佐剂性关节炎大鼠CD4~+CD25~+调节性T细胞的动态变化及作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察佐剂性关节炎(AA)大鼠外周血(PB)和淋巴结(LN)中CD4~+CD25~+调节性T细胞(CD4~+CD25~+Treg)的动态变化,并探讨其在AA发病过程中的意义;初步研究CD4~+CD25~+Treg对AA大鼠腹腔巨噬细胞(PMΦ)的可能发挥的作用,进一步阐明大鼠AA的发病机制,并为CD4~+CD25~+Treg是否能作为RA的预防与治疗的标志性指标提供一定的依据。
     方法和结果:
     1.大鼠佐剂性关节炎(adjuvant arthritis, AA)模型的制备及评价
     健康雄性SD大鼠,左足跖皮内注射0.1ml 10g?L-1氟氏完全佐剂(Freund’s complete adjuvant, FCA)复制AA模型;检测大鼠关节肿胀度并进行关节炎评分,HE染色法对关节组织作病理检查。结果显示:AA大鼠足爪的炎症反应强烈,关节肿胀明显;病理学检查关节组织可见大量炎性细胞浸润,滑膜细胞过度增生,滑膜组织中胶原蛋白等渗出并出现纤维沉着,提示大鼠AA模型制备成功。
     2. AA大鼠腹腔外周血和淋巴结CD4~+CD25~+Treg的动态变化及意义
     在大鼠AA模型制备成功的基础上,分别在造模后不同时间点,第1,3,10,17,21,24和28d,采集外周血和腹腔淋巴结,按文献方法制备淋巴细胞悬液,采用流式细胞术(FCM)检测CD4~+CD25~+Treg的比例变化;采用MTT法检测淋巴结淋巴细胞增殖反应;FCM检测刀豆蛋白A(ConA)刺激48h后,腹腔淋巴结和外周血淋巴细胞中CD4~+CD25~+Treg的比例变化;Pearson相关性分析淋巴结CD4~+CD25~+Treg与关节炎症状的相关程度。结果显示:CD4~+CD25~+Treg的比例在AA造模后第1,24和28d与正常组相比明显升高;AA大鼠第28d体内淋巴结淋巴细胞增殖反应减弱;ConA刺激淋巴结淋巴细胞48h后,正常的CD4~+CD25~+Treg的比例明显增加,但AA第28d的CD4~+CD25~+Treg比例没有显著性改变;AA不同时间点关节肿胀度和关节炎评分与CD4~+CD25~+Treg的比例存在正相关。
     3. CD4~+CD25~+调节性T细胞对大鼠AA作用的初步研究
     按文献方法分离腹腔淋巴细胞(LC)与腹腔巨噬细胞(PMΦ)后,将两者联合培养48h,放射免疫法检测培养上清中TNF-α和IL-6的含量。结果显示:AA 28d时,正常组LC与AA PMΦ共培养体系中TNF-α和IL-6含量稍低于模型组,但高于正常组,提示正常LC中的CD4~+CD25~+Treg对AA PMΦ有负反馈抑制作用;AA组LC+正常组PMΦ培养上清中TNF-α和IL-6含量明显低于正常组,提示AA LC中的CD4~+CD25~+Treg对正常PMΦ的功能有明显的抑制作用。
     结论:
     1.本研究发现了AA大鼠CD4~+CD25~+Treg动态变化规律,并进一步发现AA大鼠CD4~+CD25~+Treg与AA大鼠关节炎症状呈正相关。
     2.在腹腔LC与PMΦ的体外联合培养体系中,LC中CD4~+CD25~+Treg可能参与抑制PMΦ分泌TNF-α和IL-6。
OBJECTIVE:
     To analyze the change of CD4~+CD25~+regulatory T cells (CD4~+CD25~+Treg) in rat adjuvant arthritis model and to investigate their preliminary roles in the progress of arthritis. To observe the possible role of CD4~+CD25~+Treg to peritoneal macrophage, elucidate the mechanism of RA and provide certain evidence whether CD4~+CD25~+Treg could be the preventive and therapeutic target for RA.
     METHODS AND RESULTS:
     1. Establishment and evaluztion of adjuvant arthritis model in rats
     Healthy male SD rats were administrated with 0.1ml complete Freud adjuvant (FCA) (10g?L-1) via toe endermic injection. The change of secondary paw-swelling was observed and scored; Animals were sacrificed at every time point, Pathological changes of synovium were examined by Hematoxylin eosin (HE) stain method, then the samples of celiac lymphocyte and peritoneal macrophage were collected. The proportion of CD4~+CD25~+Treg was detected by flow cytometry. The results showed that the inflammation and paw swelling of AA rats increased significantly; The pathological examination also revealed that inflammatory cells infiltrated into the synovium, The synoviocytes were hyperplasia and collagen was exuded to form cellulose deposition. In conclusion, adjuvant arthritis model in rats was established successfully.
     2. Change and its significance of CD4~+CD25~+ regulatory T cells from celiac lymph node and peripheral blood in experimental rat adjuvant arthritis model
     On the basis of successful rat adjuvant arthritis model, collectted celiac lymph nodes and peripheral blood at the different stage of AA, which were 1d, 3d, 10d, 17d, 21d, 24d and 28d, prepare lymphocyte supernants according to the relative literature; ConA- and LPS-induced splenocyte proliferation on AA rats were assayed with MTT reagent; the proportion of CD4~+CD25~+Treg as well as those stimulated with ConA for 48h was detected by flow cytometry; The relationship between CD4~+CD25~+Treg and arthritis symptom was processed by Pearson correlation analysis. The results showed that the proportion of CD4~+CD25~+Treg in AA group was significantly higher than control group at 1d, 24d and 28d; The results showed that the lymphocyte proliferation reaction of AA rats were lowered; The proportion of CD4~+CD25~+Treg in control group was significantly increased after stimulated with ConA for 48h, while the difference of AA group had no significance; There was positive correlation between CD4~+CD25~+Treg and arthritis symptom.
     3. Study of the preliminary role of CD4~+CD25~+Treg in AA
     Celiac LC and PMΦwere isolated according to literature, LC was co-cultured with PMΦfor 48 hours and the cultivation supernant was collected for detecting TNF-αand IL-6 which was measured by Radioimmunoassay. The level of TNF-αand IL-6 in co-culture supernants of normal LC and AA PMΦwere slightly lower than AA PMΦ, but obviously higher than normal PMΦ, while those in co-culture supernants of AA LC and normal PMΦdecreased significantly. This suggested that CD4~+CD25~+Treg from normal LC presented a negative feedback effect on AA PMΦ, and CD4~+CD25~+Treg from AA LC exerted obviously inhibitive effect on the function of normal PMΦ.
     CONCLUSIONS:
     1. This study discovered the rule of the dynamic change of the proportion of CD4~+CD25~+ Treg from celiac lymph node and peripheral blood at different stages of AA, and the changes of CD4~+CD25~+Treg and the degree of inflammation were positively correlated.
     2. CD4~+CD25~+Treg may play the role in inhibting PMΦsecreting TNF-αand IL-6 in the co-culture system in vitro.
引文
[1] Woods JM, Katschke KJ Jr, Tokuhira M, et al. Reduction of inflammatory cytokines and prostaglandin E2 by IL-13 gene therapy in rheumatoid arthritis synovium. J Immunol, 2000, 165(5):2755-63.
    [2] Feldmann M, Brennan FM, Maini RM. Rheumatoid arthritis. Cell, 1996; 85(3): 307-10.
    [3] Ludmila P, Leonid P, Anna B, et al. Association of the PD-1.3A Allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum, 2004, 50(6): 1770-3.
    [4] Firestein GS. Etiology and pathogenesis of RA[M]// Kelley WN, Harris ED, Ruddy S, Sledge CB. Text-book of Rheumatology. 5th ed. Philadelphia: WB Sounders, 1997:851-968.
    [5] Zhu L, Ji F, Wang Y, et al. Synovial autoreactive T cells in rheumatoid arthritis resist IDO-mediated inhibition. J Immunol, 2006, 177(11): 8226-33.
    [6] Eddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin(IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cels. J Exp Med, 2006, 203(7): 1693-700.
    [7] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3):1151-64.
    [8] Marco L. Role of regulatory T cells in experimental arthritis and implications for clinical use[J]. Arthritis Res Ther. 2005, 7(3):118-20.
    [9] Wing K, Suri Prayer E , Rudin A. CD4+CD25+ regulatory T cells from mouse to man[J]. Scand J Immunol, 2005, 62(1):1-15.
    [10] Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the fork-head family transcription factor Foxp3[J]. Nat Immunol, 2005, 6(4):331-7. .
    [11] Azuma T, Takahashi T, Kunisato A, et al. Human CD4+CD25+ regulatory T cells suppress NK T cell functions [J]. Cancer Res, 2003,63(15):4516-20.
    [12] Taams LS, van Amelsfort JM, Tiemessen, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells[J]. Hum Immunol, 2005, 66(3):222-30.
    [13]吕凌,张峰,王学浩等.大鼠CD4+CD25+T调节细胞的分离培养及其功能分析.细胞与分子免疫学杂志.2006, 22(4): 417-9.
    [14]王琦,郑峻松,张艮甫等. CD4+CD25+Treg对B细胞的作用机制分析.中国免疫学杂志, 2008,24(6):387-93.
    [15] Wim J, Vincent C, BoW, et al. CD4+CD25+T cells lyse antigen presenting B cells by fas/fas ligand interaction in an epitope-specific manner[J]. J Immunol, 2003, 171 (9): 4604-12.
    [16] Fallarino F, Ursula G, Kwang WH, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nature Immunol, 2003, 4(12): 1206-12.
    [17] Ceoilia O, Lukas C, AnnaM, et al. Cytotoxic T lymphocyte antigen-4-dependent down modulation of costimulatorymolecules ondendritic cells in CD4+CD25+ regulatory T cell mediated suppression[J]. J Immunol, 2006, 118(2): 240-9.
    [18] Ghiringhelli F, CedricM, Magali T, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner[J]. J Exp Med, 2005, 202(8): 1075-85. [ 19 ] Venet F, Pachot A, Debard AL, et al. Human CD4+CD25+regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand dependent mechanism [J]. J Immunol, 2006, 177(9): 6540-7.
    [20] Williams MA, Newland AC. The potential for monocyte mediated immunotherapy during infection and malignancy. Part I: apoptosis induction and cytotoxic mechanisms[J]. Leuk Lymphoma, 1999, 34(1-2): 1-23.
    [21]王勇,方勇飞,周新等.青藤碱对佐剂性关节炎大鼠腹腔巨噬细胞表达细胞因子的影响.中华风湿病学杂志, 2003,7(7):415-9.
    [22]徐叔云,卞如濂,陈修,主编.药理实验方法学[M].北京:人民卫生出版社, 1991: 723-4.
    [23] Gu WZ, Brandwein SR. Inhibition of typeⅡcollagen induced arthritis in rats by triptolide[J]. Int J Immunol pharmaco, 1998, 20 (8): 389-400.
    [24]李俊,赵维中.白芍总苷对大鼠腹腔巨噬细胞产生白三烯B4的影响[J].中国药理学通报, 1992,8(1):36-8.
    [25] Liu MF, Wang CR, Fung LL, et al. The presence of cytokine-suppressive CD4+CD25+T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis[J]. Scand J Immunol, 2005, 62(3):312-7.
    [26] Schwartz RH. Natural regulatory T cells and self-tolerance [J].Nat Immunol, 2005, 6(4): 327-30.
    [27] Von Boehmer H. Mechanisms of suppression by suppressor T cell[J]. Nat Immunol, 2005, 6(4):338-44.
    [28] Horwitz DA, Gray JD, Zheng SG. The potential of human regulatory T cells generated exvivo as a treatment for lupus and other chronic inflammatory diseases [J].Arthritis Res, 2002, 4(4):241-6.
    [29] Nakamura K, Kitani A, Fuss I, et al. TGF-β1 Plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice[J]. J Immunol, 2004, 172(2): 834-42.
    [30] Toubi E, Kessel A, Mahmudov I, et al. Increased spontaneous apoptosis of CD4+CD25+T cell in patients with active rheumatoid arthritis is reduced by infliximab [J] .Ann N Y Acad Sci, 2005, 1051:506-14.
    [31] van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid[J]. Arthritis Rheum. 2004, 50(9):2775-85.
    [32]沈佰华,王利,张继英等.类风湿关节炎患者外周血与病变部位自身反应性T细胞的免疫学特征[J].中华风湿病学杂志,2004, 8(8):458-62.
    [33]陈敏珠,徐叔云.炎症与抗炎药物,见:卞如镰编.抗炎免疫药理学与临床应用,北京:北京医科大学,中国协和医科大学联合出版社,1992:115-53.
    [34]龚非力主编.医学免疫学[M].北京:科学出版社, 2006: 152-4.
    [35]肇静娴,曾耀英. CD4+CD25+调节性T细胞的发育与胸腺CD4+CD25+细胞关联性的探讨.中国病理生理学杂志,2005,21(7):1406-10.
    [36] Zini N, Lisignoli G, Solimando L, et al. IL-1-beta a?nd TNF-alpha i?nduce changes in the nuclear polyphosphoinositide signalling system in osteoblasts similar to that occurring in patients with rheumatoid arthritis: a immunochemical and immunocytochemical study. Histochem Cell Biol, 2003, 120(3):2432-50.
    [37] Gravallese EM, Pettit AR, Lee R, et al. Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumor necrosis factor alpha[J]. Ann Rheum Dis, 2003, 62(2):100-7.
    [38] Kanbe K, Inoue K. Efficacy of arthroscopic synovectomy for the effect attenuation cases of infliximab in rheumatoid arthritis. Clin Rheumatol, 2006, 25(6):877-81.
    [39] Smith MD, Slavotinek J, Au V, et al. Successful treatment of rheumatoid arthritis is associated with a reduction in synovial membrane cytokines and cell adhesion molecule expression[J]. Rheumatology, 2001, 40(9): 965-77.
    [40]陈琳,程文明,胡成穆,等.豹皮樟总黄酮抗炎作用及部分机制研究[J].安徽医科大学学报, 2004, 39(6): 439-42.
    [41] McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis[J]. Nat Rev Immunol. 2007, 7(6):429-42.
    [42] Liu MF, Wang CR, Fung LL, et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005, 62(3):312-7.
    [1]焦志军,王文红,李晶,等.类风湿关节炎患者外周血单个核细胞Notch及其配体表达[J].现代免疫学, 2007, 27(6):477-80.
    [2] Firestein GS. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937): 356-61.
    [3] Davis LS. A question of transformation: the synovial fibroblast in rheumatoid arthritis. Am J Pathol, 2003, 162(5):1399-402.
    [4] Zini N, Lisignoli G, Solimando L, et al. IL-1-beta and TNF-alpha i?nduce changes in the nuclear polyphosphoinositide signalling system in osteoblasts similar to that occurring in patients with rheumatoid arthritis: a immunochemical and immunocytochemical study. Histochem Cell Biol, 2003, 120(3):2432-50.
    [5] Kanbe K, Inoue K. Efficacy of arthroscopic synovectomy for the effect attenuation cases of infliximab in rheumatoid arthritis. Clin Rheumatol, 2006, 25(6):877-81.
    [6]张磊,魏伟,常艳,徐红梅.肿瘤坏死因子-a对胶原性关节炎大鼠滑膜细胞功能的影响及白芍总苷的作用[J].中国新药杂志,2007, (7):519-22.
    [7] Jacques M, Rachel A, Michael H, et al. Tumor necrosis factor- related apoptosis - inducing ligand (TRAIL) induces rheumatoid arthritis synovial fibroblast proliferation through mitogen- activated protein kinases and phosphatidylinositol 3- Kinase/Akt. J Biol Chem, 2005, 280(16): 15709-18.
    [8]解雪峰,李俊,陈晓宇等.野菊花总黄酮对佐剂性关节炎大鼠滑膜组织中TRAIL、TNF-α表达的影响.?中国药理学通报, 2007, 23(12):1662-6.
    [9] Connor AM, Berger S, Narendran A, et al. Inhibition of protein geranylgeranylation induces apoptosis in synovial fibroblasts. Arthritis Res Ther. 2006, 8(4):R94.
    [10]刘晓敏,魏淑敏.辛伐他汀对类风湿关节炎的治疗作用研究.中华临床医师杂志.2008, 2(11):14-7.
    [11] Ainola MM, Mandelin JA, Liljestrom MP, et al.Pannus invasion and cartilage degradation in rheumatoid arthritis:involvement of MMP-3 and interleukin-1 beta.Clin Exp Rheumatol. 2005, 23(5):644-50.
    [12] Tew SR, Li Y, Pothacharoen P, et al. Retroviral transduetion with SOX9 enhances re-expression of the ehondroeyte phenotype in passaged osteoarthritic human articular ehondroeytes[J]. Osteoarthritis Cartilage, 2005, 13(1):80-9.
    [13] Yasuhara R, Miyamoto Y, Akaike T, et al. Interleukin-1 beta induces death in ehondroeyte·-like ATDC5 cells throush mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner[J]. Biochem J, 2005, 389(2):315-23.
    [14]亓建洪,赵庆华,刘延菊等.白细胞介素-1β对人软骨细胞基质金属蛋白酶13 mRNA表达的作用[J].中华风湿病学杂志, 2005, 9(3):138-41.
    [15] Hwang SG, Yu SS, Poo H, et al. C-Jun/activator protein-1 mediates interleukin-1 beta-induced differentiation but not eyelooxygenase-2 expression in articular chondroeytes[J]. J Biol Chem. 2005, 280(33):29780-7.
    [16] Radons J, Bosserhoff AK, Grassel S, et al. p38MAPK mediates IL-1 induced down-regulation of aggreean gene expression in human ehondrocytes[J]. Int J Mol Med, 2006, 17(4):661-8.
    [17] Kopp S, Alstergren P, Emestam S, et al. Interleukin-lbeta influences the effect of infliximab on temporomandibular joint pain in rheumatoid arthritis. Scand J Rheumatol, 2006, 35(3):182-8.
    [18] Tesser J, Fleischmann R, Dore R, et al. Concomitant medication use in a large,international, multicenter, placebo controlled trial of anakinra, a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis. J Rheumatol, 2004, 31(4):649-54.
    [19] Nishimoto N, Kishimoto T. Interleukin 6: From bench to bedside.Nat Clin Pract Rheumatol. 2006, 2(11):619-26.
    [20] Boe A, Baiocchi M, Carbonatto M, et al. Interleukin 6knock-out mice are resistant to antigen-induced experimental arthritis. Cytokine. 1999, 11(12):1057-64.
    [21] Koch AE, Volin MV, Woods JM, et a1. Regulation of angiogenesis by the C-X-Cchemokines interleukin-8 and epithelial neutrophil activating peptide-78 in the rheumatoid ioint. Arthritis Rheum. 200l, 44(1): 31-40.
    [22] Mclnnes IB, Al-Mughales J, Field M. The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis [J]. Nat Med, 1996, 2 (2):175-82.
    [23] González-Alvaro I, Domnguez-Jimnez C, Ortiz AM, et al. Interleukin-15 and interferon-γparticipate in the cross-talk between natural killer and monocytic cell s required for tumour necrosis factor production[J]. Arthritis Res Ther, 2006, 8(4):R88.
    [24] Ernestam S, af Klint E, Catrina AI, et al. Synovial expression of IL-15 in rheumatoid arthritis is not influenced by blockade of tumour necrosis factor [J]. Arthritis Res Ther, 2006, 8(1):R18.
    [25] McInnes I, Martin R, Zimmermann-Gorska I, et al . Safety and efficacy of a human monoclonal antibody to IL-15(AMG714) in patients with rheumatoid arthritis: results of a multicenter, randomized, double-blind, placebo-controlled trial presented at the Annual Meeting of the American College of Rheumatology[J]. Ann Rheum Dis, 2006, 65:60-65.
    [26] Honorati MC, Meliconi R, Pulsatelli L, et al. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients[J]. Rheumatology (Oxford), 2001, 40(5):522-7.
    [27] Joosten LA, Radstake TR, Lubberts E, et al. Association of interleurleukin-1 beta and tumur necrosis factor alpha in knee synovial tissue of patients with rheumatoid arthritis [J]. Arthritis Rheum, 2003, 48 (2):339-47.
    [28] Lubberts E, Schwarzenberger P, Huang W, et al. Requirement of IL-17 receptor signaling in radiation resistant cells in the joint for full progression of destructive synovitis[J]. J Immunol, 2005, 175(5):3360-8.
    [29] Koenders MI, Lubberts E,Van de Loo FA, et al. Interleukin-17 acts independently of TNF-alpha under arthritic conditions [J]. J Immunol, 2006, 176 (10):6262-9.
    [30] Kim KW, Cho ML, Park MK, et al. Increased interleukin-17 production via aphosphoinositide 3-kinase/ Akt and nuclear factor kappa B-dependent pathway in patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2005, 7(1):139-48.
    [31] Hwang SY, Kim J Y, Kim KW, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappa B and PI3-kinase/ Akt-dependent pathways [J]. Arthritis Res Ther, 2004, 6(2):120-8.
    [32] Honorati MC, Cattini L, Facchini A. IL-17, IL-1beta and TNF-alpha stimulate VEGF production by dedifferentiated chondrocytes[J]. Osteoarthritis Cartilage, 2004, 12 (9): 683-91.
    [33] Ryu S, Lee JH, Kim SI. IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes [J].Clin Rheumatol, 2006, 25 (1): 16-20.
    [34] Haringman JJ, Ludikhuize J, Tak PP. Chemokines in joint disease: the key to inflammation?[J]. Ann Rheum Dis, 2004, 63(10): 1186-94.
    [35] Szekanecz Z, Kim J, Koch AE. Chemokines and chemokine receptors in rheumatoid arthritis [J]. Semin Immunol, 2003, 15(1):15-21.
    [36] Rudolph EH, Woods JM. Chemokine expression and regulation of angiogenesis in rheumatoid arthritis [J]. Curr Pharm Des, 2005, 11(5): 613-31.
    [37] Patel DD, Zachariah JP, Whichard LP. CXCR3 and CCR5 ligands in the rheumatoid arthritis synovium. Clin Immunol, 2001, 98(1): 39-45.
    [38]张文.黏附分子在类风湿关节炎中的作用.中华风湿病学杂志,1998,2(1): 51-4.
    [39] Smith MD, Slavotinek J, Au V, et a1. Successful treatment of rheumatoid arthritis is associated with a reduction in synovial membrane cytokines and cell adhesion molecule expression. Rheumatology (Oxford). 2001, 40(9): 965-77.
    [40] Rinaldi N, Schwarz EM, Weis D, et al. Increased expression of integrins on fibroblast like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann Rheum Dis. 1997, 56(1):45–51.
    [41] Müller-Ladner U, Elices MJ, Kriegsmann JB, et al. Alternatively spliced CS-1 fibronectin isoform and its receptor VLA-4 in rheumatoid synovium demonstrated by in situ hybridization and immunohistochemistry. J Rheumatol. 1997, 24(10): 1873-80.
    [42] Liu X, Piela-Smith TH. Fibrin(ogen)-induced expression of ICAM-1 and chemokines in human synovial fibroblasts. J Immunol, 2000, 165(9): 5255-61.
    [43] Scola MP, Imagawa T, Boivin GP, et a1. Expression of angiogenic factors in juvenne rheumatoid arthritis: Correlation with revaacularization of human synovium engrafted into SCID mice[J]. Arthritis Rheum, 2001, 44(14):794-801.
    [44] Liu H, Eksarko P, Temkin V, et al. Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis[J]. J Immunol, 2005, 175(12): 8337-45.
    [45] Krause A, Scaletta N, Ji JD, et al. Rheumatoid arthritis synoviocyte survival is dependent on stat3. J Immunol, 2002, 169(11): 6610-6.
    [46] Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001, 107(1):7-11.
    [47] Schindler CW. JAK-STAT signaling in human disease. J Clin Invest, 2002, 109(9): 1133-7.
    [48] Pap T, Muller-Ladner U, Gay RE, et al. Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res, 2000, 2(5): 361-7.
    [49] Baier A, Meineckel I, Gay S, et al. Apoptosis in rheumatoid arthritis. Curr Opin Rheumatol. 2003,15(3): 274-9.
    [50] Distler JH, Jüngel A, Huber LC,et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. 2005, 102(8): 2892-7.
    [51] Heather S, Fraser MR, Charlotte JE, et al. ADAMTS5 is the major agecanase in mouse cartilage in vivo and in vitro[J]. Nature, 2005, 434(7033): 648-52.
    [52] Mereuri FA, Maciewiez RA, Tart J, et al. Mutations in the interglobolar domain of aggrecan alter matrix metalloproteinase and aggrccanase cleavage patterns.Evidence that matrix metalloproteinase cleavage interferes with aggrccanase activity [J]. J Biol Chem, 2000, 275(42): 33038-45.
    [53] Glasson SS, Askew R, Sheppard B, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis[J]. Nature, 2005, 434(7033): 644-8.
    [54] Kafienah W, Bromme D, Buttle DJ. et al. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. J Biochem, 2004, 331(Pt 3):727-32.
    [55] Morko JP. Soderstrom M, Saamanen AM, et al. UP regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse model for osteoarthritis. Ann Rheam Dis. 2004, 63(6): 649-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700