团簇与氧化石墨烯的结构、电子性质和储氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对低维纳米结构如团簇、碳纳米管、石墨烯的研究,构成了物理学、化学、材料科学等多个学科交叉的热点领域,对它们的深入研究有助于揭示从微观的单个原子、分子到宏观凝聚态物质的演变规律,为微纳尺度的材料设计和改性提供科学依据。本论文采用密度泛函理论方法分别讨论了零维的半导体和金属原子团簇、水分子团簇在一维纳米限域环境下的行为、以及二维氧化石墨烯的结构和储氢性能。
     半导体团簇和金属团簇是原子团簇研究中的两个热点领域。半导体团簇的研究对于理解半导体材料的生长机制和揭示具有新奇物理特性的低维半导体纳米结构有着重要的意义。对于半导体团簇,本论文采用密度泛函理论研究了单质Ge团簇和Ⅲ-Ⅴ族化合物AlP和InP团簇的结构和电子性质。通过遗传算法对中等尺寸Gen(n=30-39)团簇的结构进行了全局搜索,得到这个尺寸下的最低能量结构是由Ge10和Ge6为基元加一些连接原子构成的超团簇结构,对其电子性质进行了分析和讨论,并与填充式富勒烯结构进行了比较。而对于AlP和InP半导体团簇,我们研究了其小尺寸团簇的结构和电子性质,包括结合能、能隙和电子亲和能,并模拟了阴离子团簇的光电子谱特征,与实验符合很好。对于金属团簇,我们研究了常见金属Al构成的Al13幻数团簇,讨论了Al13团簇的基态构型与选择计算泛函和基组的依赖性;并通过替代掺杂Al13团簇调控其电子性质,从而调控氢气分子在掺杂团簇Al12X (X=B, Al, C, Si, P, Mg, Ca)表面的分解特性。我们计算了氢气分解反应过程中的反应热和反应势垒,其中,Al12Ca具有最大的反应热和最低的反应势垒,是相对较好的分解氢气分子的催化剂。这一理论结果对于设计高效、低价的氢分子催化剂具有一定的理论指导意义。
     水是生命体的重要组成部分,研究水分子限域在纳米尺寸环境中的行为有助于理解水在生物大分子通道中的运输行为和质子穿越细胞薄膜把水分子带进和带出细胞的行为特征。水分子在限域环境下会表现出和自由空间下不同的结构和电子性质。我们采用密度泛函理论研究了水分子团簇分别限域在笼状和管状纳米尺寸环境下的结构、电子性质和振动频率特征。计算结果表明无论是笼状还是管状环境都会对里面水分子产生屏蔽作用,使得水分子的偶极矩减小。水分子与外界限域环境之间是较弱的范德瓦尔斯相互作用,但是这种弱作用对填充水分子的电子性质和振动频率均有一定的影响。我们还模拟了纳米尺寸管状限域环境下有序和无序水分子结构的红外吸收光谱,存在明显差异,为实验上对限域环境下的水分子团簇构型进行区分和辨别提供了理论依据。
     氧化石墨烯是目前碳基纳米材料的研究热点,其用途十分广泛,例如可以用来大批量生产纯净的石墨烯材料和制备电子器件等。由于氧化石墨烯的结构确定在实验上存在一定困难,因此到目前为止对其具体结构特征还不是特别清楚。我们从组成氧化石墨烯的零维结构基元出发,得到稳定的一维链状结构,进而得到二维的稳定氧化石墨烯结构。通过对氧化石墨烯结构的组成单元的拉曼光谱模拟和分析,为实验上探测和辨认氧化石墨烯结构提供了一定的理论依据。我们在稳定结构的基础上研究其储氢特性发现,氧化石墨烯表面的含氧官能团可以有效地固定过渡金属从而避免金属团聚的现象,而被固定的过渡金属还可以继续吸附多个氢气分子,从而可以实现较为理想的储氢质量比和体积比分别为4.9wt%和64g/L,开辟了氧化石墨烯在能源方面新的应用前景。
In recent years, the study of low-dimensional nano structures such as clusters, carbon nanotubes and graphene, is a hot topic in the fields of physics, chemistry and many other subjects. It as the bridge between microscopic atom/molecules and macroscopic condensed matters is of key importance to reveal and design the novel nano-materials that are technologically promising. In this dissertation, we discussed from the zero-dimensional semiconductor and metal clusters, the behavior of water clusters inside one-dimensional nanoscale enviroments, to the structure of the two-dimensional graphene oxide and its hydrogen storage properties.
     Semiconductor clusters and metal clusters are two hot topics in the field of atom clusters. The study of semiconductor clusters is of key importance to understand the growth mechanism of semiconductor materials with different scales and dimensions and to reveal the novel semiconductor nanostructures that are technologically promising. We have investigated the semiconductor germanium and III-V compounds (AlP and InP) clusters using density functional theory method. For the germanium clusters, we have performed an unbiased global search for the geometries in the size range of 30≤n≤39 using genetic algorithm and the Gen (n=30-39) clusters prefer the motif of supercluster structures stacked by several stable subunits such as Ge10 and Ge6 connecting via a few bridging atoms. We have obtained the lowest-energy structures for the small-sized neutral and anionic AlP and InP clusters and calculated the electronic properties including the binding energies, HOMO-LUMO gaps, electron affinities and photoelectron spectra, agree well with the experiments. Also, inspired by the concept of superatom, we investigated the H2 dissociation on the doped icosahedral Al12X (X=B, Al, C, Si, P, Mg, and Ca) clusters by means of density functional theory. The hydrogen dissociation behavior on metal clusters characterized by the activation barrier and reaction energy can be tuned by controllable doping. Among these doped clusters, Al12Ca with the highest reaction energy and lowest activation barrier is the best catalyst for dissociating H2. Thus, doped Al12X clusters might serve as highly efficient and low-cost catalysts for hydrogen dissociation.
     Water has been recognized as the matrix of life and plays a crucial role in many biological and chemical systems. Studying the water confined in nanoscale environments provides a better understanding of the proton transport across the channels in the cellular membrane that transport water in and out of the cell. As a result of nanoscale confinement, the chemical and physical properties of the encapsulated water are different from the bulk counterparts. We have investigated the water clusters confined inside the nonpolar and polar cavities modeled by carbon fullerene cages and carbon nanotubes, respevtively, and analyzed the equilibrium structures, electronic properties and vibration frequencies for the encapsulated water clusters. The dipole moments of water clusters in the confined phase are smaller than those in the gas phase due to the screening effect of the outer cavities. The interaction between water molecules and the outer environments is identified as physisorption, but the weak coupling effects the electronic and vibrational properties of the encapsulated water molecules. We also considered the infrared spectrum for the ordered and disorded water clusters confined inside carbon nanotubes, which can be used to distinguish the configuration of encapsulated water molecules.
     Graphene oxide (GO) has recently attracted resurgent interests as a parent material for producing large-scale graphene-like platelets. Experimentally synthesized graphite oxides are disordered, which makes the determination of the atomic structures difficult. We have investigated the GO structures starting from the stable zero-dimensional (0-D) structural motifs consisting of the hydroxyl and epoxy functional. The 0-D structural motifs prefer to form the chain-like one-dimensional (1-D) structural motifs, and then the stable two-dimensional GO structures are obtained. Moreover, the Raman characteristics for the local stable GO structures are simulated and the results provide useful theoretical evidences to differentiate these structures with aid of Raman spectroscopy and would be helpful to further understand the structural and vibration properties of GO. Based on this, we studied the hydrogen storage properties on the GO surface. GO contains ample hydroxyl groups, which are the active sites for anchoring Ti atoms. The Ti atoms bind strongly to the oxygen sites with binding energies as high as 450 kJ/mol, which are large enough to prevent the Ti atoms from clustering. Furthermore, each Ti can bind multiple H2 with the desired binding energies (14-41 kJ/mol per H2). The estimated theoretical gravimetric and volumetric densities can be as high as 4.9 wt% and 64 g/L, respectively.
引文
[1]王广厚.团簇物理学[M].上海科学技术出版社:上海,2003.
    [2]冯端,金国均.物理学进展,1991,11:373.
    [3]Brack, M. The physics of simple metal clusters:self-consistent jellium model and semiclassical approaches[J]. Reviews of Modern Physics,1993,65 (3):677.
    [4]王广厚.团簇物理的新进展(Ⅰ)[J].物理学进展,1994,2.
    [5]王广厚,窦烈,庞锦忠等.物理学进展,1987,7:1.
    [6]Bjonholm, S.; Borggreen, J.; Echt, O., et al. Mean-field quantization of several hundred electrons in sodium metal clusters[J]. Physical Review Letters,1990,65 (13):1627.
    [7]Mackay, A. L. A dense non-crystallographic packing of equal spheres[J]. Acta Crystal,1962,15: 916-918.
    [8]Hoare, M. R. Structure and dynamics of simple microclusters[J]. Advanced Chemical Physics,1979,40: 49-135.
    [9]Doye, J. P. K.; Wales, D. J. Structural transitions and global minima of sodium chloride clusters[J]. Physical Review B,1999,59 (3):2292-2230.
    [10]Bloomfield, L. A.; Freeman, R. R.; Brown, W. L. Photofragmentation of mass-resolved Si2-12 clusters[J]. Physical Review Letters,1985,54 (20):2246.
    [11]Ma, L.; Zhao, J. J.; Wang, J. G., et al. Lowest-energy endohedral fullerene structures of SiN (30≤N≤39) clusters by density functional calculations[J]. Physical Review A,2006,73 (6):063203.
    [12]Yoo, S.; Shao, N.; Koehler, C., et al. Structures and relative stability of medium-sized silicon clusters. V. Low-lying endohedral fullerenelike clusters Si31-Si40 and Si45[J]. Journal of Chemical Physics,2006,124 (16): 164311.
    [13]Yoo, S.; Zeng, X. C. Structures and stability of medium-sized silicon clusters. III. Reexamination of motif transition in growth pattern from Si15 to Si20[J]. Journal of Chemical Physics,2005,123 (16):164303(1-6).
    [14]Yoo, S.; Zhao, J. J.; Wang, J. L., et al. Endohedral silicon fullerenes SiN (27≤N≤39)[J]. Journal of the American Chemical Society,2004,126 (42):13845-13849.
    [15]Wang, J. L.; Wang, G. H.; Ding, F., et al. Structural transition of Si clusters and their thermodynamics[J]. Chemical Physics Letters,2001,341 (5-6):529-534.
    [16]Hunter, J. M.; Fye, J. L.; Jarrold, M. F., et al. Stuctural transitions in size selected Germanium cluster ions[J]. Physical Review Letters,1994,73 (15):2063-2066.
    [17]Hudgins, R. R.; Imai, M.; Jarrold, M. F., et al. High-resolution ion mobility measurements for silicon cluster anions and cations[J]. Journal of Chemical Physics,1999,111 (17):7865-7870.
    [18]Jarrold, M. F.; Constant, V. A. Silicon cluster ions-Evidence for a structural transition[J]. Physical Review Letters,1991,67 (21):2994-2997.
    [19]Wang, J. L.; Wang, G. H.; Zhao, J. J. Structure and electronic properties of Gen (n=2-25) clusters from density-functional theory[J]. Physical Review B,2001,64 (20):205411.
    [20]Zhao, J. J.; Wang, J. L.; Wang, G. H. A transferable nonorthogonal tight-binding model of germanium: application to small clusters[J]. Physics Letters A,2000,275 (4):281-286.
    [21]Gingerich, K. A.; Baba, M. S.; Schmude, R. W., et al. Atomization enthalpies and enthalpies of formation of Ge3 and Ge4 by Knudsen effusion mass spectrometry[J]. Chemical Physics,2000,262 (1):65-74.
    [22]Gingerich, K. A.; Schmude, R. W.; Baba, M. S., et al. Atomization enthalpies and enthalpies of formation of the germanium clusters, Ge5, Ge6, Ge7, and Ge8 by Knudsen effusion mass spectrometry[J]. Journal of Chemical Physics,2000,112 (17):7443-7448.
    [23]Kingcade, J. E.; Nagarathnanaik, H. M.; Shim, I., et al. Electronic structure and binding of the molecule Ge2 from all-electron abinitio calculations and equilibrium measurements[J]. Journal of Physical Chemistry,1986,90 (13):2830-2834.
    [24]Martin, T. P.; Schaber, H. Mass spectra of Si, Ge and Sn clusters[J]. Journal of Chemical Physics,1985, 83 (2):855-858.
    [25]Negishi, Y.; Kawamata, H.; Hayakawa, F., et al. The infrared HOMO-LUMO gap of germanium clusters[J]. Chemical Physics Letters,1998,294 (4-5):370-376.
    [26]Phillips, J. C. Pulsed Gen+ microcluster concentration spectra[J]. Journal of Chemical Physics,1986,85 (9):5246-5250.
    [27]Schulze, W.; Winter, B.; Goldenfeld, I. Generation of Germinum clusters using the gas aggregation technique:Stability of small charged clusters[J]. Journal of Chemical Physics,1987,87 (4):2402-2403.
    [28]Yoshida, S.; Fuke, K. Photoionization studies of germanium and tin clusters in the energy region of 5.0-8.8 eV:Ionization potentials for Gen (n=2-57) and Snn (n=2-41)[J]. Journal of Chemical Physics,1999,111 (9):3880-3890.
    [29]Qin, W.; Lu, W. C.; Zhao, L., et al. Platelike structures of semiconductor clusters Gen (n=40-44)[J]. Journal of Chemical Physics,2009,131:124507 (1-5).
    [30]Yoo, S.; Zeng, X. C. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29[J]. Journal of Chemical Physics,2006,124 (18):184309.
    [31]Cox, D. M.; Trevor, D. J.; Whetten, R. L., et al. Aluminum clusters:ionization thresholds and reactivity toward deuterium, water, oxygen, methanol, methane and carbon monoxide[J]. Journal of Physical Chemistry,1988,92 (2):421-429.
    [32]Jarrold, M. F.; Bower, J. E. A detailed study of the reactions between size selected aluminum cluster ions[J]. Journal of Chemical Physics,1987,87:5728-5738.
    [33]de Heer, W. A.; Milani, P.; Chtelain, A. Nonjellium-to-jellium transition in aluminum cluster polarizabilities[J]. Physical Review Letters,1989,63 (26):2834.
    [34]Ray, U.; Jarrold, M. F.; Bower, J. E., et al. Photodissociation kinetics of aluminum cluster ions: Determination of cluster dissociation energies[J]. Journal of Chemical Physics,1989,91:2912-2921.
    [35]Taylor, K. J.; Pettiette, C. L.; Craycraft, M. I., et al. Ups of negative aluminum clusters[J]. Chemical Physics Letter,1988,152:347-352.
    [36]Upton, T. H. Stuctural, Electronic and chemisorption properties of small Aluminum clusters[J]. Physical Review Letters,1986,56 (20):2168-2171.
    [37]Jones, R. O. Stucture and bonding in small Aluminum clusters[J]. Physical Review Letters,1991,67 (2):224-227.
    [38]Chuang, F. C.; Wang, C. Z.; Ho, K. H. Structure of neutral aluminum clusters Aln (2≤n≤23):Genetic algorithm tight-binding calculations[J]. Physical Review B,2006,73 (12):125431(1-7).
    [39]Cheng, H. P.; Berry, R. S.; Whetten, R. L. Electronic structure and binding energies of aluminum clusters[J]. Physical Review B,1991,43 (13):10647-10653.
    [40]Joswig, J. O.; Springborg, M. Genetic-algorithms search for global minima of aluminum clusters using a Sutton-Chen potential[J]. Physical Review B,2003,68 (8):9.
    [41]Rao, B. K.; Jena, P. Evolution of the electronic structure and properties of neutral and charged aluminum clusters:A comprehensive analysis[J]. Journal of Chemical Physics,1999,111 (5):1890-1904.
    [42]Akola, J.; Hakkinen, H.; Manninen, M. Ionization potential of aluminum clusters[J]. Physical Review B,1998,58 (7):3601-3604.
    [43]Bauschlicher, C. W.; Pettersson, L. G. M. Small Al clusters:The effect of basis set and correlation on the geometry of small Al clusters[J]. Journal of Chemical Physics,1987,87 (4):2198-2204.
    [44]Sun, Q.; Wang, Q.; Yu, J. Z., et al. Structure and interaction mechanism in the magic A113+H2O cluster[J]. Physical Review A,2001,64 (5):053203.
    [45]Yang, S. H.; Drabold, D. A.; Adams, J. B., et al. 1st-principles local orbital density functional study Al clusters[J]. Physical Review B,1993,47 (3):1567-1576.
    [46]Zhao, J.; Liu, B.; Zhai, H., et al. Mass spectrometric and first principles study of AlnC clusters[J]. Solid State Communications,2002,122 (10):543-547.
    [47]Dyke, T. R.; Mack, K. M.; Muenter, J. S. The structure of water dimer from molecular beam electric resonance spectroscopy[J]. The Journal of Chemical Physics,1977,66 (2):498-510.
    [48]James, T.; Wales, D. J.; Hernandez-Rojas. Global minima for water clusters (H2O)n, n<21, described by a five-site empirical potential[J]. Journal of Chemical Physics Letter,2005,415:302-307.
    [49]Kabrede, H.; Hentschke, R. Global minima of water clusters (H2O)N, N<25, described by three empirical potentials[J]. Journal of Physical Chemistry B,2003,107 (16):3914-3920.
    [50]Ludwig, R. Water:From clusters to the bulk[J]. Angewandte Chemie-International Edition,2001,40 (10):1808-1827.
    [51]Maheshwary, S.; Patel, N.; Sathyamurthy, N., et al. Structure and stability of water clusters (H2O)n, n=8-20:An ab initio investigation[J]. Journal of Physical Chemistry A,2001,105 (46):10525-10537.
    [52]Wales, D. J.; Hodges, M. P. Global minima of water clusters (H2O)n, n≤21, described by an empirical potential[J]. Chemical Physics Letters,1998,286 (1-2):65-72.
    [53]Su, J. T.; Xu, X.; Goddard, W. A. Accurate energies and structures for large water clusters using the X3LYP hybrid density functional[J]. The Journal of Physical Chemistry A,2004,108 (47):10518-10526.
    [54]Walrafen, G. E. Raman Spectral studies of water structure[J]. Journal of Chemical Physics,1964,40: 3249-3256.
    [55]Walrafen, G. E. Raman spectral studies of the effects of temperature on water structure[J]. Journal of Chemical Physics,1967,47:114-126.
    [56]Walrafen, G. E.; Fisher, M. R.; Hokmabadi, M. S., et al. Temperature dependence of the low-and high-frequency Raman scattering from liquid water[J]. Journal of Chemical Physics,1986,85:6970-6982.
    [57]Walrafen, G. E.; Hokmabadi, M. S.; Yang, W.-H. Raman isosbestic points from liquid water[J]. Journal of Chemical Physics,1986,85:6964-6969.
    [58]Novoselov, K. S.; Geim, A. K.; Morozov, S. V., et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    [59]Cai, W. W.; Piner, R. D.; Stadermann, F. J., et al. Synthesis and solid-state NMR structural characterization of C13 labeled graphite oxide[J]. Science,2008,321 (5897):1815-1817.
    [60]Gao, W.; Alemany, L. B.; Ci, L., et al. New insights into the structure and reduction of graphite oxide[J]. Nat Chem,2009,1 (5):403-408.
    [61]Lerf, A.; He, H.; Forster, M., et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B,1998,102 (23):4477-4482.
    [62]Kudin, K. N.; Ozbas, B.; Schniepp, H. C., et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters,2008,8 (1):36-41.
    [63]Stankovich, S.; Dikin, D. A.; Piner, R. D., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45 (7):1558-1565.
    [64]Szabo, T.; Berkesi, O.; Forgo, P., et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials,2006,18 (11):2740-2749.
    [65]Schlapbach, L.; Ziittel, A. Hydrogen-storage materials for mobile applications[J]. Nature,2001,414: 353-358.
    [66]Schur, D. V.; Zaginaichenko, S. Y.; Matysina, Z. A., et al. Hydrogen in lanthanum-nickel storage alloys[J]. Journal of Alloys and Compounds,2002,70:330-332.
    [67]Li, F.; Zhao, J.; Tian, D., et al. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles[J]. Journal of Applied Physics,2009,105:043707.
    [68]Tsushio, Y.; Enoki, H.; Akiba, E. Energy distribution of hydrogen sites for MgNi0.86M10.03 (M1=Cr, Fe, Co, Mn) alloys desorbing hydrogen at low temperature[J]. Journal of Alloys and Compounds,1999,285 (1-2): 298-301.
    [69]Dehouche, Z.; Djaozandry, R.; Goyette, J., et al. Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy[J]. Journal of Alloys and Compounds,1999,288 (1-2):269-276.
    [70]Jianshe, X.; Guoxun, L.; Yaoqin, H., et al. Electrochemical characteristics of Al-substituted Mg2Ni As negative electrode[J]. Journal of Alloys and Compounds,2000,307 (1-2):240-244.
    [71]Gao, X.; Song, D.; Zhang, Y., et al. Characteristics of the superstoichiometric C15-type Laves phase alloys and their hydride electrodes[J]. Journal of Alloys and Compounds,1995,231 (1-2):582-586.
    [72]Yang, X. G.; Lei, Y. Q.; Zhang, W. K., et al. Effect of alloying with Ti, V, Mn on the electrochemical properties of Zr-Cr-Ni based Laves phase metal hydride electrodes[J]. Journal of Alloys and Compounds,1996, 243(1-2):151-155.
    [73]Schiith, F.; Bogdanovic, B.; Felderhoff, M. Light metal hydrides and complex hydrides for hydrogen storage[J]. Chemical Communication,2004:2249-2258.
    [74]Orimo, S. I.; Nakamori, Y.; Eliseo, J. R.; Zuttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage[J]. Chemical Reviews,2007,107:4111-4132.
    [75]Senoh, H.; Kiyobayashi, T.; Kuriyama, N. Hydrogen electrode reaction of lithium and sodium aluminum hydrides[J]. International Journal of Hydrogen Energy,2008,33 (12):3178-3181.
    [76]Xiao, X. Z.; Chen, L. X.; Fan, X. L., et al. Direct synthesis of nanocrystalline NaAlH4 complex hydride for hydrogen storage[J]. Applied Physics Letters,2009,94 (4):041907-3.
    [77]Kim, Y. H.; Sun, Y. Y.; Zhang, S. B. Ab initio calculations predicting the existence of an oxidized calcium dihydrogen complex to store molecular hydrogen in densities up to 100 g/L[J]. Physical Review B,2009, 79(11):115424.
    [78]Zhao, Y. F.; Kim, Y. H.; Dillon, A. C., et al. Hydrogen storage in novel organometallic buckyballs[J]. Physical Review Letters,2005,94 (15):155504(1-4).
    [79]Sun, Q.; Wang, Q.; Jena, P., et al. Clustering of Ti on a C60 surface and its effect on hydrogen storage[J]. Journal of the American Chemical Society,2005,127 (42):14582-14583.
    [80]Zhang, C. G.; Zhang, R. W.; Wang, Z. X., et al. Ti-Substituted Boranes as Hydrogen Storage Materials: A Computational Quest for Ideal Combination of Stable Electronic Structure and Optimal Hydrogen Uptake[J]. Chemistry-a European Journal,2009,15 (24):5910-5919.
    [81]Orimo, S.; Zuttel, A.; Schlapbach, L., et al. Hydrogen interaction with carbon nanostructures:current situation and future prospects[J]. Journal of Alloys and Compounds,2003,356-357:716-719.
    [82]Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A., et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature,1997,386 (6623):377-379.
    [83]Chen, P.; Wu, X.; Lin, J., et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science,1999,285 (5424):91-93.
    [84]Yildirim, T.; Ciraci, S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium[J]. Physical Review Letters,2005,94 (17):175501.
    [85]W. H. Shin, S. H. Y., W. A. Goddard, and J. K. Kang. Ni-dispersed fullerenes:Hydrogen storage and desorption properties[J]. Applied Physics Letter,2006,88:053111-2.
    [86]Yoon, M.; Yang, S.; Hicke, C., et al. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage[J]. Physical Review Letters,2008,100 (20):206806.
    [87]Langmi, H. W.; Book, D.; Walton, A., et al. Hydrogen storage in ion-exchanged zeolites[J]. Journal of Alloys and Compounds,2005,404-406:637-642.
    [88]Vitillo, J. G.; Ricchiardi, G.; Spoto, G., et al. Theoretical maximal storage of hydrogen in zeolitic frameworks[J]. Physical Chemistry Chemical Physics,2005,7:3948-3954.
    [89]Carpetis, C.; Peschka, W. A study on hydrogen storage by use of cryoadsorbents[J]. International Journal of Hydrogen Energy,1980,5 (5):539-554.
    [90]Amankwah, K. A. G.; Noh, J. S.; Schwarz, J. A. Hydrogen storage on superactivated carbon at refrigeration temperatures[J]. International Journal of Hydrogen Energy,1989,14 (7):437-447.
    [91]Vitillo, J. G.; Regli, L.; Chavan, S., et al. Role of exposed metal sites in hydrogen storage in MOFs[J]. Journal of the American Chemical Society,2008,130 (26):8386-8396.
    [92]Rosi, N. L.; Eckert, J.; Eddaoudi, M., et al. Hydrogen storage in microporous Metal-Organic Frameworks[J]. Science,2003,300 (5622):1127-1129.
    [93]Zhao, X.; Xiao, B.; Fletcher, A. J., et al. Hysteretic adsorption and desorption of hydrogen by nanoporous Metal-Organic Frameworks[J]. Science,2004,306 (5698):1012-1015.
    [94]Bhatia, S. K.; Myers, A. L. Optimum conditions for adsorptive storage[J]. Langmuir,2006,22 (4): 1688-1700.
    [95]Lochan, R. C.; Head-Gordon, M. Computational studies of molecular hydrogen binding affinities:The role of dispersion forces, electrostatics, and orbital interactions[J]. Physical Chemistry Chemical Physics,2006, 8(12):1357-1370.
    [96]Kim, G.; Jhi, S.; Park, N. Effective metal dispersion in pyridinelike nitrogen doped graphenes for hydrogen storage[J]. Applied Physics Letters,2008,92 (1):013106-3.
    [97]Zhou, Z.; Gao, X.; Yan, J., et al. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations[J]. Carbon,2006,44 (5):939-947.
    [98]Kubas, G. J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage[J]. Chemical Reviews,2007,107 (10):4152-4205.
    [99]Lee, H.; Nguyen, M. C.; Ihm, J. Titanium-functional group complexes for high-capacity hydrogen storage materials[J]. Solid State Communications,2008,146 (9-10):431-434.
    [100]Shevlin, S. A.; Guo, Z. X. High-capacity room-temperature hydrogen storage in carbon nanotubes via defect-modulated titanium doping[J]. Journal of Physical Chemistry C,2008,112 (44):17456-17464.
    [101]Meng, S.; Kaxiras, E.; Zhang, Z. Y. Metal-diboride nanotubes as high-capacity hydrogen storage media[J]. Nano Letters,2007,7 (3):663-667.
    [102]Hamaed, A.; Trudeau, M.; Antonelli, D. M. H2 storage materials (22KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites[J]. Journal of the American Chemical Society,2008,130 (22):6992-6999.
    [103]Wu, X.; Gao, Y.; Zeng, X. C. Hydrogen storage in pillared Li-dispersed boron carbide nanotubes[J]. The Journal of Physical Chemistry C,2008,112 (22):8458-8463.
    [104]Li, Y.; Zhou, G.; Li, J., et al. Alkali-metal-doped B80 as high-capacity hydrogen storage media[J]. The Journal of Physical Chemistry C,2008,112 (49):19268-19271.
    [105]Wu, G.; Wang, J.; Zhang, X., et al. Hydrogen storage on metal-coated B8o buckyballs with density functional theory[J]. The Journal of Physical Chemistry C,2009,113 (17):7052-7057.
    [106]Li, M.; Li, Y.; Zhou, Z., et al. Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials[J]. Nano Letters,2009,9 (5):1944-1948.
    [107]Thomas, L. H. The calculation of atomic fields[J]. Proceedings of the Cambridge Philosophical Society,1927,23:542-548.
    [108]Fermi, E. Un metodo statistico per la determinazione di alcune priorieta dell'atome[J]. Rend. Accad. Naz. Lincei 1927,6:602-607.
    [109]Hohenberg, P.; Kohn, W. Inhomogeneous electron gas[J]. Physical Review,1964,136 (3B):B864.
    [110]Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140 (4A):A1133.
    [111]Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F., et al. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism spectra uding density-functional force-fields[J]. Journal of Physical Chemistry,1994,98 (45):11623-11627.
    [112]Xu, X.; Goddard, W. A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties[J]. Proceedings of the National Academy of Sciences,2004,101 (9):2673-2677.
    [113]Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. Journal of Chemical Physics,1999,110 (13):6158-6170.
    [114]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior[J]. Physical Review A,1988,38 (6):3098-3100.
    [115]Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B,1992,45 (23):13244-13249.
    [116]Goodwin, L.; Skinner, A. J.; Pettifor, D. G. Generating transferable tight-binding parameters: application to silicon[J]. Europhysics Letters,1989,9 (7):701.
    [117]Xu, C. H.; Wang, C. Z.; Chan, C. T.; Ho, K. M. A transferable tight-binding potential for carbon[J]. Journal of Physics:Condensed Matter,1992,4:6047.
    [118]Kwon, I.; Biswas, R.; Wang, C. Z., et al. Transferable tight-binding models for silicon[J]. Physical Review B,1994,49 (11):7242.
    [119]Menon, M.; Subbaswamy, K. R.; Sawtarie, M. First-principles molecular-dynamics study of carbon clusters[J]. Physical Review B,1993,48 (11):8398.
    [120]Menon, M.; Subbaswamy, K. R. Transferable nonorthogonal tight-binding scheme for silicon[J]. Physical Review B,1994,50 (16):11577.
    [121]Menon, M.; Subbaswamy, K. R. Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability[J]. Physical Review B,1997,55 (15):9231.
    [122]Menon, M. A transferable nonorthogonal tight-binding scheme for germanium[J]. Journal of Physics: Condensed Matter,1998,10:10991-10998.
    [123]Slater, J. C.; Koster, G. F. Simplified LCAO method for the periodic potential problem[J]. Physical Review,1954,94 (6):1498.
    [124]Kittle, C. Introduction to Solid State Physics[M]. Wiley:New York,1996.
    [125]Deaven, D. M.; Ho, K. M. Molecular geometry of optimization with a genetic algorithm[J]. Physical Review Letters,1995,75 (2):288-291.
    [126]Holland, J. H. Adaptation in Natural and Artificial Systems.The University of Michigan press[M]. Ann Arbor:1975.
    [127]Goldberg, D. E. Genetic algorithnis in search, optimigation, and machine learings, Addison Wesley[M]. Reading, MA,1989.
    [128]Morris, J. R.; Deaven, D. M.; Ho, K. M. Genetic-algorithm energy minimization for point charges on a sphere[J]. Physical Review B,1996,53 (4):R1740.
    [129]Zhao, J. J.; Xie, R. H. Genetic Algorithms for the geometry optimization of atomic and molecular clusters[J]. Journal of Computational and Theoretical Nanoscience,2004,1 (2):117-131.
    [130]Wang, J.; Wang, G.; Zhao, J. Density-functional study of Aun(n=2-20) clusters:Lowest-energy structures and electronic properties[J]. Physical Review B,2002,66 (3):035418.
    [131]Halgren, T. A.; Lipscomb, W. N. Synchronous transit method for determining reaction pathways and locating molecular transition states[J]. Chemical Physics Letters,1977,49 (2):225-232.
    [132]Henkelman, G. J., H. Improved tangent estimate in the nudged elastic band method for finding energy paths and saddle points[J]. J. Chem. Phys.,2000,113:9978-9985.
    [133]Delley, B. An all electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics,1990,92 (1):508-517.
    [134]Delley, B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics,2000, 113 (18):7756-7764.
    [135]DFT plane-wave pseudopotential calculations are performed by using CASTEP. CASTEP is a first-principles package distributed by Accelrys Inc.[J].
    [136]Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996,54 (16):11169-11186.
    [137]Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A., et al. General atomic and molecular electronic structure system[J]. Journal of Computational Chemistry,1993,14 (11):1347-1363.
    [138]Burton, G. R.; Xu, C. S.; Arnold, C. C., et al. Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions[J]. Journal of Chemical Physics,1996,104 (8):2757-2764.
    [139]Cheshnovsky, O.; Yang, S. H.; Pettiette, C. L., et al. Ultraviolet photoelectron spectroscopy of semiconductor clusters:silicon and germanium[J]. Chemical Physics Letters,1987,138 (2-3):119-124.
    [140]Archibong, E. F.; Gregorius, R. M.; Alexander, S. A. Structures and electron detachment energies of AlP2- and Al2P2[J]. Chemical Physics Letters,2000,321 (3-4):253-261.
    [141]Archibong, E. F.; St-Amant, A.; Goh, S. K., et al. Structure and electron detachment energies of Al3P-and A13P3[J]. Journal of Physical Chemistry A,2002,106 (24):5932-5937.
    [142]Asmis, K. R.; Taylor, T. R.; Neumark, D. M. Electronic structure of indium phosphide clusters:anion photoelectron spectroscopy of InxPx and Inx+1Px-(x=1-13) clusters[J]. Chemical Physics Letters,1999,308 (5-6): 347-354.
    [143]Wang, B. L.; Zhao, J. J.; Shi, D. N., et al. Density-functional study of structural and electronic properties of AlnN(n=2-12) clusters[J]. Physical Review A,2005,72 (2):023204(1-5).
    [144]Xu, C. S.; Debeer, E.; Arnold, D. W., et al. Anion photoelectron spectroscopy of small Indium-Phosphide clusters (InxPy, x,y=1-4)[J]. Journal of Chemical Physics,1994,101 (6):5406-5409.
    [145]Zhao, J. J.; Wang, B. L.; Zhou, X. L., et al. Structure and electronic properties of medium-sized GanNn clusters (n=4-12)[J]. Chemical Physics Letters,2006,422 (1-3):170-173.
    [146]Zhao, J. J.; Wang, L.; Jia, J. M., et al. Lowest-energy structures of AlnPn (n=1-9) clusters from density functional theory[J]. Chemical Physics Letters,2007,443 (1-3):29-33.
    [147]Zhao, J. J.; Xie, R. H.; Zhou, X. L., et al. Formation of stable fullerenelike GanAsn clusters (6≤n≤9): Gradient-corrected density-functional theory and a genetic global optimization approach[J]. Physical Review B, 2006,74 (3):035319.
    [148]Kawakami, T.; Okamura, M. InP/Al2O3 n-Channel inversion mode mosfets using sulfur diffused source and drain[J]. Electronics Letters,1979,15 (16):502-504.
    [149]Ridley, B. K. Anatomy of transferred-electron effect in III-V semiconductors[J]. Journal of Applied Physics,1977,48 (2):754-764.
    [150]Kamimura, K.; Suzuki, T.; Kunioka, A. Metal-insulator semiconductor Schottky-Barrier solar-cells fabricated on InP[J]. Applied Physics Letters,1981,38 (4):259-261.
    [151]Hurwitz, C. E.; Hsieh, J. J. GaInAs/InP avalanche photodiodes[J]. Applied Physics Letters,1978,32 (8):487-489.
    [152]Kolenbrander, K. D.; Mandich, M. L. Optical and near-infrared spectroscopy of neutral Indium-Phosphide clusters[J]. Journal of Chemical Physics,1990,92 (8):4759-4767.
    [153]Rinnen, K. D.; Kolenbrander, K. D.; Desantolo, A. M., et al. Direct infrared and visible absorption-spectroscopy of stoichiometric and nonstoichimetric clusters of Indium-Phosphide[J]. Journal of Chemical Physics,1992,96 (6):4088-4101.
    [154]Meloni, G.; Ferguson, M. J.; Sheehan, S. M., et al. Probing the connection between cluster and bulk electronic structure of InP using vacuum ultraviolet anion photoelectron spectroscopy[J]. Chemical Physics Letters,2004,392 (1-3):90-94.
    [155]Liu, Z. Y.; Wang, C. R.; Huang, R. B., et al. Mass distributions of binary Aluminum cluster anions ALNXM- (X=O, S, P, AS, C)[J]. International Journal of Mass Spectrometry and Ion Processes,1995,141 (3): 201-208.
    [156]Gomez, H.; Taylor, T. R.; Neumark, D. M. Anion photoelectron spectroscopy of aluminum phosphide clusters[J]. Journal of Physical Chemistry A,2001,105 (28):6886-6893.
    [157]Gomez, H.; Taylor, T. R.; Zhao, Y., et al. Spectroscopy of the low-lying states of the group III-V diatomics, AlP, GaP, InP, and GaAs via anion photodetachment spectroscopy[J]. Journal of Chemical Physics, 2002,117 (19):8644-8656.
    [158]Allaham, M. A.; Raghavachari, K. Theoretical study of Ga4As4, A14P4, and Mg4P4 clusters[J]. Journal of Chemical Physics,1993,98 (11):8770-8776.
    [159]Allaham, M. A.; Trucks, G. W.; Raghavachari, K. Theoretical study od small aluminum phosphide and magnesium sulfide clusters[J]. Journal of Chemical Physics,1992,96 (2):1137-1149.
    [160]Tomasulo, A.; Ramakrishna, M. V. Density functional studies of aluminum phosphide cluster structures[J]. Journal of Chemical Physics,1996,105 (23):10449-10455.
    [161]Feng, P. Y.; Balasubramanian, K. Spectroscopic properties of Al2P2, A12P2+, and Al2P2- and comparison with their Ga and In analogues[J]. Journal of Physical Chemistry A,1999,103 (45):9093-9099.
    [162]Feng, P. Y.; Balasubramanian, K. Potential energy surfaces of electronic states of AlP2, A12P and their ions[J]. Chemical Physics Letters,2000,318 (4-5):417-426.
    [163]Costales, A.; Kandalam, A. K.; Franco, R., et al. Theoretical study of structural and vibrational properties of (AlP)n, (AlAs)n, (GaP)n, (GaAs)n, (InP)n, and (InAs)n, clusters with n=1,2,3[J]. Journal of Physical Chemistry B,2002,106(8):1940-1944.
    [164]Qu, Y.; Bian, X. Electronic structure and stability of AlnPn (n=2-4) clusters[J]. Journal of Computational Chemistry,2004,26:226-234.
    [165]Guo, L.; Wu, H. S.; Jin, Z. H. Ab initio investigation of structures and stability of AlnPm clusters[J]. Journal of Molecular Structure-Theochem,2004,684 (1-3):67-73.
    [166]Guo, L.; Wu, H. S.; Jin, Z. H. The aluminum phosphides AlmPn (m+n=2-5) and their anions: structures, electron affinities and vibrational frequencies[J]. International Journal of Mass Spectrometry,2005, 240(2):149-159
    [167]Delley, B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics,2000, 113 (18):7756-7764.
    [168]Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77 (18):3865-3868.
    [169]Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density[J]. Physical Review B,1988,37 (2):785-789.
    [170]Bruna, P. J.; Grein, F. Abinitio study of the electronic structure of AlP and electron affinity of AlP[J]. Journal of Physics B,1989,22 (12):1913-1929.
    [171]Huber, K. P. H., G. Molecular spectra and molecular structure[M]. Van Nostrand-Reinhold, NY, 1979; Vol.4.
    [172]URL:http://www.ioffe.ru/SVA/NSM//Semicond/InP/index.html
    [173]Raghavachari, K.; Rohlfing, C. M. Bonding and stabilities of small silicon clusters-A theoretical study of Si7-Si10[J]. Journal of Chemical Physics,1988,89 (4):2219-2234.
    [174]Matxain, J. M.; Ugalde, J. M.; Towler, M. D., et al. Stability and arornaticity of BiNi rings and fullerenes[J]. Journal of Physical Chemistry A,2003,107 (46):10004-10010.
    [175]Lu, Z. Y.; Wang, C. Z.; Ho, K. M. Structures and dynamical properties of Cn, Sin, Gen, and Snn clusters with n up to 13[J]. Physical Review B,2000,61 (3):2329-2334.
    [176]Strout, D. L. Structure and stability of boron nitrides:The crossover between rings and cages[J]. Journal of Physical Chemistry A,2001,105 (1):261-263.
    [177]Allred, A. L. Electronegativity values from thermochemical data[J]. Journal of Inorganic & Nuclear Chemistry,1961,17 (3-4):215-221.
    [178]Akola, J.; Manninen, M.; Hakkinen, H., et al. Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations[J]. Physical Review B,1999,60 (16):11297-11300.
    [179]Gross, A.; Dianat, A. Hydrogen dissociation dynamics on precovered Pd surfaces:Langmuir is still right[J]. Physical Review Letters,2007,98 (20):206107.
    [180]Lopez, N.; Lodziana, Z.; Illas, F., et al. When Langmuir is too simple:H2 dissociation on Pd(111) at high coverage[J]. Physical Review Letters,2004,93 (14):146103.
    [181]Mitsui, T.; Rose, M. K.; Fomin, E., et al. Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies[J]. Nature,2003,422 (6933):705-707.
    [182]Luntz, A. C.; Brown, J. K.; Williams, M. D. Molecular-beam studies of H2 and D2 dissociative chemisorption on Pt(111)[J]. Journal of Chemical Physics,1990,93 (7):5240-5246.
    [183]Papoian, G.; Norskov, J. K.; Hoffmann, R. A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface[J]. Journal of the American Chemical Society,2000,122 (17): 4129-4144.
    [184]Pijper, E.; Kroes, G. J.; Olsen, R. A., et al. Reactive and diffractive scattering of H2 from Pt(111) studied using a six-dimensional wave packet method[J]. Journal of Chemical Physics,2002,117 (12): 5885-5898.
    [185]Vincent, J. K.; Olsen, R. A.; Kroes, G. J., et al. Dissociative chemisorption of H2 on Pt(111):isotope effect and effects of the rotational distribution and energy dispersion[J]. Surface Science,2004,573 (3): 433-445.
    [186]Chen, L.; Cooper, A. C.; Pez, G. P., et al. Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster[J]. Journal of Physical Chemistry C,2007,111 (14):5514-5519.
    [187]German, E. D.; Efremenko, I.; Sheintuch, M. Hydrogen interactions with a Pd4 cluster:Triplet and singlet states and transition probability[J]. Journal of Physical Chemistry A,2001,105 (50):11312-11326.
    [188]Huang, S. Y.; Huang, C. D.; Chang, B. T., et al. Chemical activity of palladium clusters:Sorption of hydrogen[J]. Journal of Physical Chemistry B,2006,110 (43):21783-21787.
    [189]Huda, M. N.; Kleinman, L. Hydrogen adsorption and dissociation on small platinum clusters:An electronic structure density functional study[J]. Physical Review B,2006,74 (19):195407.
    [190]Roques, J.; Lacaze-Dufaure, C.; Mijoule, C. Dissociative adsorption of hydrogen and oxygen on palladium clusters:A comparison with the (111) infinite surface[J]. Journal of Chemical Theory and Computation,2007,3 (3):878-884.
    [191]Zhou, C. G.; Wu, J. P.; Nie, A. H., et al. On the sequential hydrogen dissociative chemisorption on small platinum clusters:A density functional theory study[J]. Journal of Physical Chemistry C,2007,111 (34): 12773-12778.
    [192]Burkart, S.; Blessing, N.; Klipp, B., et al. Experimental verification of the high stability of Al13H:a building block of a new type of cluster material?[J]. Chemical Physics Letters,1999,301 (5-6):546-550.
    [193]Grubisic, A.; Li, X.; Stokes, S. T., et al. Closo-alanes (Al4H4, AlnHn+2,4≤n≤8):A new chapter in aluminum hydride chemistry[J]. Journal of the American Chemical Society,2007,129 (18):5969-5975.
    [194]Li, X.; Grubisic, A.; Stokes, S. T., et al. Unexpected stability of A14H6:A borane analog?[J]. Science, 2007,315 (5810):356-358.
    [195]Rao, B. K.; Jena, P.; Burkart, S., et al. AlH3 and Al2H6:Magic clusters with unmagical properties[J]. Physical Review Letters,2001,86 (4):692-695.
    [196]Roach, P. J.; Reber, A. C.; Woodward, W. H., et al. A14H7 is a resilient building block for aluminum hydrogen cluster materials[J]. Proceedings of the National Academy of Sciences 2007,104 (37):14565-14569.
    [197]Charkin, O. P.; Klimenko, N. M.; Charkin, D. O. Theoretical study of stepwise hydrogenated closo-alane clusters Al13Hm-(m=1-12)[J]. Russian Journal of Inorganic Chemistry,2006,51 (2):281-291.
    [198]Charkin, O. P.; Klimenko, N. M.; Charkin, D. O., et al. Theoretical study of the association of icosahedral doped aluminide clusters:(L@A112)2 and (L@Al12)(L'@Al12) dimers (L, L'=Si and Ge)[J]. Russian Journal of Inorganic Chemistry,2004,49 (12):1898-1905.
    [199]Charkin, O. P.; Klimenko, N. M.; Charkin, D. O., et al. Theoretical study of the isomerism of stepwise-hydrogenated alulminum clusters Al13H2n- (n=0-6) with the centered icosahedral Al13 framework[J]. Russian Journal of Inorganic Chemistry,2005,50 (1):50-60.
    [200]Charkin, O. P.; Kochnev, V. K.; Klimenko, N. M. Theoretical study of aluminide clusters Al13 X,Al13X-, and Al13X2- (X= H, Hal, OH, NH2, CH3, and C6H5)[J]. Russian Journal of Inorganic Chemistry,2006, 51 (12):1925-1936.
    [201]Jung, J. H.; Han, Y. K. Comment on "Magic Rule for AlnHm Magic Clusters"[J]. Physical Review Letters,2008,100(19):199701.
    [202]Kawamura, H.; Kumar, V.; Sun, Q., et al. Cyclic and linear polymeric structures of AlnH3n (n=3-7) molecules[J]. Physical Review A,2003,67 (6):063205.
    [203]Yarovsky, I.; Goldberg, A. DFT study of hydrogen adsorption on Al13 clusters[J]. Molecular Simulation,2005,31 (6-7):475-481.
    [204]Goldberg, A.; Yarovsky, I. Density functional theory study of hydrogen adsorption on Al12 cages[J]. Physical Review B,2007,75 (19):10.
    [205]Deheer, W. A. The physics of simple metal clusters experimental aspects and simple models[J]. Reviews of Modern Physics,1993,65 (3):611-676.
    [206]Bergeron, D. E.; Castleman, A. W.; Morisato, T., et al. Formation of Al13I-:Evidence for the superhalogen character of A113[J]. Science,2004,304 (5667):84-87.
    [207]Bergeron, D. E.; Roach, P. J.; Castleman, A. W., et al. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts[J]. Science,2005,307 (5707):231-235.
    [208]Han, Y. K.; Jung, J. Does the "Superatom" exist in halogenated aluminum clusters?[J]. Journal of the American Chemical Society,2008,130 (1):2-3.
    [209]Akutsu, M.; Koyasu, K.; Atobe, J., et al. Experimental and theoretical characterization of aluminum-based binary superatoms of Al12X and their cluster salts[J]. Journal of Physical Chemistry A,2006, 110(44):12073-12076.
    [210]Gong, X. G.; Kumar, V. Enhanced stability of magic clusters:A case study of icosahedral A112X, X=B, Al, Ga, C, Si, Ge, Ti, As[J]. Physical Review Letters,1993,70 (14):2078-2081.
    [211]Gong, X. G.; Kumar, V. Electronic structure and relative stability of icosahedral Al-transiton-metal clusters[J]. Physical Review B,1994,50 (23):17701-17704.
    [212]Kawamura, H.; Kumar, V.; Sun, Q., et al. Bonding character of hydrogen in aluminum clusters[J]. Materials Transactions,2001,42 (11):2175-2179.
    [213]Khanna, S. N.; Jena, P. Assembling crystals from clusters[J]. Physical Review Letters,1992,69 (11): 1664-1667.
    [214]Kumar, V.; Bhattacharjee, S.; Kawazoe, Y. Silicon-doped icosahedral, cuboctahedral, and decahedral clusters of aluminum[J]. Physical Review B,2000,61 (12):8541-8547.
    [215]Li, X.; Wang, L. S. Experimental search and characterization of icosahedral clusters:Al12X- (X=C, Ge, Sn, Pb)[J]. Physical Review B,2002,65 (15):4.
    [216]Lu, Q. L.; Jalbout, A. F.; Luo, Q. Q., et al. Theoretical study of hydrogenated mg, Ca@Al12 clusters[J]. Journal of Chemical Physics,2008,128 (22):224707.
    [217]Nakajima, A.; Kishi, T.; Sugioka, T., et al. Electronic and geometric structures of Aluminum boron negative cluster ions (AlNBM-)[J]. Chemical Physics Letters,1991,187 (3):239-244.
    [218]Cleri, F.; Rosato, V. Tight binding potentials for transition metals and alloys[J]. Physical Review B, 1993,48(1):22-33.
    [219]Papanicolaou, N. I.; Chamati, H.; Evangelakis, G. A., et al. Second-moment interatomic potential for Al, Ni and Ni-Al alloys, and molecular dynamics application[J]. Computational Materials Science,2003,27 (1-2):191-198.
    [220]Sutton, A. P.; Chen, J. Long-range Finnis Sinclair Potentials[J]. Philosophical Magazine Letters,1990, 61 (3):139-146.
    [221]Ercolessi, F.; Adams, J. B. Interatomic potentials 1st-principles calculations-The force matching method[J]. Europhysics Letters,1994,26 (8):583-588.
    [222]Pulay, P. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules I. Theory[J]. Molecular Physics,1969,17(2):197-204.
    [223]Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquild correlation energies for local spin-density calculations-A critical analysis[J]. Canadian Journal of Physics,1980,58 (8):1200-1211.
    [224]Perdew, J. P.; Chevary, J. A.; Vosko, S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992,46(11):6671.
    [225]Leuchtner, R. E.; Harms, A. C.; Castleman, A. W. Thermal metal clusters anion reactions-behavior of Alumium clusters with oxygen[J]. Journal of Chemical Physics,1989,91 (4):2753-2754.
    [226]Rao, B. K.; Khanna, S. N.; Jena, P. Designing new materials using atomic clusters[J]. Journal of Cluster Science,1999,10 (4):477-491.
    [227]Li, X.; Wu, H. B.; Wang, X. B., et al. s-p hybridization and electron shell structures in aluminum clusters:A photoelectron spectroscopy study[J]. Physical Review Letters,1998,81 (9):1909-1912.
    [228]Schriver, K. E.; Persson, J. L.; Honea, E. C., et al. Electronic structure of group-IIIA metal atomic clusters[J]. Physical Review Letters,1990,64 (21):2539-2542.
    [229]Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B,1981,23 (10):5048-5079.
    [230]Kawamata, H.; Negishi, Y.; Nakajima, A., et al. Electronic properties of substituted aluminum clusters by boron and carbon atoms (AlnBm/AlnCm-):new insights into s-p hybridization and perturbed shell structures[J]. Chemical Physics Letters,2001,337 (4-6):255-262.
    [231]Vidali, G.; Ihm, G.; Kim, H. Y., et al. Potentials of Physical Adsorption[J]. Surface Science Reports, 1991,12(4):133-181.
    [232]Han, Y. K.; Jung, J. H.; Kim, K. H. Structure and stability of Al13H clusters[J]. Journal of Chemical Physics,2005,122 (12):124319.
    [233]Kiran, B.; Jena, P.; Li, X., et al. Magic rule for AlnHm magic clusters[J]. Physical Review Letters, 2007,98 (25):256802.
    [234]Mananes, A.; Duque, F.; Mendez, F., et al. Analysis of the bonding and reactivity of H and the Al13 cluster using density functional concepts[J]. Journal of Chemical Physics,2003,119 (10):5128-5141.
    [235]Teeter, M. M. Water structure of a hydrophobic protein at atomic resolution pentagon rings of water molecules in crystals of crambin[J]. Proceedings of the National Academy of Sciences 1984,81 (19): 6014-6018.
    [236]Blanton, W. B.; Gordon-Wylie, S. W.; Clark, G. R., et al. Synthesis and crystallographic characterization of an octameric water complex (H2O)8[J]. Journal of the American Chemical Society,1999,121 (14):3551-3552.
    [237]Ghosh, S. K.; Bharadwaj, P. K. Puckered-boat conformation hexameric water clusters stabilized in a 2D metal-organic framework structure built from Cu(II) and 1,2,4,5-benzenetetracarboxylic acid[J]. Inorganic Chemistry,2004,43 (17):5180-5182.
    [238]Infantes, L.; Motherwell, S. Water clusters in organic molecular crystals[J]. CrystEngComm,2002: 454-461.
    [239]Michaelides, A.; Skoulika, S.; Bakalbassis, E. G., et al. Cyclic water hexamers and decamers in a porous Lanthanide-organic Framework:Correlation between some physical properties and crystal structure[J]. Crystal Growth & Design,2003,3 (4):487-492.
    [240]Moorthy, J. N.; Natarajan, R.; Venugopalan, P. Characterization of a planar cyclic form of water hexamer in an organic supramolecular complex:An unusual self-assembly of bimesityl-3,3'-dicarboxylic acid[J]. Angewandte Chemie-International Edition,2002,41 (18):3417-3420.
    [241]Mukhopadhyay, U.; Bernal, I. Self-assembled hexameric water clusters stabilized by a cyano-bridged trimetallic complex[J]. Crystal Growth & Design,2005,5 (5):1687-1689.
    [242]Supriya, S.; Das, S. K. Small water clusters in crystalline hydrates[J]. Journal of Cluster Science, 2003,14 (3):337-366.
    [243]Supriya, S.; Mankumari, S.; Raghavaiah, P., et al. A cyclic supramolecular (H2O)4 cluster in an unusual Fe3 complex that aggregates to{Fe3}n with a zig-zag chainlike structure[J]. New Journal of Chemistry, 2003,27 (2):218-220.
    [244]Byl, O.; Liu, J.-C.; Wang, Y., et al. Unusual hydrogen bonding in water-filled carbon nanotubes[J]. Journal of the American Chemical Society,2006,128 (37):12090-12097.
    [245]Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature,2001,414 (6860):188-190.
    [246]Koga, K.; Gao, G. T.; Tanaka, H., et al. Formation of ordered ice nanotubes inside carbon nanotubes[J]. Nature,2001,412 (6849):802-805.
    [247]Maibaum, L.; Chandler, D. A coarse-grained model of water confined in a hydrophobic tube[J]. The Journal of Physical Chemistry B,2003,107 (5):1189-1193.
    [248]Mashl, R. J.; Joseph, S.; Aluru, N. R., et al. Anomalously immobilized water:A new water phase induced by confinement in nanotubes[J]. Nano Letters,2003,3 (5):589-592.
    [249]Rasaiah, J. C.; Garde, S.; Hummer, G. Water in nonpolar confinement:From nanotubes to proteins and beyond[J]. Annual Review of Physical Chemistry,2008,59:713-740.
    [250]Saparov, S. M.; Pohl, P. Beyond the diffusion limit:Water flow through the empty bacterial potassium channel[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101 (14):4805-4809.
    [251]Vaitheeswaran, S.; Rasaiah, J. C.; Hummer, G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes[J]. The Journal of Chemical Physics,2004,121 (16):7955-7965.
    [252]Waghe, A.; Rasaiah, J. C.; Hummer, G. Filling and emptying kinetics of carbon nanotubes in water[J]. Journal of Chemical Physics,2002,117 (23):10789-10795.
    [253]Zimmerli, U.; Gonnet, P. G.; Walther, J. H., et al. Curvature induced L-defects in water conduction in carbon nanotubes[J]. Nano Letters,2005,5 (6):1017-1022.
    [254]Dellago, C.; Naor, M. M.; Hummer, G. Proton transport through water-filled carbon nanotubes[J]. Physical Review Letters,2003,90 (10):4.
    [255]Gong, X.; Li, J.; Lu, H., et al. A charge-driven molecular water pump[J]. Nature Nanotechnology, 2007,2 (11):709-712.
    [256]Li, J.; Gong, X.; Lu, H., et al. Electrostatic gating of a nanometer water channel[J]. Proceedings of the National Academy of Sciences,2007,104 (10):3687-3692.
    [257]Mann, D. J.; Halls, M. D. Water alignment and proton conduction inside carbon nanotubes[J]. Physical Review Letters,2003,90 (19):195503.
    [258]Wan, R. Z.; Li, J. Y.; Lu, H. J., et al. Controllable water channel gating of nanometer dimensions[J]. Journal of the American Chemical Society,2005,127 (19):7166-7170.
    [259]Best, R. B.; Hummer, G. Reaction coordinates and rates from transition paths[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (19):6732-6737.
    [260]Joseph, S.; Aluru, N. R. Why are Carbon nanotubes fast transporters of water?[J]. Nano Letters,2008, 8 (2):452-458.
    [261]Li, H.; Zhang, X. Q.; Liew, K. M. Structures and electronic transport of water molecular nanotubes embedded in carbon nanotubes[J]. The Journal of Chemical Physics,2008,128 (3):034707-5.
    [262]Longhurst, M. J.; Quirke, N. Temperature-Driven Pumping of Fluid through Single-Walled Carbon Nanotubes[J]. Nano Letters,2007,7 (11):3324-3328.
    [263]Maniwa, Y.; Matsuda, K.; Kyakuno, H., et al. Water-filled single-wall carbon nanotubes as molecular nanovalves[J]. Nature Materials,2007,6 (2):135-141.
    [264]Mukherjee, B.; Maiti, P. K.; Dasgupta, C., et al. Strong correlations and Fickian water diffusion in narrow carbon nanotubes[J]. The Journal of Chemical Physics,2007,126 (12):124704-8.
    [265]Takaiwa, D.; Hatano, I.; Koga, K., et al. Phase diagram of water in carbon nanotubes[J]. Proceedings of the National Academy of Sciences,2008,105 (1):39-43.
    [266]Whitby, M.; Quirke, N. Fluid flow in carbon nanotubes and nanopipes[J]. Nature Nanotechnology, 2007,2 (2):87-94.
    [267]Zhu, F.; Schulten, K. Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels[J]. Biophysical Journal,2003,85 (1):236-244.
    [268]Vaitheeswaran, S.; Yin, H.; Rasaiah, J. C., et al. Water clusters in nonpolar cavities[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (49):17002-17005.
    [269]Ramachandran, C. N.; Sathyamurthy, N. Water clusters in a confined nonpolar environment[J]. Chemical Physics Letters,2005,410 (4-6):348-351.
    [270]Wan, R.; Li, J.; Lu, H., et al. Controllable water channel gating of nanometer dimensions[J]. Journal of the American Chemical Society,2005,127 (19):7166-7170.
    [271]Yin, H.; Hummer, G.; Rasaiah, J. C. Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion[J]. Journal of the American Chemical Society,2007,129 (23):7369-7377.
    [272]Gogotsi, Y.; Libera, J. A.; Guvenc-Yazicioglu, A., et al. In situ multiphase fluid experiments in hydrothermal carbon nanotubes[J]. Applied Physics Letters,2001,79 (7):1021-1023.
    [273]Kolesnikov, A. I.; Zanotti, J.; Loong, C., et al. Anomalously soft dynamics of water in a nanotube:A revelation of nanoscale confinement[J]. Physical Review Letters,2004,93 (3):035503.
    [274]Naguib, N.; Ye, H.; Gogotsi, Y., et al. Observation of water confined in nanometer channels of closed carbon nanotubes[J]. Nano Letters,2004,4 (11):2237-2243.
    [275]Agrawal, B. K.; Singh, V.; Pathak, A., et al. Ab initio study of H2O and water-chain-induced properties of carbon nanotubes[J]. Physical Review B,2007,75 (19):195421.
    [276]Feng, C.; Zhang, R. Q.; Dong, S. L., et al. Signatures in vibrational spectra of ice nanotubes revealed by a density functional tight binding method[J]. The Journal of Physical Chemistry C,2007,111 (38): 14131-14138.
    [277]Li, Y.; Lu, D.; Schulten, K., et al. Screening of water dipoles inside finite-length armchair carbon nanotubes[J]. Journal of Computational Electronics,2005,4 (1):161-165.
    [278]Itsuo, H.; et al. Structure and stability of water chain in a carbon nanotube[J]. Journal of Physics: Condensed Matter,2008,20 (1):015213.
    [279]Cicero, G.; Grossman, J. C.; Schwegler, E., et al. Water confined in nanotubes and between graphene sheets:A first principle study[J]. Journal of the American Chemical Society,2008,130 (6):1871-1878.
    [280]Huisken, F.; Kaloudis, M.; Kulcke, A. Infrared spectroscopy of small size-selected water clusters[J]. The Journal of Chemical Physics,1996,104 (1):17-25.
    [281]Lovas, F. J. Microwave spectral tablesⅡ. Triatomic molecules[J]. Journal of Physical and Chemical Reference Data,1978,7 (4):1445-1750.
    [282]http://webbook.nist.gov/chemistry/and references herein.
    [283]Sudiarta, I. W.; Geldart, D. J. W. Interaction energy of a water molecule with a single-layer graphitic surface modeled by hydrogen- and fluorine-terminated clusters[J]. Journal of Physical Chemistry A,2006,110 (35):10501-10506.
    [284]Helmy, A. K.; Ferreiro, E. A.; de Bussetti, S. G. The water/graphitic-carbon interaction energy[J]. Applied Surface Science,2007,253 (11):4966-4969.
    [285]Haiping, F.; et al. Dynamics of single-file water chains inside nanoscale channels:physics, biological significance and applications[J]. Journal of Physics D:Applied Physics,2008,41 (10):103002.
    [286]Park, K. M.; Kuroda, R.; Iwamoto, T. A 2-dimensional ice with the topography of edge-sharing hexagons intercalated between CdNi(Cn)4 Layers[J]. Angewandte Chemie-International Edition in English,1993, 32 (6):884-886.
    [287]Kurita, T.; Okada, S.; Oshiyama, A. Energetics of ice nanotubes and their encapsulation in carbon nanotubes from density-functional theory[J]. Physical Review B,2007,75 (20):205424(1-8).
    [288]Gregory, J. K.; Clary, D. C.; Liu, K., et al. The water dipole moment in water clusters[J]. Science, 1997,275 (5301):814-817.
    [289]Dekhtyar, M. L.; Ishchenko, A. A.; Rozenbaum, V. M. Photoinduced molecular transport in biological environments based on dipole moment fluctuations[J]. Journal of Physical Chemistry B,2006,110 (41):20111-20114.
    [290]Schroder, C.; Rudas, T.; Boresch, S., et al. Simulation studies of the protein-water interface. I. Properties at the molecular resolution[J]. Journal of Chemical Physics,2006,124 (23):234907(1-18).
    [291]Takashima, S.; Yamaoka, K. The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database[J]. Biophysical Chemistry,1999,80 (3):153-163.
    [292]Boresch, S.; Ringhofer, S.; Hochtl, P., et al. Towards a better description and understanding of biomolecular solvation[J]. Biophysical Chemistry,1999,78 (1-2):43-68.
    [293]Smith, P. E.; Pettitt, B. M. Modeling solvent in biomolecular systems[J]. Journal of Physical Chemistry,1994,98 (39):9700-9711.
    [294]Kaminski, G. A.; Friesner, R. A.; Zhou, R. H. A computationally inexpensive modification of the point dipole electrostatic polarization model for molecular simulations[J]. Journal of Computational Chemistry, 2003,24 (3):267-276.
    [295]Mershin, A.; Kolomenski, A. A.; Schuessler, H. A., et al. Tubulin dipole moment, dielectric constant and quantum behavior:computer simulations, experimental results and suggestions[J]. Biosystems,2004,77 (1-3):73-85.
    [296]Taskin, T.; Sevin, F. Theoretical investigation on chemical and biochemical activities of 5,6-dihydro-11H-benzo[alpha]carbazole and its derivatives[J]. Journal of Molecular Structure-THEOCHEM, 2007,803 (1-3):61-66.
    [297]Iwamatsu, S.; Uozaki, T.; Kobayashi, K., et al. A bowl-shaped fullerene encapsulates a water into the cage[J]. Journal of the American Chemical Society,2004,126 (9):2668-2669.
    [298]Ernst, J. A.; Clubb, R. T.; Zhou, H. X., et al. Demonstration of positionally disordered water with a protein hydrophobic cavity by NMR[J]. Science,1995,267 (5205):1813-1817.
    [299]Stowell, M. H.; McPhillips, T. M.; Rees, D. C., et al. Light-induced structural changes in photosynthetic reaction center:implications for mechanism of electron-proton transfer[J]. Science,1997,276 (5313):812-816.
    [300]Hille, B. Ion Channels of Excitable Membranes[M]. Sinauer:Sunderland, MA,1984.
    [301]Cummings, P. T.; Cochran, H. D.; Simonson, J. M., et al. Simulation of supercritical water and of supercritical aqueous solutions[J]. The Journal of Chemical Physics,1991,94 (8):5606-5621.
    [302]Fois, E. S.; Sprik, M.; Parrinello, M. Properties of supercritical water:an ab initio simulation[J]. Chemical Physics Letters,1994,223 (5-6):411-415.
    [303]Lee, C.-Y.; McCammon, J. A.; Rossky, P. J. The structure of liquid water at an extended hydrophobic surface[J]. The Journal of Chemical Physics,1984,80 (9):4448-4455.
    [304]Marti, J.; Nagy, G.; Gordillo, M. C., et al. Molecular simulation of liquid water confined inside graphite channels:Thermodynamics and structural properties[J]. The Journal of Chemical Physics,2006,124 (9): 094703-7.
    [305]Pertsin, A.; Grunze, M. Water-graphite interaction and behavior of water near the graphite surface[J]. The Journal of Physical Chemistry B,2003,108 (4):1357-1364.
    [306]Du, Q.; Superfine, R.; Freysz, E., et al. Vibrational spectroscopy of water at the vapor/water interface[J]. Physical Review Letters,1993,70 (15):2313-2316.
    [307]Estrin, D. A.; Paglieri, L.; Corongiu, G., et al. Small clusters of water molecules using density functional theory[J]. The Journal of Physical Chemistry,1996,100 (21):8701-8711.
    [308]Lee, C.; Chen, H.; Fitzgerald, G. Chemical bonding in water clusters[J]. The Journal of Chemical Physics,1995,102(3):1266-1269.
    [309]Xantheas, S. S.; Dunning, J. T. H. Ab initio studies of cyclic water clusters (H2O)n, n=1-6.1. Optimal structures and vibrational spectra[J]. The Journal of Chemical Physics,1993,99 (11):8774-8792.
    [310]Coker, D. F.; Miller, R. E.; Watts, R. O. The infrared predissociation spectra of water clusters[J]. The Journal of Chemical Physics,1985,82 (8):3554-3562.
    [311]Huang, Z. S.; Miller, R. E. High-resolution near-infrared spectroscopy of water dimer[J]. The Journal of Chemical Physics,1989,91 (11):6613-6631.
    [312]Page, R. H.; Frey, J. G.; Shen, Y. R., et al. Infrared predissociation spectra of water dimer in a supersonic molecular beam[J]. Chemical Physics Letters,1984,106 (5):373-376.
    [313]Paul, J. B.; Provencal, R. A.; Chapo, C., et al. Infrared cavity ringdown spectroscopy of the water cluster bending vibrations[J]. The Journal of Physical Chemistry A,1999,103 (16):2972-2974.
    [314]Vernon, M. F.; Krajnovich, D. J.; Kwok, H. S., et al. Infrared vibrational predissociation spectroscopy of water clusters by the crossed laser-molecular beam technique[J]. The Journal of Chemical Physics,1982,77 (1):47-57.
    [315]Devlin, J. P.; Buch, V. Surface of ice as viewed from combined spectroscopic and computer modeling studies[J]. Journal of Physical Chemistry,1995,99 (45):16534-16548.
    [316]Devlin, J. P.; Sadlej, J.; Buch, V. Infrared spectra of large H2O clusters:new understanding of the elusive bending mode of ice[J]. The Journal of Physical Chemistry A,2001,105 (6):974-983.
    [317]Buch, V. Molecular structure and OH-stretch spectra of liquid water surface[J]. Journal of Physical Chemistry B,2005,109(38):17771-17774.
    [318]Schmidt, D. A.; Miki, K. Structural correlations in liquid water:A new interpretation of IR spectroscopy[J]. The Journal of Physical Chemistry A,2007,111 (40):10119-10122.
    [319]Anick, D. J. O-H stretch modes of dodecahedral water clusters:A statistical ab initio study[J]. Journal of Physical Chemistry A,2006,110 (15):5135-5143.
    [320]Buck, U.; Ettischer, I.; Melzer, M., et al. Structure and spectra of three-dimensional (H2O)n clusters, n=8,9,10[J]. Physical Review Letters,1998,80 (12):2578.
    [321]Buck, U.; Huisken, F. Infrared spectroscopy of size-selected water and methanol clusters[J]. Chemical Reviews,2000,100 (11):3863-3890.
    [322]Dunn, M. E.; Evans, T. M.; Kirschner, K. N., et al. Prediction of accurate anharmonic experimental vibrational frequencies for water clusters, (H2O)n, n=2-5[J]. The Journal of Physical Chemistry A,2005,110 (1): 303-309.
    [323]Kondratyuk, P.; Yates, J. T. Molecular views of physical adsorption inside and outside of single-wall carbon nanotubes[J]. Accounts of Chemical Research,2007,40 (10):995-1004.
    [324]Lenz, A.; Ojamae, L. Theoretical IR spectra for water clusters (H2O)n (n=6-22,28,30) and identification of spectral contributions from different H-bond conformations in gaseous and liquid water[J]. Journal of Physical Chemistry A,2006,110 (50):13388-13393.
    [325]Low, G. R.; Kjaergaard, H. G. Calculation of OH-stretching band intensities of the water dimer and trimer[J]. The Journal of Chemical Physics,1999,110 (18):9104-9115.
    [326]Miller, Y.; Fredj, E.; Harvey, J. N., et al. Ultraviolet spectroscopy of large water clusters:model and calculations for (H2O)n, for n=8,11,20,40, and 50[J]. The Journal of Physical Chemistry A,2004,108 (20): 4405-4411.
    [327]Ohno, K.; Okimura, M.; Akai, N., et al. The effect of cooperative hydrogen bonding on the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory[J]. Physical Chemistry Chemical Physics,2005,7 (16):3005-3014.
    [328]Sadlej, J.; Buch, V.; Kazimirski, J. K., et al. Theoretical study of structure and spectra of cage clusters (H2O)n, n=7-10[J]. The Journal of Physical Chemistry A,1999,103 (25):4933-4947.
    [329]Schofield, D. P.; Kjaergaard, H. G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer[J]. Physical Chemistry Chemical Physics,2003,5 (15):3100-3105.
    [330]Steinbach, C.; Andersson, P.; Kazimirski, J. K., et al. Infrared predissociation spectroscopy of large water clusters:A unique probe of cluster surfaces[J]. The Journal of Physical Chemistry A,2004,108 (29): 6165-6174.
    [331]Marti, J.; Gordillo, M. C. Effects of confinement on the vibrational spectra of liquid water adsorbed in carbon nanotubes[J]. Physical Review B,2001,63 (16):165430.
    [332]Suresh, C. S.; Dharmbir, S.; Ying, L. Raman scattering study of adsorption/desorption of water from single-walled carbon nanotubes[J]. Journal of Raman Spectroscopy,2005,36 (8):755-761.
    [333]Dinca, M.; Dailly, A.; Liu, Y., et al. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+coordination sites[J]. Journal of the American Chemical Society,2006,128 (51): 16876-16883.
    [334]Forster, P. M.; Eckert, J.; Heiken, B. D., et al. Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material[J]. Journal of the American Chemical Society,2006,128 (51):16846-16850.
    [335]Ma, S. Q.; Zhou, H. C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity[J]. Journal of the American Chemical Society,2006,128 (36):11734-11735.
    [336]Li, D.; Muller, M. B.; Gilje, S., et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2007,3:101-105.
    [337]Gilje, S. H., S.; Wang, M.; Wang, K. L.; Kaner,R. B. A chemical route to graphene for device applications[J].2007,7:3394-3398.
    [338]Schniepp, H. C.; Li, J.-L.; McAllister, M. J., et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. The Journal of Physical Chemistry B,2006,110 (17):8535-8539.
    [339]Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechonology,2008,3 (5):270-274.
    [340]Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide[J]. Journal of the American Chemical Society,2008,130(32):10697-10701.
    [341]Chattopadhyay, J.; Mukherjee, A.; Hamilton, C. E., et al. Graphite epoxide[J]. Journal of the American Chemical Society,2008,130 (16):5414-5415.
    [342]He, H. Y.; Klinowski, J.; Forster, M., et al. A new structural model for graphite oxide[J]. Chemical Physics Letters,1998,287 (1-2):53-56.
    [343]Jung, I.; Dikin, D. A.; Piner, R. D., et al. Tunable electrical conductivity of individual graphene oxide sheets reduced at "Low" temperatures [J]. Nano Letters,2008,8 (12):4283-4287.
    [344]Mkhoyan, K. A.; Contryman, A. W.; Silcox, J., et al. Atomic and electronic structure of graphene-oxide[J]. Nano Letters,2009,9 (3):1058-1063.
    [345]Paci, J. T.; Belytschko, T.; Schatz, G. C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide[J]. Journal of Physical Chemistry C,2007,111 (49): 18099-18111.
    [346]Park, S.; Lee, K. S.; Bozoklu, G., et al. Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking[J]. ACS Nano,2008,2 (3):572-578.
    [347]Talyzin, A. V.; Solozhenko, V. L.; Kurakevych, O. O., et al. Colossal pressure-induced lattice expansion of graphite oxide in the presence of water[J]. Angewandte Chemie-International Edition,2008,47 (43):8268-8271.
    [348]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide[J]. Chemical Society Reviews,2010,39:228-240.
    [349]Szabo, T.; Berkesi, O.; Dekany, I. DRIFT study of deuterium-exchanged graphite oxide[J]. Carbon, 2005,43 (15):3186-3189.
    [350]Stankovich, S.; Piner, R. D.; Nguyen, S. T., et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44 (15):3342-3347.
    [351]Blochl, P. E. Projector augmented-wave method[J]. Physical Review B,1994,50 (24):17953-17979.
    [352]Payne, M. C.; Teter, M. P.; Allan, D. C., et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics,1992,64 (4):1045.
    [353]Yan, J.-A.; Xian, L.; Chou, M. Y. Structural and electronic properties of oxidized graphene[J]. Physical Review Letters,2009,103 (8):086802.
    [354]Wang, H.; Robinson, J. T.; Li, X., et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. Journal of the American Chemical Society,2009,131 (29):9910-9911.
    [355]Lahaye, R. J. W. E.; Jeong, H. K.; Park, C. Y., et al. Density functional theory study of graphite oxide for different oxidation levels[J]. Physical Review B,2009,79 (12):125435.
    [356]Xiang, H. J.; Wei, S.-H.; Gong, X. G. Structural motifs in oxidized graphene:A genetic algorithm study based on density functional theory[J]. Physical Review B,2010,82 (3):035416.
    [357]Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G., et al. Control of graphene's properties by reversible hydrogenation:evidence for graphane[J]. Science,2009,323 (5914):610-613.
    [358]Prud'homme, R. K.; Aksay, I. A.; Adamson, D., et al. United States Patent Application 20090054272. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700