基于遥感的黑河流域蒸散发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表能量通量是全球水循环和能量平衡的重要环节,是全球气候变化的重要研究内容之一,在陆地表层和大气之间的相互作用研究,水资源规划管理等各个方面具有重要价值。水是万物之源,是人类生存生活、社会经济发展、环境可持续发展的根本保证。随着人口的不断增长和经济的快速发展,水资源短缺已经成为很多地区社会经济发展的重要制约因素。水资源问题成为21世纪的热点问题。蒸散发作为水循环中的重要环节,深入的了解区域的蒸散发状况,对于水资源规划管理极为重要。在水资源短缺、水环境质量恶化的形势下,实现流域的真实节水,需要区域范围内的蒸散发量作为依据,进行流域水资源的有效管理。
     传统的站点观测资料,其时空代表性局限很大。近年来,随着遥感技术和定量反演方法的迅猛发展,基于卫星遥感的蒸散发检测逐渐成为研究的热点。采用遥感方法计算区域尺度的蒸散发状况可以有效的避免传统点尺度观测的缺陷,对于区域尺度的水资源规划管理具有重要价值。
     黑河流域作为我国西北干旱地区第二大内陆河流域,流域水资源可持续利用涉及生态、环境、社会、经济等重要领域,迫切需要对流域水分收支状况,在其空间分布和时间变化两方面,有科学、定量的了解。因而黑河流域蒸散发的机制,蒸散发的时空分布变化研究极为迫切,迫切需要对黑河流域的蒸散过程有清楚的认识,以提供流域管理的参考。本文收集整理了黑河流域范围内的MODIS数据,结合地面观测资料,基于定量遥感的理论和技术方法,获取了研究区的植被指数、叶面积指数、地表比辐射率等重要地表特征参数;使用时间序列分析方法提取分析了研究区内和植被生长相关的重要物候信息,如生长季开始时间,生长季结束时间,生长季长度,生长季NDVI幅度;基于SEBS模型,使用反演得到的地表参数作为输入,估算了黑河流域典型日的蒸散发状况,分析了蒸散发的时空变化特征;分析整理了遥感估算蒸散发的时间尺度扩展方法,使用METRIC方法对黑河流域蒸散发进行月尺度扩展研究,分析探讨了流域蒸散发的重要时空变化特征。本文得出的结论如下:
     (1)物候信息是植被生长状况的良好指示剂。使用MODIS16天最大合成NDVI数据,采用Savitzky-Golay滤波方法重建了NDVI时间序列图像,提取了流域范围内植被生长的重要物候参数。分析了流域内植被生长季开始时期,生长季结束时期,生长季长度,生长季NDVI幅度的空间特征,结果表明,黑河流域植被物候信息具有明显的空间特征,上游山区草地生长季较短,中下游区域受人类活动影响剧烈,物候信息的提取结果较为吻合黑河流域主要农作物小麦、玉米的生长状况信息。
     (2)黑河流域蒸散发机制、时空分布变化的深入研究是流域水资源可持续利用、流域管理的重要参考。本文基于SEBS模型,估算了2008年典型日蒸散发时空状况,并使用盈科站的通量观测数据进行了验证。结果表明,除121天和151天的结果有较大偏差外,其他天数的验证结果较好。
     (3)农田灌溉、水资源管理、水资源核算等研究中,月尺度、年尺度的蒸散发空间分布状况更具有实际价值。本文在总结蒸散发时空扩展方法的基础上,采用Allen提出的METRIC方法对黑河流域蒸散发进行了月尺度的扩展研究,计算得到黑河流域2008各个月份的蒸散量。
Land surface energy flux is an important part in global water cycle and energy balance. The research on land surface energy flux is very important in global climate change, land surface atmosphere interaction, as well as in water resources management. Moreover, water is the source of life. More over, water is the fudamental guarantee of human survival, socio-economic development and sustainable development. With the increasing population and rapid development of economy, water shortage has become a restrictive factor to the development of many areas around the world. The water resource has become a hot issue in the 21st century. Evapotranspiration is an important part in water cycle. Thoroughly understanding of regional evapotranspiration condition is extremely important for water resources plan and water resources management. Under the situation of water shortage and deteriorating water quality, in order to utilize the water resources efficient, it is very important to realize regional evapotranspiration.
     The traditional site observation is only valid in small spatial size. In recent years, with the rapid development of remote sensing technology as well as quantitative inversion method, regional evapotranspiration detection based on remote sensing has become a hot research field. This method can effectively avoid the defect exists in traditional methods. It has great value for water resources planning and management in regional scale.
     Heihe River Basin is the second largest inland river basin in northwest of China arid region. Sustainable use of water resources related to ecological, environmental, econo-mic and other important areas. Therefore, there is an urgent need for acknowledge basin water balance in its spatial distribution and temporal changes with scientific and quantitative understanding.Thus, the research to the evapotranspiration mechanism, the spatial distribution and temporal changes of evapotranspiration in the Heihe River Basin, is extremely urgent. In order to afford some reference to watershed management, we need a clear understanding of the evapotranspiration process in the Heihe River Basin. In this paper, MODIS data and field observation data were collected. Based on the theory of quantitative remote sensing, vegetation index, leaf area index, surface emissivity, and other important surface parameters were retrived. Using time series analysis method, some important vegetation phenological information, such as the beginning of season, end of season, length of season, NDVI amplitude of season, were extracted. Based on SEBS model, using the surface parameters as input, evapotranspiration of typical days in the Heihe River Basin were calculated. The time scale expansion methods were systematic summarized. Using the METRIC method proposed by Allen as the time scale exapansion method, evapotranspiration in each month of 2008 were calculated.
     The main research results are as follows:
     1.Phenological information is a good indicator of vegetation status. With the sixteen-day maximum value composite (MVC) MODIS dataset, the phonological information was extracted using the Savitzky-Golay filter. The spatial characteristics of the beginning of season, the end of season, the length of season, NDVI amplitude of season were analyzed. The result showed that phonological information in the Heihe River Basin have obvious spatial pattern. The upstream mountainous grass have a short grow season, the middlestream areas were affected by intense human activities, phonological information is consistent with crops of wheat, maize growth state.
     2.Deeply understanding of evapotranspiration mechanism, temporal and spatial distribution of evapotranspiration in Heihe River Basin is extremely important for durative use of water resources and watershed management. Based on SEBS model, evapotranspiration of typical days in the Heihe River Basin were calculated. Moreover, the results were verified with flux data of Yinke station. The results are nice except the result in the day of 121 st and 151 st.
     3.The spatial distribution of monthly evapotranspiration, annual evapotranspira-tion have more practical value in irrigation, water resources management. With the review of time scale expansion methods, the METRIC method which proposed by Allen was selected. Then, evapotranspiration in each month of 2008 were calculated.
引文
[1]Allen R G, Pereira L S, Raes D. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. FAO, Rome,1998.
    [2]Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model[J]. Journal of irrigation and drainage engineering, 2007,133(4):381-394.
    [3]Andre J C, Goutorbe J P, Perrier A. HAPEX-MOBILHY:A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale[J]. Bull Amer Meteor Soc, 1986,67(2):138-144.
    [4]Bastiaanssen W G M, Menenti M, Feddes R A. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation [J]. Journal of Hydrology,1998,212:198-212.
    [5]Bastiaanssen W G M, Pelgrum H, Wang J. A remote sensing surface energy balance algorithm for land (SEBAL):Part 2:Validation [J]. Journal of Hydrology,1998,212:213-229.
    [6]Bolle H J. Coauthors.1993:EFEDA:European Field Experiment in a Desertification Threatened Area[J]. Ann Geophys,11:173-189.
    [7]Carlson T. An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery[J]. Sensors,2007,7(8):1612-1629.
    [8]Cleugh H A, Leuning R, Mu Q. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment,2007,106(3):285-304.
    [9]Courault D, Seguin B, Olioso A. Review on estimation of evapotranspiration from remote sensing data:From empirical to numerical modeling approaches[J]. Irrigation and Drainage systems,2005,19(3):223-249.
    [10]Ding Y, Zhaug Y, Ma Q. Analysis of the Large-Scale Circulation Featues and Synoptic Systems in East Asia During the Intensive Observation Period of GAME/HUBEX[J]. J Meteorol, 2001,79(1):277-300.
    [11]El Maayar M, Chen J M. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture[J]. Remote Sensing of Environment,2006,102(2): 33-51.
    [12]Goutorbe J P, Lebel T, Dolman A J. An overview of HAPEX-Sahel:a study in climate and desertification[J]. Journal of Hydrology,1997,188:4-17.
    [13]Hoedjes J C B, Chehbouni A, Jacob F. Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco[J]. Journal of Hydrology,2008,354(4):53-64.
    [14]Jackson R D, Moran M S, Gay L W. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data[J]. Irrigation Science,1987,8(2):81-90.
    [15]Kalma J D, McVicar T R, McCabe M F. Estimating land surface evaporation:a review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics,2008,29(4): 421-469.
    [16]Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences Journal,1996,41(4):495-516.
    [17]Kustas W P, Norman J M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces[J]. Agronomy Journal, 2000,92(5):847-854.
    [18]Li X, Li X W, Li Z Y. Watershed Allied Telemetry Experimental Research[J]. J Geophys Res, 2009,114:1-19.
    [19]Liang X, Lettenmaier D P, Wood E F. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. J Geophys Res,1994,99(14):415-429.
    [20]Lu D, Chen Z, Chen J. Composite study on Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction (IMGRASS)[J]. Earth Science Frontiers,2002,9(2): 295-306.
    [21]Ma Y, Su Z, Koike T. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau--from GAME/Tibet to CAMP/Tibet[J]. Physics and Chemistry of the Earth,2003, 28(3):63-74.
    [22]Ma Y, Yao T, Wang J. Experimental Study of Energy and Water Cycle in Tibetan Plateau-The Progress Introduction on the Study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteorology, 2006,25(2):344-351.
    [23]Maurer E P. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios[J]. Climatic Change,2007,82(3):309-325.
    [24]McCabe M F, Wood E F. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors[J]. Remote Sensing of Environment,2006,105(4):271-285.
    [25]Mingguo M A, Qiang L I U, Guangjian Y A N. Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin:Experiment of Forest Hydrology and Arid Region Hydrology in the Middle Reaches[J]. Advances in Earth Science,2009,24(7):681-695.
    [26]Moran M S, Clarke T R, Inoue Y. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment,1994, 49(3):246-263.
    [27]Moran M S, Rahman A F, Washburne J C. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland[J]. Agricultural and Forest Meteorology,1996,80(4):87-109.
    [28]Olioso A, Chauki H, Courault D. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models[J]. Remote Sensing of Environment,1999, 68(3):341-356.
    [29]Olioso A, Inoue Y, Ortega-Farias S. Future directions for advanced evapotranspiration modeling:Assimilation of remote sensing data into crop simulation models and SVAT models[J]. Irrigation and Drainage Systems,2005,19(3):377-412.
    [30]Roerink G J, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing,2000,21(9): 1911-1917.
    [31]Schaake Jr J C. Science strategy of the GEWEX Continental-scale International Project (GCIP)[J]. Advances in Water Resources,1994,17(1-2):117-127.
    [32]Sellers P J, Bounoua L, Collatz G J. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate[J]. Science,1996,271(5254):1402-1406.
    [33]Sellers P J, Dickinson R E, Randall D A. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science,1997,275(5299):502-509.
    [34]Sellers P J, Hall F G, Asrar G. An overview of the first international satellite land surface climatology project (ISLSCP) field experiment (FIFE)[J]. Journal of Geophysical Research,1992, 97(17):345-371.
    [35]Sellers P J, Hall F G, Kelly R D. BOREAS in 1997:Experiment overview, scientific results, and future directions[J]. Journal of Geophysical Research,1997,102(24):731-769.
    [36]Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-99.
    [37]程国栋.黑河流域可持续发展的生态经济学研究[J].冰川冻土,2002,24(4):335-343.
    [38]高彦春,龙笛.遥感蒸散发模型研究进展[J].遥感学报,2008,12(3):515-528.
    [39]郭晓寅.黑河流域蒸散发分布的遥感研究[J].自然科学进展,2005,15(10):1266-1270.
    [40]胡隐樵,高由禧.黑河实验(HEIFE)—对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.
    [41]胡隐樵,高由禧,王介民.黑河试验(HEIFE)的一些研究成果[J].高原气象,1994,13(3):225-236.
    [42]贾绍凤,何希吾,夏军.中国水资源安全问题及对策[J].中国科学院院刊,2004,19(5):347-351.
    [43]康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,2004,20(1):1-6.
    [44]李新,马明国,王建.黑河流域遥感-地面观测同步试验,科学目标与试验方案[J].地球科学进展,2008,23(9):897-914.
    [45]刘绍民,孙睿,孙中平.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,2004,59(3):331-340.
    [46]吕达仁,陈佐忠.内蒙古半干旱草原气候—生态相互作用问题—IMGRASS计划初步结果[J].地学前缘,2002,9(2):307-320.
    [47]马耀明,王介民,黄荣辉.Remote Sensing Parameterization of Land Surface Heat Fluxes over Arid and Semi-arid Areas[J].大气科学进展:英文版,2003,20(4):530-539.
    [48]秦大河.中国气候与环境演变[M].科学出版社,2005.
    [49]秦大庸,吕金燕,刘家宏.区域目标ET的理论与计算方法[J].科学通报,2008,53(19):2384-2390.
    [50]芮孝芳.水文学原理[M].中国水利水电出版社,2004.
    [51]桑学锋,周祖昊,秦大庸.基于广义ET的水资源与水环境综合规划研究Ⅱ:模型[J].水利学报,2009,40(10):1153-1161.
    [52]王根绪,程国栋,徐中民.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报,1999,14(002):109-116.
    [53]王浩,秦大庸,王建华.西北内陆干旱区水资源承载能力研究[J].自然资源学报,2004,19(2):151-159.
    [54]王浩,杨贵羽,贾仰文.以黄河流域土壤水资源为例说明以“ET管理”为核心的现代水资源管理的必要性和可行性[J].中国科学:E辑,2009,39(10):1691-1701.
    [55]王介民.陆面过程实验和地气相互作用研究:从HEIFE到IMGRASS和GAME— Tibet/TIPEX[J].高原气象,1999,18(3):280-294.
    [56]王介民,高峰,刘绍民.流域尺度ET的遥感反演[J].遥感技术与应用,2003,18(5):332-338.
    [57]王介民,刘绍民,孙敏章.ET的遥感监测与流域尺度水资源管理[J].干旱气象,2005,23(2):1-7.
    [58]王介民,马耀明.卫星遥感在HEIFE非均匀陆面过程研究中的应用[J].遥感技术与应用,1995,10(3):19-26.
    [59]夏军,苏人琼,何希吾.中国水资源问题与对策建议[J].中国科学院院刊,2008,23(2):116-120.
    [60]夏军,孙雪涛,谈戈.中国西部流域水循环研究进展与展望[J].地球科学进展,2003,18(1):58-67.
    [61]肖洪浪,程国栋.黑河流域水问题与水管理的初步研究[J].中国沙漠,2006,26(1):1-5.
    [62]辛晓洲.用定量遥感方法计算地表蒸散[D].中国科学院研究生院(遥感应用研究所),2003.
    [63]徐中民,程国栋.运用多目标决策分析技术研究黑河流域中游水资源承载力[J].兰州大学学报:自然科学版.2000,36(2):122-132.
    [64]易永红,杨大文,刘钰.区域蒸散发遥感模型研究的进展[J].水利学报,2008,39(9):1 118-1124.
    [65]张强,黄荣辉,王胜.西北干旱区陆-气相互作用试验(NWC--ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427441.
    [66]郑度,陈述彭.地理学研究进展与前沿领域[J].地球科学进展,2001,16(5):599-606.
    [67]朱一中,夏军,谈戈.西北地区水资源承载力分析预测与评价[J].资源科学,2003,25(004):43-48.
    [68]田国良.热红外遥感[M].2006.北京:电子工业出版社.
    [1]阿艺林.黑河上游生态环境问题及其对策[J].水利科技与经济,2008,14(12):993-994.
    [2]曹宇,欧阳华,肖笃宁.额济纳天然绿洲景观变化及其生态环境效应[J].地理研究,2005,24(1):130-139.
    [3]陈江南,李会安,王国庆.黑河下游额济纳旗典型植被调查与分析[J].水土保持学报,2003,17(5):129-131.
    [4]陈仁升,康尔泗,杨建平.黑河流域山前绿洲水量转化模拟研究[J].冰川冻土,2003,25(5):566-573.
    [5]丁宏伟,赫明林.黑河中下游水资源开发中出现的问题地质问题[J].干旱区研究,2000,17(4):11-16.
    [6]都瓦拉,邓晓东,玉山.黑河下游分水对额济纳绿洲植被恢复效果的遥感监测[J].干旱气象,2008,26(4):67-70.
    [7]龚家栋,程国栋,张小由.黑河下游额济纳地区的环境演变[J].地球科学进展,2002,17(4):491-496.
    [8]龚家栋,李吉均.黑河上游水系发育特征分析[J].中国沙漠,2000,20(4):389-392.
    [9]郭铌,张杰,梁芸.西北地区近年来内陆湖泊变化反映的气候问题[J].冰川冻土,2003,25(2):21 1-214.
    [10]何志斌,赵文智,方静.黑河中游地区植被生态需水量估算[J].生态学报,2005,25(4):705-710.
    [11]胡孟春,蒋建国,张更生.黑河流域生态功能区划及其保护[J].农村生态环境,2002,18(1):1-5.
    [12]角媛梅,马明国,肖笃宁.黑河流域中游张掖绿洲景观格局研究[J].冰川冻土,2003,25(1):94-99.
    [13]康尔泗,程国栋,蓝永超.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J].中国科学,D辑,1999,29(1):48-54.
    [14]蓝永超,张济世.祁连山北麓出山径流对气候变化的响应[J].兰州大学学报:自然科学版,2001,37(4):125-132.
    [15]李栋梁,冯建英,陈雷.黑河流量和祁连山气候的年代际变化[J].高原气象,2003,22(2):104-1 10.
    [16]李林,王振宇,汪青春.黑河上游地区气候变化对径流量的影响研究[J].地理科学,2006,26(1):40-46.
    [17]李栋梁,刘洪兰.黑河流量对祁连山气候年代际变化的响应[J].中国沙漠,2004,24(4):385-391.
    [18]李森,李凡,孙武.黑河下游额济纳绿洲现代荒漠化过程及其驱动机制[J].地理科学,2004,24(1):61-67.
    [19]李志伟,蒋宏晖.黑河流域生态环境问题及对策[J].科技创新导报,2007(36):72-73.
    [20]刘树华,张霭琛.黑河试验中心区的气候特征[J].应用气象学报,1992,3(2):220-227.
    [21]马明国,王雪梅,角媛梅.基于RS与GIS的干旱区绿洲景观格局变化研究[J].中国沙漠,2003,23(1):53-58.
    [22]马燕,曹希强,李志萍.黑河下游额济纳地区环境演变及其驱动机制[J].气象与环境科学,2008,31(3):43-47.
    [23]任建华,李万寿.黑河干流中游地区耗水量变化的历史分析[J].干旱区研究,2002, 19(1):18-22.
    [24]尚彦林.黑河流域水源涵养林保护中存在的问题及对策[J].陕西林业科技,2008(3):88-90.
    [25]司建华,冯起,张小由.黑河下游分水后的植被变化初步研究[J].西北植物学报,2005,25(4):631-640.
    [26]孙自永,徐恒力,马瑞.黑河下游额济纳盆地景观空间格局动态变化分析[J].地质科技情报,2009(6):94-100.
    [27]王根绪,程国栋.荒漠绿洲生态系统的景观格局分析:景观空间方法与应用[J].干旱区研究,1999,16(3):6-11.
    [28]王根绪,程国栋.近50a来黑河流域水文及生态环境的变化[J].中国沙漠,2007,18(3):233-238.
    [29]王根绪,程国栋,徐中民.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报,1999,14(2):109-116.
    [30]王根绪,刘进其,陈玲.黑河流域典型区土地利用格局变化及影响比较[J].地理学报,2006,61(4):339-348.
    [31]王莉,马迎平,杨国宪.黑河下游生态环境变化的遥感分析[J].人民黄河,2009,31(12):9-10.
    [32]王宁练,张世彪,贺建桥.祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J].科学通报,2009,54(15):2148-2152.
    [33]吴艾笙,钟强.黑河实验区地表反射率与植被指数的季节变化[J].高原气象,1992,11(4):440-450.
    [34]肖洪浪,程国栋,李彩芝.黑河流域生态-水文观测试验与水-生态集成管理研究[J].地球科学进展,2008,23(7):666-670.
    [35]肖生春,肖洪浪.黑河流域水环境演变及其驱动机制研究进展[J].地球科学进展,2008,23(7):748-755.
    [36]张勃,孟宝,郝建秀.干旱区绿洲-荒漠带土壤水盐异质性及生态环境效应研究—以黑河中游张掖绿洲为例[J].中国沙漠,2006,26(1):81-84.
    [37]张光辉,聂振龙,刘少玉.黑河流域走廊平原地下水补给源组成及其变化[J].水科学进展,2005,16(5):673-678.
    [38]张济世,康尔泗.黑河中游水土资源开发利用现状及水资源生态环境安全分析[J].地球科学进展,2003,18(2):207-213.
    [39]张凯,王润元,韩海涛.黑河流域气候变化的水文水资源效应[J].资源科学,2007,29(1):77-83.
    [40]马明国.数字黑河数据库及其在生态—水文方面的应用研究[D]中科院寒旱所兰州
    [41]李新,马明国,王建,刘强,车涛,胡泽勇,肖青,柳钦火,苏培玺,楚荣忠,晋锐,王维真,冉有华,2008.黑河流域遥感—地面观测同步试验:科学目标与试验方案[J].地球科学进展,23(6):897-914.
    [42]李新,南卓铜,吴立宗,冉有华,王建,潘小多,王亮绪,李红星,祝忠明,2008.中国西部环境与生态科学数据中心:面向西部环境与生态科学的数据集成与共享[J].地球科学进展,23(6):628-637.
    [43]李新,程国栋,2008.流域科学研究中的观测和模型系统建设[J].地球科学进展,23(7):756-764.
    [44]程国栋,2009.黑河流域:水-生态-经济系统综合管理研究[M].北京:科学出版社.
    [45]仵彦卿,2010.中国西北黑河流域水文循环与水资源模拟[M].北京:科学出版社.
    [46]MODIS项目网站http://www.nfiieos.cn/.
    [1]Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of Hydrology,1998,212:198-212.
    [2]Bastiaanssen W G M, Noordman E J M, Pelgrum H, et al. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions[J]. Journal of irrigation and drainage engineering,2005,131:85-93.
    [3]Bastiaanssen W G M, Pelgrum H, Wang J, et al. A remote sensing surface energy balance algorithm for land (SEBAL):Part 2:Validation[J]. Journal of Hydrology,1998,212:213-229.
    [4]Bouchet R J. Evapotranspiration reelle et potentielle, signification climatique[J]. IAHS Publ, 1963,62:134-142.
    [5]Carlson T. An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery[J]. Sensors,2007,7(8):1612-1629.
    [6]Carlson T N, Arthur T. The impact of land use--land cover changes due to urbanization on surface microclimate and hydrology:a satellite perspective[J]. Global and Planetary Change,2000, 25(2):49-65.
    [7]Carlson T N, Gillies R R, Perry E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews,1994,9(1):161-173.
    [8]Carlson T N, Gillies R R, Schmugge T J. An interpretation of methodologies for indirect measurement of soil water content[J]. Agricultural and Forest Meteorology,1995,77(3-4): 191-205.
    [9]Caselles V, Sobrino J, Coll C. A physical model for interpreting the land surface temperature obtained by remote sensors over incomplete canopies[J]. Remote Sensing of Environment,1992, 39(3):203-211.
    [10]Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment,2007,106(3):285-304.
    [11]Davies J A, Allen C D. Equilibrium, potential and actual evaporation from cropped surfaces in southern Ontario[J]. J Appl Meteorol,1973,12(4):649-657.
    [12]Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature:a practical tool for evaluating water requirements[J]. Water Resour Res,1977,13(3):651-656.
    [13]Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces/Utilisation de la teledetection pour le suivi,de l'evapotranspiration sur les terres[J]. Hydrological Sciences Journal,1996,41(4):495-516.
    [14]Lambin E F, Ehrlich D. The surface temperature-vegetation index space for land cover and land-cover change analysis[J]. International Journal of Remote Sensing,1996,17(3):463-487.
    [15]Monteith J L. Evaporation and the environment[J]. Symp. Soc. Expl Biol,1965,19:205-234.
    [16]Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index [J]. Remote Sensing of Environment, 1994,49(3):246-263.
    [17]Moran M S, Rahman A F, Washburne J C, et al. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland[J]. Agricultural and Forest Meteorology,1996,80(4):87-109.
    [18]Nemani R, Pierce L, Running S, et al. Developing satellite-derived estimates of surface moisture status[J]. Journal of Applied Meteorology,1993,32(3):548-557.
    [19]Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data[J]. Journal of Applied Meteorology,1989,28(4): 276-284.
    [20]Noilhan J, Planton S. A simple parameterization of land surface processes for meteorological models[J]. Monthly Weather Review,1989,117(3):536-549.
    [21]Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology,1995,77(3-4):263-293.
    [22]Olioso A, Chauki H, Courault D. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models [J]. Remote Sensing of Environment,1999, 68(3):341-356.
    [23]Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,1948,193(1032): 120-145.
    [24]Price J C. Using spatial context in satellite data to infer regional scaleevapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(5):940-948.
    [25]Randall D A, Dazlich D A, Zhang C, et al. A revised land surface parameterization (SiB2) for GCMs. Part Ⅲ:the greening of the Colorado State University general circulation model[J]. Journal of Climate,1996,9(4):738-763.
    [26]Raupach M R, Finnigan J J, Brunei Y. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy[J]. Boundary-Layer Meteorology,1996,78(3):351-382.
    [27]Roerink G J, Su Z, Menenti M. S-SEBI:A simple remote sensing algorithm to estimate the surface energy balance[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2000,25(2):147-157.
    [28]Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data[J]. International Journal of Remote Sensing,1983,4(2):371-383.
    [29]Sellers P J, Los S O, Tucker C J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part Ⅱ:The generation of global fields of terrestrial biophysical parameters from satellite data[J]. Journal of Climate,1996,9(4):706-737.
    [30]Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part Ⅰ:Model formulation[J]. Journal of Climate,1996,9(4):676-705.
    [31]Shuttleworth W J, Wallace J S. Evaporation from sparse crops an energy combination theory, QJR Meteorol[J],1985,111:839-855.
    [32]Stewart J B, Kustas W P, Humes K S, et al. Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas[J]. Journal of Applied Meteorology,1994,33(9): 1110-1117.
    [33]Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-99.
    [34]Troufleau D, Lhomme J P, Monteny B, et al. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. Ⅰ. An experimental analysis of the kB-1 parameter[J]. Journal of Hydrology,1997,188:815-838.
    [35]Tsouni A, Kontoes C, Koutsoyiannis D, et al. Estimation of actual evapotranspiration by remote sensing:Application in Thessaly Plain, Greece[J]. Sensors,2008,8(6):3586-3600.
    [36]郭晓寅.黑河流域蒸散发分布的遥感研究[J].自然科学进展,2005,15(010):1266-1270.
    [37]郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展[J].地球科学进展,2004,19(1):107-114.
    [38]郭晓寅.黑河流域蒸散发的遥感估算[D].中科院寒旱所兰州.2002.
    [39]刘绍民,孙睿,孙中平.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,2004,59(3):33 1-340.
    [40]卢俐,刘绍民,孙敏章.大孔径闪烁仪研究区域地表通量的进展[J].地球科学进展,2005,20(9):932-938.
    [1]Bisht G, Venturini V, Islam S, et al. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days[J]. Remote Sensing of Environment,2005,97(1):52-67.
    [2]Choudhury B J, Ahmed N U, Idso S B, et al. Relations between evaporation coefficients and vegetation indices studied by model simulations[J]. Remote Sensing of Environment,1994,50(1): 1-17.
    [3]Choudhury B J, Digirolamo N E, Dorman T J. A comparison of reflectances and vegetation indices from three methods of compositing the AVHRR-GAC data over Northern Africa[J]. Remote Sensing Reviews,1994,10(4):245-263.
    [4]Fu P, Rich P M. A geometric solar radiation model with applications in agriculture and forestry[J]. Computers and electronics in agriculture,2002,37(1-3):25-35.
    [5]Fu, P., and P.M. Rich.2002. A geometric solar radiation model with applications in agriculture and forestry[J]. Computers and Electronics in Agriculture,37:25-35.
    [6]Rich P M, Dubayah R, Hetrick W A, et al. Using viewshed models to calculate intercepted solar radiation:applications in ecology[J]. American Society for Photogrammetry and Remote Sensing Technical Papers,1994.4524-529.
    [7]Fu, P. Rich, P. M. Design and implementation of the Solar Analyst:an Arc View extension for modeling solar radiation at landscape scales. Proceedings of the 19th Annual ESRI User Conference. San Diego, USA.1999.
    [8]Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1824-1832.
    [9]Jonsson P, Eklundh L. TIMESAT--a program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences,2004,30(8):833-845.
    [10]Karlsen S R, Tolvanen A, Kubin E, et al. MODIS-NDVI-based mapping of the length of the growing season in northern Fennoscandia[J]. International Journal of Applied Earth Observations and Geoinformation,2008,10(3):253-266.
    [11]Liang S. A direct algorithm for estimating land surface broadband albedos from MODIS imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):136-145.
    [12]Owen T W, Carlson T N, Gillies R R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization[J]. International Journal of Remote Sensing,1998,19(9):1663-1681.
    [13]Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical chemistry,1964,36(8):1627-1639.
    [14]Sobrino J A, Jimenez-Munoz J C, Paolini L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment,2004,90(4):434-440.
    [15]Sobrino J A, Raissouni N, Li Z L. A comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment,2001,75(2):256-266.
    [16]Su Z. Remote sensing of land use and vegetation for mesoscale hydrological studies[J]. International Journal of Remote Sensing,2000,21(2):213-233.
    [17]Tang B, Li Z L. Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data[J]. Remote Sensing of Environment,2008,112(9):3482-3492.
    [18]Wang W, Liang S. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data[J]. Remote Sensing of Environment,2009, 113(4):745-754.
    [19]查良松.我国地面太阳辐射量的时空变化研究[J].地理科学,1996,16(3):232-237.
    [20]陈良富,牛铮.非同温混合像元热辐射有效比辐射率概念及其验证[J].科学通报,2000,45(1):22-29.
    [21]程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008,(1):13-18.
    [22]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003,(3):58-62.
    [23]方秀琴,张万昌,刘三超.黑河流域叶面积指数的遥感估算[J].国土资源遥感,2004,(1):27-31.
    [24]高志强,刘纪远.基于陆面模式和遥感技术的地表温度比较[J].地理学报,2003,58(4):494-502.
    [25]郝成元,许传阳,吴绍洪.基于DEM模型和气候学计算的滇南山区太阳总辐射空间化[J].资源科学,2009,3 1(6):1031-1039.
    [26]何立明,阎广建,李小文.AMTIS单通道多角度热红外图像的大气订正[J].红外与毫米波学报,2006,25(6):429-433.
    [27]胡少英,张万昌.黑河及汉江流域MODIS叶面积指数产品质量评价[J].遥感信息,2005,(4):22-27.
    [28]惠凤鸣,田庆久,金震宇.植被指数与叶面积指数关系研究及定量化分析[J].遥感信息,2003,(2):10-13.
    [29]李开丽,蒋建军,茅荣正.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    [30]李苗苗.植被覆盖度的遥感估算方法研究[D].中国科学院研究生院(遥感应用研究所),2003.
    [31]李晓文,李维亮.中国近30年太阳辐射状况研究[J].应用气象学报,1998,9(1):24-31.
    [32]李新,程国栋,陈贤章.任意地形条件下太阳辐射模型的改进[J].科学通报,1999,44(9):993-998.
    [33]李召良.一种从中红外和热红外数据中反演地表比辐射率的物理算法[J].中国科E辑,2000,(30):18-26.
    [34]林忠辉,莫兴国.NDVI时间序列谐波分析与地表物候信息获取[J].农业工程学报,2006,22(12):138-144.
    [35]刘振华,赵英时,宋小宁.MODIS卫星数据地表反照率反演的简化模式[J].遥感技术与应用,2004,19(6):508-511.
    [36]柳钦火,徐希孺.遥测地表温度与比辐射率的迭代反演方法:理论推导与数值模拟[J].遥感学报,1998,2(1):1-9.
    [37]孟凡影.基于MODIS数据的地表温度反演方法[D].东北师范大学,2007.
    [38]牛宝茹,刘俊蓉,王政伟.干旱半干旱地区植被覆盖度遥感信息提取研究[J].武汉大学学报:信息科学版,2005,30(1):27-30.
    [39]秦伟,朱清科,张学霞.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报,2006,34(9):1 63-1 70.
    [40]邱国全,夏艳君.晴天太阳辐射模型的优化计算[J].太阳能学报,2001,22(4):456-460.
    [41]覃志豪,Minghua Z, Karnieli A.用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报,2001,56(4):456-466.
    [42]覃志豪,李文娟,徐斌.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,3(61):28-32.
    [43]王红说,黄敬峰,徐俊锋.基于MODIS NDVI时间序列谱匹配的耕地信息提取研究——以浙中地区为例[J].浙江大学学报:农业与生命科学版,2008,34(3):334-340.
    [44]王介民,高峰.关于地表反照率遥感反演的几个问题[J].遥感技术与应用,2004,19(5):295-300.
    [45]王希群,马履一,贾忠奎.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
    [46]徐希孺,庄家礼,陈良富.热红外多角度遥感和反演混合像元组分温度[J].北京大学学报:自然科学版,2000,36(4):555-560.
    [47]严燕儿,赵斌,郭海强.生态系统碳通量估算中耦合涡度协方差与遥感技术研究进展[J].地球科学进展,2008,23(8):884-894.
    [48]尹楠,周云轩,王黎明.NOAA/AVHRR的分裂窗算法在地表温度反演中的应用[J].测绘与空间地理信息,2005,28(4):8-11.
    [49]俞宏,石汉青.利用分裂窗算法反演陆地表面温度的研究进展[J].气象科学,2002,22(4):494-500.
    [50]张家诚.太阳辐射—地球环境变化的能源[J].气象知识,2006,(6):46-48.
    [51]张娜,于贵瑞,赵士洞.基于遥感和地面数据的景观尺度生态系统生产力的模拟[J].应用生态学报,2003,14(5):643-652.
    [52]朱文娟.基于ETM+热红外波段的南京地区地表温度反演算法研究[D].南京农业大学,2008.
    [53]邹基玲,侯旭宏.黑河地区夏末太阳辐射特征的初步分析[J].高原气象,1992,1(4):381-388.
    [54]赵英时.遥感应用分析原理与方法[M].北京:科学出版社.2003.
    [55]郭铌.植被指数及其研究进展[J].干旱气象,2003,21(4):71-75.
    [56]MODIS User Guide:http://tbrs.arizona.edu/project/MODIS
    [57]ArcGIS Desktop Help 9.2. http://webhelp.esri.com/
    [58]周纪,李京,张立新.针对MODIS数据的地表温度反演算法检验-以黑河流域上游为例[J].冰川冻土,2009,31(2):239-246.
    [1]Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of Hydrology,1998,212:198-212.
    [2]Bastiaanssen W G M, Pelgrum H, Wang J, et al. A remote sensing surface energy balance algorithm for land (SEBAL):Part 2:Validation[J]. Journal of Hydrology,1998,212:213-229.
    [3]Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-99.
    [4]Su Z, Yacob A, Wen J. Assessing relative soil moisture with remote sensing data:theory, experimental validation, and application to drought monitoring over the North China Plain[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(1-3):89-101.
    [5]何延波,Su Z, Jia LI. SEBS模型在黄淮海地区地表能量通量估算中的应用[J].高原气象,2006,25(6):1092-11 00.
    [6]李新,马明国,王建.黑河流域遥感-地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008,23(9):897-914.
    [7]秦大庸,吕金燕,刘家宏.区域目标ET的理论与计算方法[J].科学通报,2008,53(19):2384-2390.
    [8]王介民,高峰,刘绍民.流域尺度ET的遥感应用[J].遥感技术与应用,2003,18(5):332-338.
    [9]王介民,刘绍民,孙敏章.ET的遥感监测与流域尺度水资源管理[J].干旱气象,2005,23(2):1-7.
    [10]周祖昊,王浩,秦大庸.基于广义ET的水资源与水环境综合规划研究Ⅰ:理论[J].水利学报,2009,40(9):1 1-16.
    [1]Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model [J]. Journal of irrigation and drainage engineering, 2007,133(4):381-394.
    [2]Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of Hydrology,1998,212:198-212.
    [3]Crago R D. Conservation and variability of the evaporative fraction during the daytime[J]. Journal of Hydrology,1996,180(4):173-194.
    [4]Cragoa R, Brutsaert W. Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio[J]. Journal of Hydrology,1996,178(4):241-255.
    [5]Jackson R D, Hatfield J L, Reginato R J, et al. Estimation of daily evapotranspiration from one time-of-day measurements[J]. Agricultural Water Management,1983,7(3):351-362.
    [6]Nichols W E, Cuenca R H. Evaluation of the evaporative fraction for parameterization of the surface energy balance[J]. Water Resources Research,1993,29(11):3681-3690.
    [7]Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-99.
    [8]Wang K, Li Z, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI:A new method to determine the Priestley-Taylor parameter[J]. Remote Sensing of Environment,2006,102(4):293-305.
    [9]王根绪,程国栋.干旱内陆流域生态需水量及其估算-以黑河流域为例[J].中国沙漠,2002,22(2):129-134.
    [10]肖洪浪,程国栋.黑河流域水问题与水管理的初步研究[J].中国沙漠,2006,26(1):1-5.
    [11]谢贤群.遥感瞬时作物表面温度估算农田全日蒸散总量[J].环境遥感,1991,6(4):253-260.
    [12]田国良.热红外遥感[M].北京:电子工业出版社.2006.
    [13]赵英时.遥感应用分析原理与方法[M].北京:科学出版社.2003.
    [14]芮孝芳.水文学原理[M].北京:中国水利水电出版社.2004.
    [15]程玉菲黑河干流中游平原作物蒸发蒸腾量时空分布研究[D].兰州:兰州大学资源环境学院,2007.
    [16]田辉.内陆河黑河流域复杂地表蒸散发量遥感研究[D].兰州:中科院寒区旱区环境与工程研究所.2008
    [17]Shan Xin. Regional Evapotranspiration over the Arid Inland Heihe River Basin in Northwest China[D].The Netherlands:International Institute for Geo-information Science and Earth Obervation.2007.
    [18]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟[J].水利学报,2006,37(5):534-542.
    [19]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(II)——模型应用[J].水利学报,2006,37(6):655-661.
    [20]李星敏,卢玲,李新.黑河流域日蒸散发遥感估算研究[J].高原气象,29(1):109-114.
    [21]田辉,文军,马耀明.夏季黑河流域蒸散发量卫星遥感估算研究[J].水科学进展,2009,20(1):18-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700