS Jr,Meltzer SJ.RAB32 hypermethylation and microsatellite instability in gastric and endometrial adenocarcinomas.Int J Cancer, 2006Aug15;119(4):801 -806.
    46. Gebhardt C,Breitenbach U,Richter KH,Furstenberger G,Mauch C,Angel P,Hess J.c-Fos-dependent induction of the small ras-related GTPase Rab11a in skin carcinogenesis.Am J Pathol, 2005, Jul;167(1):243-253.
    47. Pfeffer SR. Structural Clues to Rab GTPase Functional Diversity. J Biol Chem, 2005, Apr 22;280(16):15485-15488.
    48. Wang X, Kumar R, Navarre J,Casanova JE,Goldenring JR. Regulation of Vesicle Trafficking in Madin-Darby Canine Kidney Cells by Rab11a and Rab25.J Biol Chem, 2000, 275 (37): 29138-29146.
    49. Pasqualato S, Cherfils J. Crystallographic Evidence for Substrate- Assisted GTP Hydrolysis by a Small GTP Binding Protein. Structure, 2005,Apr;13(4): 533-540.
    50. Goldenring JR, Shen KR, Vaughan HD, Modlin IM. Identification of a small GTP-binding protein, Rab25, expressed in the gastroinestinal mucosa, kidney and lung. J Biol Chem,1993,268:18419–18422.
    51. Schaner ME,Ross DT,Ciaravino G,Sorlie T,Troyanskaya O,Diehn M,Wang YC,Duran GE,Sikic TL,Caldeira S,Skomedal H,Tu IP,et al.Gene expression patterns in ovarian carcinomas.Mol Biol Cell,2003,14(11):4376-4386.
    52. Cheng KW,Lahad JP,Kuo WL,Lapuk A,Yamada K,Auersperg N,Liu J,Smith-McCune K,Lu KH,Fishman D,Gray Jw.The Rab25 small GTPase determines aggressiveness of ovarian and breast cancers.Nat Med,2004,10:1251-1256.
    53. Liu J,Yang G,Thompson-Lanza JA,Glassman A,Hayes K,Patterson A,Marquez RT,Auersperg N,Yu Y,Hahn WC,Milla GB,Bast RC Jr.A genetically defined model for human ovarian cancer. Cancer Res ,2004;64(5):1655–1663.
    54. Cheng KW,Lahad JP,Gray JW,Mills GB.Emerging Role of RAB GTPases in Cancer and Human Disease.Cancer Res,2005,65(7):2516-2519.
    55. Campbell IG, Russell SE, Choong DY, Montgomery KG,Ciavarella ML,Hooi CS,Cristiano BE,Pearson RB,Phillips WA. Mutationof the PIK3CA gene in ovarian and breast cancer.Cancer Res, 2004, 64(21): 7678–7681.
    56. Samuels Y, Velculescu VE. Oncogenic mutations ofPIK3CA in human cancers.Cell Cycle, 2004,3:1221–1224.
    57. Kasschau KD,Carrington JC. A counterdefensive strategy of plant viruse:suppression of posttranscriptional gene silencing.Cell,1998, 95:461.
    58. Napoli C,Lemierx C,Jorgensen R.. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans.Plant Cell, 1990,2(4):279-289.
    59. Cogoni C,Romano N,Macino G. Suppression of gene expression by homologous transgenes.Antonie Van Leeuwenhoek,1994,5(3):205 –209.
    60. Guo S,Kemmphues KJ. Par-1,a gene required for establishing polarity in C. elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995,81(4):600-620.
    61. Fire A,Xu S,Montgomery MK,Kostas SA,Driver SE,Mello CC.Potent and specific genetic interference by double-stranded RNA in Caenorbabditis elegans. Nature,1998,391(6 669):806-811.
    62. Elbashir S M,Harborth J,Weber K,Tuschl T . Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002,26(2):100-213.
    63. Elbashir S M,Harborth J,Lendeckel W,Yalcin A,Weber K,Tushl T. Duplexes of 21-ntcleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6 836):494-498.
    64. Sanchez Alvaradoa,Newmark P A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA. 1999,96(9):5049-5054.
    65. Chuang C F,Meyerowitz E M. Specific herltable genetic interference by double-strand RNA in Arabidopsis thallane. Proc Natl Acid Sci USA, 2000,97:4985-4900.
    66. Tuschl T,Zamore PD,Lehmann R, Bartel DP,Sharp PA. Targeted mRNAdegradation by double-stranded RNA in vitro. Genes Dev, 1999,13(24):3191-3197.
    67. Hammond SM,Bernstein E,Beach D,Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in drosophela cells. Nature, 2000,404:293-296.
    68. Cogonic Macino G. Post-transcriptional gene silencing aculss kingdoms. Current Opinions in Genetics and Development, 2000,10: 638-643.
    69. Aravin AA,Naumova NM,Tulin AV,Aravin AA,Naumova NM,Shevelyov YY. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline.Curr Biol, 2001,11(13):1017-1027.
    70. Hammond SM,Boettcher S,Caudy AA,Kobayashi R,Hannon GJ. Argonaute2,a link between genetic and biochemical analyses of RNAi. Science,2001, 293 (5532): 1146-1150.
    71. Plasterk HAR. RNA Silencing:The Genome’s immune system. Science, 2002,296(5571):1263-1265.
    72. Hutvagner G,Zamore P. A microRNA in a MultipleTurnover RNAi Enzyme Complex. Science, 2002,297(5598):2056-2060.
    73. Zhang H,Kolb FA,Brondani V,Billy E,Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMSO J, 2002,21(21):5875-5885.
    74. Brantl S.Antisense-RNA regulation and RNA interference. Biochim Biophys Acta, 2002,1575(1-3):15-25.
    75. Lipardi C,Wei Q,Paterson B M. RNAi as random degradative PCR:siRNAprimers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001,107(3):297-307.
    76. Sijen T,Fleenor J,Simmer F,Thijssen KL,Parrish S,Timmons L,Plasterk RH,Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001,107(4):465-476.
    77. Kamath RS,Martinez-Campos M, Zipperlen P,Fraser AG,Ahringer J.Effectiveness of specific RNA- Mediated interference through ingested double-stranded RNA in Caenorhabditis elegans.Genome Biol,2001,2(1):1-10.
    78. Harborth J,Elbashir SM,Bechert K,Tuschl T,Weber K.Identification of essential genes in cultured mammalian cells using small interfering RNAs.Journal of Cell Science,2001,114(24):4557-4565.
    79. Ngo H,Tschudi C,Gull K,Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma Brucei. Proc Natl Acad Sci USA, 1998,95(25):14687-14692.
    80. Irie N,Sakai N,Ueyama T,Kajimoto T,Shirai Y,Saito N.Subtype- and species-specitic knockdown of PKC using short interfering RNA. Biochem Biophys Res Commun, 2002,298(5):738-743.
    81. Hanazawa M,Mochii M,Ueno N,Kohara Y,Iino Y.Use of cDNA subtraction and RNA interference screens in combination reveals genes erquired for germ-line development in Caenorhabditis elegans.Proc Natl Acad Sci USA,2001,98(15):8686-8691.
    82. Tavernarakis N,Wang SL,Dorovkov M,Ryazanov A,Driscoll M.Heritable and inducible genetic interference by double-stranded RNA encoded bytransgenes.Nat-genet,2000,24(2):180-183.
    83. Kenverdu J R,Carthew R W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled act in the pathway. Cell, 1998, 95: 1017 –1026.
    84. Bernstcin E, Denli A M,Hannon G J.The rest is silence. RNA, 2001,7(11):1509-1521.
    85. Yang S,Tutton S,Pierce E,Yoon K. Specific double-stranded RNA interference in undifferentiated mouse emuyonec stem cell. Mol Cell Biol, 2001,21(22):7807-7816.
    86. Tabara H,Sarkissian M,Kelly WG,Fleenor J,Grishok A,Timmons L,Fire A,Mello CC. The rde-1 gene,RNA interference and transposon silencing in C.elegans. Cell, 1999,99(2):123-132.
    87. Ketting RF,Haverkarmp TH,van Luencn HG,Plasterk RH. Mut-7 of C.elegans,required for transposon silencing and RNA interference,is a homolog of Worner syndrome helicase and RNaseD. Cell, 1999, 99(2): 133-141.
    88. Zender L, Kubicka S. SiRNA based strategies for inhibition of apoptotic pathways in vivo--analytical and therapeutic implications. Apoptosis, 2004, 9(1):51-54.
    89.Persengiev SP,Zhu X,Green MR.Nonspecific, concentration dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA, 2004,10(1):12-18.
    90. Dave RS, Pomerantz RJ. RNA interference: on the road to an alternate therapeutic strategy! Rev Med Virol, 2003,13(6):373-385.
    91. Wall NR,Shi Y.Small RNA:can RNA INTERFERENCE be exploited for therapy?Lancet,2003,362(9393):1401-1403.
    92. Trulzsch B, Davies K, Wood M. Survival of motor neuron gene downregulation by RNAi: towards a cell culture model of spinal muscular atrophy. Brain Res Mol Brain Res, 2004, 5;120(2):145-150.
    93. Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther, 2003,Feb;10(2):125-133.
    94. Tan C, Cruet-Hennequart S, Troussard A, Fazli L, Costello P, Sutton K, Wheeler J, Gleave M, Sanghera J, Dedhar S. Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell, 2004,Jan;5(1):79-90.
    95. Nagy P, Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res, 2003,Apr 15;285(1):39-49.
    96. Gschwind A, Hart S, Fischer OM, Ullrich A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J, 2003,May 15;22(10):2411-2421.
    97. Jiang M, Milner J. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev, 2003,Apr 1;17(7):832-837.
    98. Futami T, Miyagishi M, Seki M, Taira K. Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Res Suppl, 2002,(2):251-252.
    99. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol, 2003,Jun;21(6):639-644.
    100. Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A, 2003,Jan 7;100(1):235-240.
    101. Lee MT, Coburn GA, McClure MO, Cullen BR. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol, 2003,Nov;77(22):11964-11972.
    102. Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene,2002,Sep 5;21(39):6041- 6048.
    103. Hanahan D, Weinberg RA. The hallmarks of cancer.Cell,2002, 100:57-70.
    104. Pinkel D, Segraves R, Sudar D,Clark S,Poole I,Kowbel D,Collins C,Kuo WL,Chen C,Zhai Y,Dairkee SH,Ljung BM,Gray JW,Albertson DG. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet,1998,20:207–11.
    105. Stein MP, Dong J, Wandinger‐Ness A. Rab proteins and endocytic trafficking:Potential targets for therapeutic intervention.Adv. Drug Deliv. Rev,2003,55(11):1421–1437.
    106. Cheng KW,Lahad JP,Gray JW,Mills GB.Emerging Role of RAB GTPases in Cancer and Human Disease.Cancer Res,2005,65(7):2516-2519.
    107. Menasche G, Pastural E, Feldmann J, Certain S,Eso F,Dupuis S,WulffraatN,Bianchi D,Fischer A,Le Deist F,de Saint Basile G. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome..Nat.Genet,2000, 25(2) :173–176.
    108. Croizet‐Berger K, Daumerie C, Couvreur M, Courtoy PJ, van den Hove MF.The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. Proc Natl Acad Sci USA 2002,99(12): 8277–8282.
    109. 王春梅,卜晓波,宋洁,韩彦龙,王英,董凯,李静,王玉梅等.Rab5A基因与结肠癌发生、转移的相关因素研究.中国临床康复,2004,8(32):7224-7225.
    110. 王春梅,卜晓波,宋洁,韩彦龙,王英,董凯,李静,王玉梅等.肿瘤发展、转移相关的信号转导因子-Rab5A的研究.牡丹江医学院学报,2004,25(5):11-14.
    111. Casanova JE, Wang X, Kumar R, Bhartur SG.,Navarre J,Woodrum JE,Altschuler Y,Ray GS,Goldenring JR.Association of Rab25 and Rab11a with the Apical Recycling System of Polarized Madin–Darby Canine Kidney Cells. Mol Biol Cell,1999,January; 10(1): 47–61.
    112. Cheng KW,Lahad JP,Kuo WL,Lapuk A,Yamada K,Auersperg N,Liu J,Smith-McCune K,Lu KH,Fishman D,Gray JW,Mills GB.The Rab25 small GTPase determines aggressiveness of ovarian and breast cancers.Nat Med,2004,10(11):1251-1256.
    113. Cheng KW, Lu Yl , Mills GB. Assay of Rab25 Function in Ovarian and Breast Cancers.Met in Enzymo,2005,403:202-215.
    114. Calvo A, Xiao N, Kang J, Best CJ, Leiva I,Emmert-Buck MR,Jorcyk C,Green JE.Alterations in gene expression profiles during prostate cancer progression: Functional correlations to tumorigenicity and down ‐regulation of selenoprotein‐P in mouse and human tumors. Cancer Res,2002,62: 5325–5335.
    115. Mor O, Nativ O, Stein A, Novak L, Lehavi D,Shiboleth Y,Rozen A,Berent E,Erodsky L,Feinstein E,Rahav A,Moraq K et al. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene,2003,22(48):7702–7710.
    116. 杨海蜒,肖克强,李峰,余艳辉,张鹏飞,陈主初.鼻咽癌低分化细胞系CNE-2 双 向 凝 胶 电 泳 图 谱 的 建 立 . 中 南 大 学 学 报 : 医 学版,2004,29(2):123-128.
    117. Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Huttelmaier S,Zavadil J,Cermak L,Bottinger EP,Singer RH,White JG,Segall JE,Condeelis JS.Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res,2002,62(21):6278–6288.
    118. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol, 2004,Mar;22(3):326-30.
    119.Cavanee WK, White RL.The genetic basis of cancer. Sci. Am,1999,275:72–79.
    120.Hanahan D, Weinberg RA.The hallmark of cancer. Cell, 2000,100: 57-70.
    121. Weinberg, RA. How cancer arises. Sci Am,1996,272:62–70.
    122. Zamore PD.RNA interference:listening to the sound of silence.Nat Struct Biol,2001,8(9):746-750.
    123. Paddison PJ,Hannon GJ.siRNAs and shRNAs:skeleton keys to the humangenome.Cuurr Opin Mol Ther,2003,5(3):217-224.
    124. Brummelkamp TR,Bernards R,Agami R.Stable suppression of tumorigenicity by virus-mediated RNA interference.Cancer Cell,2002,2(3):243-247.
    125. Xia XG,Zhou H,Ding H,Affarel B,Shi Y,Xu Z.An enhanced U6 promoter for synthesis of short hairpin RNA.Nucleic Acids Res,2003,31(17):100.
    126. Dykxhoorn DM,Novina CD,Sharo PA.Killing the messenger:short RNAs that silence gene expression.Nat Rev Mol Cell Biol,2003,4(6):457-467.
    127. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, Mar 31;101(1):25-33.
    128. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J,2001,Dec 3;20(23):6877-6888.
    129. Svoboda P, Stein P, Hayashi H, Schultz RM. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development, 2000, Oct;127(19):4147-4156.
    130. Xia XG, Zhou H, Ding H, Affar el B, Shi Y, Xu Z. An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res, 2003, Sep 1;31(17):e100.
    131. Miyagishi M, Taira K. Development and application of siRNA expression vector. Nucleic Acids Res Suppl, 2002,(2):113-114.
    132. Scherr M, Morgan MA, Eder M. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem,2003,Feb;10(3):245-256.
    133. Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res,2003, Jan 15;31(2):700-707.
    134. Liu J, Yang G, Thompson-Lanza JA, Glassman A,Hayes K,Patterson A,Marquez RT,Auersperg N,Yu Y,Hahn WC,Mills GB,Bast RC Jr. A genetically defined model for human ovarian cancer. Cancer Res,2004,64(5):1655–1663.
    135. Park WH,Seol JG,Kim ES,Hyun JM,Jung CW,Lee CC,Kim BK,Lee YY.Arsenic trioxide mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinae inhibitor,p21 and apoptosis.Cancer Res,2000,60(11):3065-3071.
    136. 陈莉,许小平,王健民,费新红,高磊,周虹,黄正霞.环孢菌素A,他莫昔芬及α干扰素对白血病细胞多药耐药的逆转作用.白血病·淋巴瘤,2003,12(3): l35-138.
    137. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML,Hooi CS,Cristiano BE,Pearson RB,Phollips WA. Mutation of the PIK3CA gene in ovarian and breast cancer.Cancer Res, 2004,64:7678–7681.
    138. Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle, 2004,3:1221–1224.
    139. Liu J, Yang G, Thompson-Lanza JA, Glassman A,Hayes K,Patterson A,Marquez RT,Auersperg N,Yu Y,Hahn WC,Mills GB,Bast RC Jr. Agenetically defined model for human ovarian cancer.Cancer Res,2004,64(5):1655-1663.
    140. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999, 13:1899 – 1911.
    141. Wei MC, Zong WX, Cheng EH, Lindsten T,Panoutsakopoulou V,Ross AJ,Roth KA,MacGreqor GR,Thompson CB,Korsmeyer SJ. Proapoptotic BAX and BAK: A requisite gateway to mitocho- ndrial dysfunction and death. Science, 2001,292(5517):727–730.
    142. Reed J C. Double identity for protein of the Bcl-2 family. Nature, 1997,387(6635):773-776.
    143. Hopkin-Donaldson S, Cathomas R, Simoes-Wust AP, Kurtz S,Belyanskaya L,Stahel RA,Zanqemeister-Wittke U.Induction of apoptosis and chemosensitization cells by bcl-2 and bcl-xL antisense treatment. Int J Cancer,2003,106(2): 160-166. Erratum in: Int J Cancer, 2003,107(6):1058.
    144. Chen GQ,Zhu J,Shi XG,Ni JH,Zhong HJ,Si GY,Jin XL,Tang W,Li XS,Xong SM,Shen ZX,Sun GL,Ma J,Zhang P,Zhang TD,et al.In vitro studies on cellular and molecular mechanisma of arsenic trioxide(As2O3) in the treatmemt of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML protein. Blood, 1996, 88(3): 1052-1061.
    145. Akao Y,Mizoguchi H,Kojima ST,Naoe T,Ohishi N,Yagi K.Arsenic induces apoptosis in B-cell leukaemic cell lines in vitro:activation of caspases and down-regulation of Bcl-2 protein.Br J Haematol, 1998,102 (4):1055-1060.
    146. Shore GC,Viallet J.Modulating the Bcl-2 family of apoptosis suppressors for potential theraprutic benefit in cancer. Hematology, 2005:226-230.
    147. Mayank Srivastava, Nihal Ahmad, Sanjay Gupta, Hasan Mukhtar. Involvement of Bcl-2 and Bax in Photodynamic Therapy-mediated Apoptosis. J Biol Chem, 2001, 276(18): 15481–15488.
    148. TsuimotoY,Cossman J,Jaffe E,Croce CM.Involvement of the bcl-2 gene in human follicular lymphoma. Science,1985,228 (4706): 1440-1443.
    149. Oltvai ZN,Milliman CL,Korsmeyer SJ.Bc1-2 heterodimerizes in vivo with a conserved homolog,Bax,that accelerates programmed cell death.Cell,1993,74:609—619.
    150. Oltyai ZN,Miliman CI,Korsmeyer SJ.Bcl-2 hcterodimerizesin vlvo with a conserved homolog,bax,that accelerates programmed cell death.Cell,1993,74:609.
    151. Hoetelmans R,van Slcoten HJ,Keijzer R,Erkeland S,van de Velde CJ,Dierendonck JH.Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells.Cell Death Differ,2000,7(4):384—392.
    152. Adams J M, Cory S. The Bcl-2 protein family:arbiters of cell. Science,1998, 281(5381): 1322-1326.
    153. Stein MP, Dong J, Wandinger-Ness A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev,2003,14;55:1421-1437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700