油酸诱导鹅肝细胞脂肪变性对细胞内脂质代谢平衡相关基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物肝脏脂代谢平衡的破坏会导致大量三酰甘油(TG)沉积于肝脏,从而引起肝脂肪变性。本实验首先扩增出鹅脂质代谢的关键基因DGAT1、DGAT2、FOXO1、MTP、PLIN和CPT-1的序列,然后以30日龄四川白鹅原代肝细胞为材料,添加不同浓度油酸诱导鹅肝细胞脂肪变性,构建肝细胞体外脂肪变性模型,检测细胞内、外TG和细胞外apoB的变化情况,并应用实时荧光定量PCR检测DGAT1、DGAT2、PPARα、PPARγ、FOXO1、MTP、PLIN和CPT-1 mRNA表达的变化情况,获得以下主要结果:
     (1)首次克隆得到了四川白鹅MTP、DGAT1、DGAT2、CPT-1、FOXO1和PLIN六个基因的部分CDS,它们的大小分别为663bp、874bp、409bp、551bp、1087bp和277bp。
     (2)通过序列BLAST比对发现,鹅MTP、DGAT1、DGAT2、CPT-1、FOXO1和PLIN等基因与原鸡或斑胸草雀的同源性都在90%以上,而与其它脊椎动物的同源性在70%-80%之间。
     (3)0.5 mmol/L、1.0 mmol/L和1.5 mmol/L油酸处理细胞24 h,都能显著增加鹅肝细胞内TG的合成,与对照相比分别上升3倍(P<0.01)、3.43倍(P<0.01)和2.86倍(P<0.05)。
     (4)通过油红O染色,经油酸处理细胞后,对照组细胞内脂滴极少,而实验组明显沉积了大量的脂滴,并且随着油酸浓度的增加,细胞内脂滴聚集程度增加。
     (5)用MTT法对细胞活性进行检测,油酸处理细胞24 h后,0.5 mmol/L油酸显著增强细胞活性(P<0.01),而1.5 mmol/L油酸对细胞活性有抑制作用(P<0.01),1.0 mmol/L油酸对细胞活性没有显著影响。
     (6)处理细胞24 h后,与对照组相比,0.5 mmol/L、1.0 mmol/L和1.5 mmol/L油酸都能减少鹅肝细胞脂蛋白apoB的分泌,3个油酸处理组分泌到胞外的apoB分别是对照的0.96倍、0.83倍(P<0.05)和0.72倍(P<0.01),同时分泌到胞外的TG也逐渐减少,分别是对照的4.69倍(P<0.01)、2倍(P<0.05)和1.3倍。
     (7)油酸处理细胞24 h后,对脂质代谢相关基因的表达有明显影响,与对照相比,0.5 mmol/L、1.0 mmol/L和1.5 mmol/L三个处理组的PPARγ的表达量分别为对照的1.893倍(P<0.05)、1.297倍和0.909倍;PLIN的表达量分别为对照的5.706倍(P<0.01)、5.31倍(P<0.01)和4.145倍(P<0.01),且与胞内TG含量呈显著正相关;DGAT1的表达量分别为对照的1.531倍(P<0.05)、1.244倍和0.936倍,与胞外TG的变化显著正相关;DGAT2的表达量分别为对照的2.651倍(P<0.01)、2.054倍(P<0.01)和1.814倍(P<0.05);PPARα和CPT-1的变化趋势一致,随着油酸浓度的增加表达上升;而FOXO1和MTP的表达量随着油酸浓度增加显著降低,且与apoB的分泌显著相关。
The disorder of Lipid metabolism could lead to the massive triglycerides (TG) accumulation in the liver,then result in hepatic steatosis.At present,the molecular mechanism of hepatic steatosis caused by lipid metabolism disorder in goose hepatocytes has not been reported.In this study,DGAT1,DGAT2,FOXO1, MTP,PLIN and CPT-1 partial sequences of goose were cloned for the first time, which are related with goose lipid metabolism balance.Then the hepatic steatosis model in vitro was constructed by culturing the goose primary hepatocytes with different concentration oleic acid to induce goose hepatocytic steatosis.TG concentration intracellular and extracellular of steatosis hepatocytes,and the change of apoB concentration were measured.Meanwhile,the mRNA expression of DGAT1、DGAT2、PPARα、PPARγ、FOXO1、MTP、PLIN and CPT-1 was dedected by Real-Time RT-PCR.The results were as follows:
     (1) The partial CDS of MTP、DGAT1、DGAT2、CPT-1、FOXO1 and PLIN genes were amplificationed for the first time,and the length of their cloned sequences were 663bp、874bp、409bp、551bp、1087bp and 277bp, respectively.
     (2) Gene sequence of MTP、DGAT1、DGAT2、CPT-1、FOXO1 and PLIN of goose has high homology with Gallus gallus or Poephila castanotis above 90%,with other vertebrate by 70%-80%through sequence BLAST.
     (3) Compared with control group,0.5,1.0 and 1.5 mmol/L oleic oil cultured with hapetocytes for 24h all could increase intracellular TG accumulation by 3 (P<0.01),3.43(P<0.01),2.86 times(P<0.05),respectively.
     (4) The sesult of Oil Red O staining showed,the lipid droplets in hepatocytes of control group were much less than that in experimental group,and the degree of lipid droplet accumulation increased intra hepatocytes with the increasing of oleic oil concentration.
     (5) The MTT assay was used for the quantification of cytoactive.After 24h cultured with oleic oil,1.5 mmol/L(P<0.01) oleic oil had an inhibiting effect on the cytoactive,0.5 mmol/L(P<0.01)oleic oil could induce cytoactive,and 1.0 mmol/L oleic oil had no effect on cell viability.
     (6) Compared with control group,0.5,1.0 and 1.5 mmol/L oleic oil cultured with goose hepatocytes for 24h could all decreased secretion of apoB-containing lipoproteins by 0.96,0.83(P<0.05) and 0.72 times(P<0.01),respectively.The extracellular TG concentration decreased by 4.69(P<0.01),2(P<0.05) and 1.3 times,gradually.
     (7) Different concentration of oleic oil cultured with hepatocytes for 24h had evident effect on some genes expression related to lipid metabolism. Compared with control group,the mRNA level of PPARγin the experimental groups which were treated with 0.5,1.0 and 1.5 mmol/L oleic oil was increased by 1.893(P<0.05),1.297 and 0.909 times,respectively;The mRNA level of PLIN was increased by 5.706(P<0.01),5.31(P<0.01) and 4.145 times (P<0.01),respectively.The mRNA level of FOXO1 was decreased by 0.593(P<0.05),0.402(P<0.01) and 0.314 times(P<0.01),respectively; The mRNA level of MTP was decreased by 0.913,0.806(P<0.05) and 0.543 times(P<0.01),respectively;The mRNA level of PPARαwas increased by 2.26(P<0.05),2.957(P<0.01) and 10.302 times(P<0.01),respectively; The mRNA level of CPT-1 was increased by 2.107(P<0.01),2.033(P<0.01) and 1.631 times(P<0.05),respectively.The mRNA level of DGAT1 was increased by 1.531(P<0.05),1.244 and 0.936 times(P<0.05),respectively. The mRNA level of DGAT2 was increased by 2.651(P<0.01),2.054 (P<0.01) and 1.814(P<0.05) times(P<0.05),respectively.
引文
[1]Pilo B and George JC.Diurnal and seasonal variations in liver glycogen and fat in relation to metabolic status of liver and pectoralis in the migratory starling[J].Comparative Biochemistry and Physiology(Part A),1983,74:601-604.
    [2]Adriana Maria den Boer.Hepatic Steatosis Metabolic Consequences.[Dissertation of human biology Faculty of Medicine].Netherlands,University of Leiden,2006.
    [3]Han C,Wang J,Xu H,et.al.Effect of Overfeeding on Plasma Parameters and mRNA Expression of Genes Associated with Hepatic Lipogenesis in Geese[J].Asia-aust J anim Sci,2008,21(4):590-595.
    [4]Han C,Wang J,Li L,et.al.Effect of insulin and glucose on lipid accumulation,FAS enzyme activity and gene expression of SREBP-1,FAS,ACCα in goose primary hepatocytes[J].The Journal of Experimental Biology,2009,212:1553-1558.
    [5]苏胜彦,李齐发,刘振山等.朗德鹅肝脏和脂肪组织LXRα基因表达水平的比较[J].农业生物技术学报.2008,16(3):421-425.
    [6]Unger,R.H.Lipotoxic diseases[J].Annu.Rev.Med,2002,53:319-336.
    [7]Friedman,J.Fat in all the wrong places[J].Nature,2002,415:268-269.
    [8]Coleman,R.A.,and D.P.Lee.Enzymes of triacylglycerol synthesis and their regulation[J].Prog.Lipid Res.2004.43:134-176.
    [9]Cases.S,S.J.Smith,Y-W.Zheng,et.al.Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase,a key enzyme in triacylglycerol synthesis[J].Proc.Natl.Acad.Sci.USA,1998,95:13018-13023.
    [10]Lehner R,and A.Kuksis.Biosynthesis of triacylglycerols[J].Prog.Lipid Res,1996,35:169-201.
    [11]Chi-Liang Eric Yen,Scot J.Stone,Suneil Koliwad,et.al.DGAT enzymes and triacylglycerol biosynthesis[J].J.Lipid Res,2008,49:2283-2301.
    [12]Stone,S.J.,H.Myers,B.E.Brown,et.al.Lipopenia and skin barrier abnormalities in DGAT2-deficient mice[J].J.Biol.Chem,2004,279:11767-11776.
    [13]Tsai,J.,W.Qiu,R.Kohen-Avramoglu,et.al.MEK-ERK inhibition corrects the defect in VLDL assembly in HepG2 cells:potential role of ERK in VLDL-ApoB100 particle assembly[J].Arterioscler.Thromb.Vase.Biol,2007,27:211-218.
    [14]Smith,S.J.,S.Cases,D.R.Jensen,H.C.Chen,et.al.Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT[J].Nat.Genet,2000,25: 87-90.
    [15]Chen, H. C., S. J. Smith, Z. Ladha, et.al. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1[J]. J. Clin. Invest, 2002, 109: 1049-1055.
    [16]Chen, H. C., M. Rao, M. P. Sajan, et.al. The role of adipocyte derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking acylcoenzyme A:diacylglycerol acyltransferase 1[J]. Diabetes, 2004, 53: 1445-1451.
    
    [17]Liu, L, Y. Zhang, N. Chen, et.al. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance[J]. J. Clin. Invest, 2007, 117:1679-1689.
    [18]Ntambi, J. M., M. Miyazaki, J. P. Stoehr, et.al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity[J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 11482-11486.
    [19]Man, W. C., M. Miyazaki, K. Chu, et.al. Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis[J]. J. Lipid Res, 2006, 47: 1928-1939.
    [20] Waterman, I. J., N. T. Price, and V. A. Zammit. Distinct ontogenic patterns of overt and latent DGAT activities of rat liver microsomes[J]. J. Lipid Res, 2002, 43: 1555-1562.
    [21]Liang, J., P. Oelkers, C. Guo, et.al. Overexpression of human diacylglycerol acyl-transferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA: cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells[J]. J. Biol. Chem, 2004, 279: 44938-44944.
    [22]Yamazaki, T., E. Sasaki, C. Kakinuma, et.al. Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1[J]. J. Biol. Chem, 2005,280:21506-21514.
    [23] Millar, J., S. Stone, U. Tietge, et.al. Short-term over-expression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production[J]. J. Lipid Res, 2006, 47: 2297-2305.
    [24]Monetti, M., M. C. Levin, M. J. Watt, et.al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver [J]. Cell Metab, 2007, 6: 69-78.
    [25]Florian Blaschke, Yasunori Takata, Evren Caglayan, et.al. Obesity, Peroxisome Proliferator-Activated Receptor, and Atherosclerosis in Type 2 Diabetes[J]. Arterioscler Thromb Vasc Biol, 2006, 26:28-40.
    [26]Schoonjans, K., Watanabe, M.., Suzuki, H., et.al. Induction of the acyl-coenzyme A synthatase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter[J]. J. Biol. Chem., 1995, 270:19269-19276
    [27]Munday MR. Regulation of mammalian acetyl-CoA carboxylase[J]. Biochem Soc Trans, 2002, 30:1059-1064.
    [28]Le MC, Caüzac M, Diradourian C, et.al. Fatty acids induce L-CPT 1 gene expression through a PPARalpha-independent mechanism in rat hepatoma cells[J]. J Nutr, 2005,135:2313-2319.
    [29]Bardot O, Aldridge TC, Latruffe N, et al. PPAR-RXR heterodimer activates a peroxisome proliferators response element upstream of the bifunctional enzyme gene[J]. Biochem Biophys Res Commun, 1993, 192:37-45.
    [30]Florian Blaschke, Yasunori Takata, Evren Caglayan, et.al. Obesity, Peroxisome Proliferator Activated Receptor, and Atherosclerosis in Type 2 Diabetes[J]. Arterioscler Thromb Vasc Biol, 2006, 26:28-40.
    [31]Petit, D., M. T. Bonnefis, C. Rey, et.al. Effects of ciprofibrate and fenofibrate on liver lipids and lipoprotein synthesis in normo- and hyperlipidemic rats[J]. Atherosclerosis, 1988,74:215-225.
    [32]Lindeu, D., K. Lindberg, J. Oscarsson, et.al. Influence of peroxisome proliferator activated receptor alpha agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48[J]. J. Biol. Chem, 2002, 277: 23044-23053.
    [33]Petit, D., M. T. Bonnefis, C. Rey, et.al. Effects of ciprofibrate and fenofibrate on liver lipids and lipoprotein synthesis in normo- and hyperlipidemic rats[J]. Atherosclerosis, 1988,74:215-225.
    [34]Waterman,I. J., and V. A. Zammit. Differential effects of fenofibrate or simvastatin treatment of rats on hepatic microsomal overt and latent diacylglycerol acyltransferase activities[J]. Diabetes, 2002, 51: 1708-1713.
    [35]Nagai, S., Shimizu, C., Umetsu, M., et.al. Identification of a functional perxisome proliferator activated receptor responsive element within the murine perilipin gene[J]. Endocrinology, 2004, 145:2346-2356.
    [36] Gavrilova O, Haluzik M, Matsusue K, et.al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass[J].J.Biol.Chem,2003,278:34268-34276.
    [37]She H,Xiong S,Hazra S,et.al.Adipogenic transcriptional regulation of hepatic stellate cells[J].J Biol Chem,2005,280:4959-67.
    [38]Matsusue,K Kusakabe,T Noguchi,T,et.al.Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27.[J].Cell Metabolism,2008,(7):302-311.
    [39]苏胜彦,李齐发,刘振山等.朗德鹅填饲后不同组织PPAR γ基因mRNA表达量差异的初步研究[J].畜牧兽医学报,2008,39(7):879-884.
    [40]Michalik,L.,Desvergne,B.,and Wahli,W.Peroxisome proliferator-activated receptors beta/delta:emerging roles for a previously neglected third family member[J].Curr Opin Lipidol,2003,14:129-135.
    [41]Matsusue,K.,Peters,J.M.,and Gonzalez,F.J.PPARbeta/delta potentiates PPARgamma stimulated adipocyte differentiation[J].FASEB J,2004,18:1477-1479.
    [42]Hansen,B.,Zhang,H.,Rasmussen,T.H.,et.al.Peroxisome proliferator-activated receptors beta(PPARdelta) mediated regulation of preadipocyte proliferation and gene expression in dependent on cAMP signaling[J].J.Biol.Chem,2001,276:3175-3182.
    [43]Akiyama,T.E.,Lambert,G.,Nicol,C.J.,et.al.Peroxisome proliferator-activated receptors beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet[J].J.Biol.Chem,2004,279:20874-20881.
    [44]Brown,M.S.,and J.L.Goldstein.Receptor-mediated control of cholesterol metabolism[J].Science,1976,191:150-154.
    [45]Greenberg,A.S.,J.J.Egan,S.A.Wek,et.al.Perilipin,a major hormonally regulated adipocyte specific phosphoprotein associated with the periphery of lipid storage droplets[J].J.Biol.Chem,1991,266:11341-11346.
    [46]Martinez-Botas,J.et.al.Absence ofperilipin results in leanness and reverses obesity in Lepr(db/db) mice[J].Nat.Genet,2000,26:474-479.
    [47]Sztalryd,C.,Xu,G.,Dorward,H.,et.al.Perilipin A is essential for the translocation of hormonesensitive lipase during lipolytic activation[J].J.Cell Biol.2003,161,1093-1103.
    [48]Tansey,J.T.et.al.Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis,enhanced leptin production,and resistance to diet-induced obesity[J].Proc.Natl.Acad.Sci.USA,2001,98,6494-6499.
    [49]Brasaemle,D.L.,Rubin,B.,Harten,I.A.,et.al.Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis[J]. J. Biol. Chem, 2000, 275, 38486-38493.
    [50]Wolins, N.E., Quaynor, B.K., Skinner, J.R., et.al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes[J]. J. Biol. Chem, 2005, 280, 19146-19155.
    [51]Arimura, N., Horiba, T., Imagawa, M., et.al. The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes[J]. J. Biol. Chem, 2004,279, 10070-10076.
    [52]Wetterau JR, Lin MC, and Jamil H. Microsomal triglyceride transfer protein[J]. Biochin Biophys Acta, 1997, 145:136-150.
    [53]Puig O, Marr MT, Ruhf ML, et.al. Control of cell number by drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway [J]. Genes Dev, 2003,17:2006-2020.
    [54]Tacken, P.J., M.H., Havekes, L.M., et.al. Living up to a name: the role of the VLDL receptor in lipid metabolism[J]. Curr Opin Lipidol, 2001,12:275-279.
    [55]Borén, J., Rustaeus, S., and Olofsson, S.O. Studies on the assembly of apolipoprotein B-100 and B-48-containing very low density lipoprotein in McA-RH7777 cells[J]. J. Biol. Chem., 1994,269:25879-25888.
    [56]Michael Charlton, Raghavakaimal Sreekumar, Deborah Rasmussen, et.al. Apolipoprotein Synthesis in Nonalcoholic Steatohepatitis[J]. Hepatology, 2002, 35:898-904.
    [57]Magnusson B, Asp L, Bostrom P, et.al. Adipocyte differentiation related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low density lipoproteins[J]. Arterioscler Thromb Vasc B iol, 2006, 26(7): 1566-1571.
    [58]Liao W, Hui T Y, Young S G, et.al. Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER[J]. J Lipid Res, 2003, 44(5):978-985.
    [59]Bremmer D R, Trower S L, Bertics S J, et.al. Etiology of fatty liver in dairy cattle: effects of nutritional and hormonal status on hepatic microsomal triglyceride transfe protein[J]. J Dairy Sci, 1999, 83:2239-2251.
    
    [60]Lin MC, Arbeeny C, Bergquist K, et.al. Cloning and regulation of hamster microsomal triglyceride transfer protein[J]. J Biol Chem, 1994, 269 (46): 29138- 29145.
    [61]Au WS, Kung HF, Lin MC. Regulation of m icrosomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38[J]. Diabetes, 2003, 52(5):1073-1080.
    [62]Accili D,Arden K C.FoxOs at the Crossroads of cellular metabolism:diferentiation and transformation[J].Cell,2004,117(4):421-426.
    [63]Adama Kamagate,Shen Qu,German Perdomo,et.al.FoxOl mediates insulin-dependent regulation of hepatic VLDL production in mice[J].J.Clin.Invest.,2008,118:2347-2364.
    [64]Hussain,M.M.,Shi,J.,and Dreizen,P.Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly[J].J.Lipid Res.,2003,44:22-32.
    [65]Changiz Taghibiglou,Debbie Rudy,Stephen C.et.al.Intracellular mechanisms regulating apoB-containing lipoprotein assembly and secretion in primary hamster hepatocytes[J].Journal of Lipid Research,2000,41:499-513.
    [66]Olofsson,S.O.,Stillemark-Billton,P.,and Asp,L.Intracellular assembly of VLDL:two major steps in separate cell compartments[J].Trends Cardiovasc Med,2000,10:338-345.
    [67]Helena CP,Huizhi L.Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes[J].Gastroenterology,1999,116:1184-1193.
    [68]Yasuyuki O,Shinobu T.Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model[J].Hepatology research,2002,23:138-144.
    [69]Ariel EF,Nathan WW.Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway[J].Hepatology,2004,40:185-194.
    [70]杨林辉,陈东风.TNF-α对脂肪变性肝细胞SREBP-1c的表达及甘油三酯含量的影响[J].第三军医大学学报,2006,28(23):2354-2357.
    [71]Seglen,P.Preparation of isolated rat liver cells[J].Methods Cell.Biol.1976,13:29-83.
    [72]Francesco Natali,Luisa Siculella,Serafina Salvati,et.al.Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells[J].Journal of Lipid Research,2007,48:1966-1975.
    [73]Kan S,Yositake C,Shizuko T,et al.Impairment of VLDL Secretion by Medium-Chain Fatty Acids in Chicken Primary Hepatocytes Is Affected by the Chain Length[J].American Society for Nutritional Sciences,2005,8:636-1641.
    [74]Shizuko T,Kan S,Yoshitake C,et.al.Octanoate reduces very low-density lipoprotein secretion by decreasing the synthesis of apolipoprotein B in primary cultures of chicken hepatocytes[J].Biochimica et Biophysica Acta,2005,1737:36-43.
    [75]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J].Methods(San Diego Calif)2001,25:402-408.
    [76]Manlio V,Fabio C,Marion P,et.al.Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN[J].Journal of Hepatology,2009,1:1-10.
    [77]Christina Vock,Mareike Gleissner,Maja Klapper,et.al.Oleate regulates genes controlled by signaling pathways of mitogen-activated protein kinase,insulin,and hypoxia[J].Nutrition Research,2008,28:681-689.
    [78]Maria J,Maria T D,Alicia M R,et.al.A human hepatocellular in vitro model to investigate steatosis[J].Chemico-Biological Interactions,2007,165:106-116.
    [79]杨林辉,陈东风.油酸诱导培养肝细胞脂肪变性模型的建立[J].重庆医学,2007,36(8):698-700.
    [80]陈凤花,王琳.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志,2005,23(5):393-395.
    [81]V ila M R,N icolas A,Morote J,et.al.Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA based,arbitrarily primed polymerase chain reaction[J].Cancer,2000,89(1):152-164.
    [82]Tricarico C,Pinzani P,B ianchi S,et.al.Quantitative real-time reverse transcription polymerase chain reaction:normalization to rRNA or single housekeeping genes is inappropriate for human tissue biop sies[J].Anal B iochem,2002,309(2):293-300.
    [83]Schm id H,Cohen C D,Henger A,et.al.Validation of endogenous controls for gene expression analysis in microdissected human renal biop sies[J].Kidney Int,2003,64(1):356-360.
    [84]Vandesompele J,Preter K D,Pattyn F,et.al.Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J].Genome Biol,2002,3(7):1-11.
    [85]Kim S and Kim T.Selection of optimal internal controls for gene expression profiling of liver disease[J].Bio Techniques,2003,35(3):456-460.
    [86]Reddy JK,Hashimoto T.Peroxisomal β-oxidation and peroxisome proliferator activated receptor α:anadaptive metabolic system[J].Annu Rev Nutr,2001,21:193-230.
    [87]Schoonjans,K.,Watanabe,M.,Suzuki,H.,et.al.Induction of the acyl-coenzyme A synthatase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter[J].J.Biol.Chem.,1995,270:19269-19276.
    [88]QI Xiao-Hong,ZHANG Zhao-Ping,LI Xiao-Yu,et.al.Expression of the peroxisome proliferator activated receptor a in the fatty liver of the experimental mouse[J].Chinese Journal of Pathophysiology,2003,19(9):1206-1209.
    [89]Harano Y,Yasui K,Toyama T,et.al.Fenofibrate,a peroxisome proliferator-activated receptor alpha agonist,reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver[J].Liver Int,2006,26:613-620.
    [90]Lefebvre P,Chinetti G,Fruchart JC,et.al.Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis[J].J Clin Invest,2006,116:571-580.
    [91]Le May C,Ca(u|¨)zac M,Diradourian C,et.al.Fatty acids induce L-CPTI gene expression through a PPARalpha-independent mechanism in rat hepatoma cells[J].J Nutr,2005,135:2313-2319.
    [92]施军平,陈芝芸,包剑锋等.高脂饮食诱导的非酒精性脂肪肝病大鼠肝组织PPARα和CPT-1 mRNA的表达[J].浙江中医药大学学报,2007,31(1):52-55.
    [93]Motoyuki K,Munechika E,Nobito H.et.al.Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.International Journal of molecular medicine,2007,20:351-358.
    [94]Motoyuki Kohjima,Munechika Enjoji,Nobito Higuchi,et.al.The effects of unsaturated fatty acids on lipid metabolism in HepG2 cells[J].In Vitro Cell.Dev.Biol.Animal,2009,45:6-9.
    [95]Shan-Ching Hsu,and Ching-jang Huang.Reduced Fat Mass in Rats Fed a High Oleic Acid-Rich Safflower Oil Diet Is Associated with Changes in Expression of Hepatic PPARα and Adipose SREBP-1c-Regulated Genes[J].J.Nutr,2006,136:1779-1785.
    [96]Giovanni Musso,Roberto Gambino,Maurizio Cassader.Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease(NAFLD)[J].Progress in Lipid Research,2009,48:1-26.
    [97]L.Everett,A.Galli,D.Crabb.The role of hepatic peroxisome proliferator-activated receptors(PPARs) in health and disease[J],Liver,2000,3:191-199.
    [98]Ulrika Edvardsson,Anna Ljungberg,Daniel Linden,et.al.PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes[J].J.Lipid Res,2006,47:329-340.
    [99]Gross DN,Miyoshi H,Hosaka T,et.al.Dynamics of lipid droplet-associated proteins during hormonally stimulated lipolysis in engineered adipocytes: stabilization and lipid droplet binding of adipocyte differentiation-related protein/adipophilin[J]. Mol. Endocrinol., 2006, 20: 459-466.
    [100]Owen M, Zammit VA. Evidence for overt and latent forms of DGAT in rat liver microsome: implication for the pathways of triacylglycerol incorporation into VLDL[J]. Biochem Soc Trans, 1997,25(1):21-23.
    [101]Paul Rava, George K. Ojakian, Gregory S. Shelness, et.al. Phospholipid Transfer Activity of Microsomal Triacylglycerol Transfer Protein Is Sufficient for the Assembly and Secretion of Apolipoprotein B Lipoproteins[J]. The Journal of Biological Chemistry, 2006, 281 (16): 11019-11027.
    [102] Yuan-Li Zhang, Antonio Hernandez-Ono, Carol Ko, et.al. Regulation of Hepatic Apolipoprotein B-lipoprotein Assembly and Secretion by the Availability of Fatty Acids[J]. The Journal of Biological Chemistry, 2004, 279(18): 19362-19374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700