干旱、半干旱区陆面过程气候特征及其对比分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用西北极端干旱区敦煌2000年9月—2001年8月陆面过程观测资料,河西走廊干旱区中部张掖地区2005年11月—2006年10月的陆面过程观测资料,黄土高原半干旱区“定西陆面过程综合观测试验站”2004年11月—2005年10月的陆面过程资料以及兰州大学半干旱气候与环境观测站2008年11月—2009年10月的陆面过程观测资料,综合分析了各个气候区的土壤温、湿度,降水量,地表反照率,地表辐射分量和能量平衡分量等物理量的年变化和日变化分布特征及其影响机制,研究了地表反照率与降水量及土壤湿度的相关关系。对四个不同气候区的陆面过程特征进行了综合的比较与对比。并得出以下几点结论:
     1.对于西北极端干旱区敦煌,其地表温度年较差超过42℃;地表反照率年变幅较大;净辐射夏季是冬季的4倍左右;日变化中向下和向上长波辐射的变化趋势比短波辐射滞后1小时左右。
     2.对于河西走廊干旱区中部,冬季土壤湿度变化对降水的响应要滞后1—2个月;地表反照率随土壤湿度的增大是减小的,两者的相关系数达到了0.7346;土壤冬季向大气输出热量而夏季转变为大气向土壤输入热量,且输入的热量要大于输出;随季节变化土壤热通量的日最大值冬季出现最晚,夏季最早。
     3.对于黄土高原半干旱区榆中,10cm土壤湿度最大,5—10cm以及20—40cm土壤深度范围内有逆湿存在;地表反照率与随壤湿度的增大而减小,而随降雪量的增大而增大;潜热通量秋季是冬季的6倍左右;土壤温度日波形向下传播速度约为1.5h-3h/10cm;净辐射日积分值仅占总辐射的33%,而土壤热通量还不到净辐射的1%。典型晴天时地表反照率上午大于下午;有降雨发生时地表反照率日变化比较平缓,且数值偏低;降雪天气状况下地表反照率日变化明显增大,并且波动较大。
     4.黄土高原半干旱区定西的土壤温度日波形向下传播速度约为2.5h—3.5h/10cm;地表反照率与土壤湿度相关系数为0.5348,而与降雪量的相关系数为0.6307;年平均日变化中地表和大气对太阳辐射加热大约需要1个小时的响应时间;潜热通量夏季是冬季的5倍多,感热通量有了两个比较明显的峰值,潜热通量、感热通量和土壤热通量的日峰值比净辐射滞后30min一1h.
     5.干旱区各层土壤温度年变化均比半干旱区剧烈;半干旱区土壤湿度在整体上要比干旱区大很多;全年地表反照率是敦煌最大,定西次之,张掖最小;除净辐射以外,敦煌的各辐射通量年变幅均最明显,半干旱区的相对较小;半干旱区的净辐射年变幅要比干旱区的大,定西要超出敦煌将近50%;由Bowen比可以看出定西地区比榆中偏旱。定西地区地表反照率的日变化波动不如榆中的明显;榆中地区的净辐射的日积分在总辐射中所占比例相对最大,定西地区比榆中的小16.8%左右,张掖的最小;定西地区几乎全天Bowen比均小于1。
By utilizing the integrated data of land-surface processes observed in Dunhuang arid region in northwest China from Sep.2000 to Aug.2001, observed the middle of arid region in Hexi Corridor in Zhangye from Nov.2005 to Oct.2006, observed Dingxi Synthetical Experimental Observatory of Land Surface Process in the Semi-arid Region in the Loess Plateau from Nov.2004 to Oct.2005, in and observed at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) from Nov.2008 to Oct.2009, the annual and daily variation characteristics and the mechanism of influence of soil temperature, soil moisture, precipitation, surface albedo, surface radiation components and energy balance components in each climate region are systematically analyzed. As well as, the relationship between surface albedo and soil moisture, also and precipitation are researched. Then the characteristics of land surface process in the four different climate regions are compared and contrasted. The following conclusions are obtained.
     1. In Dunhuang the extreme arid region in northwest China, the annual range of ground surface temperature exceeds 42℃. The annual range of surface albedo is quite large. The net radiation in summer is four times more than in winter. The daily variation of upward and downward long-wave radiation lag about 1 hour hours to the net radiation.
     2. In the arid region in Hexi Corridor, the response of soil moisture to the precipitation in winter delays 1 or 2 months. Surface albedo increases with the soil moisture decreasing, and their correlation coefficient reaches 0.7346. The soil heat flux is exported from soil to the air in winter while imported from air to the soil in summer. The import is lager than export. The diurnal maximum of soil heat moisture is the latest in winter and earliest in summer.
     3. In Yuzhong the semi-arid region in the Loess Plateau, the 10cm soil moisture is the biggest. There is a moisture inversion layer between 5 and 10 cm below the ground, as well as between 20 and 40cm. The surface albedo decreases with soil moisture increasing, while increasing with snow precipitation increasing. The latent heat flux in autumn is about 6 times as large as in winter. The downward transfer velocity of soil temperature daily waveform is about 1.5h-3h/10cm. The daily integral of net radiation is only 33%of global radiation, and the soil heat flux do not reach 1%of net radiation. The surface albedo in the morning is bigger than in the afternoon in the typical sunny day. The surface albedo varies gently when it rains, and its value is small. The surface albedo increases significantly when it snows, and the fluctuation is big.
     4. In Dingxi the semi-arid region in the Loess Plateau, the downward transfer velocity of soil temperature daily waveform is about 2.5h-3.5h/10cm. The correlation coefficient of surface albedo with soil moisture is 0.5338. While the correlation coefficient with snow precipitation is 0.6645. It takes 1 hour for solar radiation to heat the surface and atmosphere. Latent heat flux in summer is five times more than in winter. There are two obvious peak value of sensible heat flux. The daily peak values of latent heat flux, sensible heat flux, and soil heat flux lag 30 minutes-1 hour to the net radiation.
     5. The annual variation of soil temperature in the arid region is stronger than in the semi-arid region. On the whole, the soil moisture in semi-arid region is much greater than in arid region. The mean surface albedo of Dunhuang is the largest, and the smallest of Zhangye. The annual range of radiation components in Dunhuang is the most obvious, except the net radiation, and they are quite small in semi-arid regions. The annual range of net radiation in semi-arid region is lager than in arid region, and the one in Dingxi exceeds 50%more than in Dunhuang. It's drier in Yuzhong than in Dingxi by the Bowen ratio. The daily fluctuation of surface albedo is less obvious in Dingxi than in Yuzhong. The daily integral of net radiation of global radiation in Yuzhong is smallest, while it's 16.8%more than in Dingxi, and it's smallest in Zhangye. The Bowen ratio is less than 1 all day in Dingxi.
引文
[1]IPCC. Climate change 2001:the scientific basis. In:Houghton J T, Ding Y H, Griggs D J(eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; Cambridge University Press,2001.881.
    [2]Myneni R B, Tucker C J, Asar G et al. Internal variations in satellite-sensed vegetation index data from 1981 to 1991 [J]. J. Geophysical Research,1998,103 (6):6145-6160.
    [3]Myneni R B, Keeling C D, Tucker C J et al. Increased plant growth in the northern high latitudes from 1981-1991[J].Nature,1997,386:698-702.
    [4]张强,胡隐樵.大气边界层物理学的研究进展和面临的科学问题[J].地球科学进展,2001,16(4):526-532.
    [5]孙岚,吴国雄.陆面蒸散对气候变化的影响[J].中国科学D辑.2001,31(1):59-69.
    [6]牛国跃,洪钟祥,孙菽芬.陆面过程研究的现状与发展趋势[J].地球科学进展.1997,12(1):20-25.
    [7]姚德良,李家春,李新荣等.十旱区陆面过程野外观测研究[J].中国沙漠,2001,21(3):254-259.
    [8]胡隐樵,高由禧.黑河实验(HEIFE)对干旱地区陆面过程的一些新认识[J].气象学报.1994,52(3):285-296.
    [9]李敏,蒋维楣,李昕等.大气边界层湍流的动力非平稳性的验证[J].地球物理学报.2005,48(3):492-500.
    [10]Cramer W P. R Leemans. Assessing impacts of climate change on vegetation using climate classification systems. In:Solomon A M. Shugart H H(eds.), Vegetation Dynamics and Global Change, London:Chapman and Hall,1993,190-217.
    [11]Sellers P J r Hall FG. FIFE in 1992:Results, scientific gains r and future research directions. J Geophy Res, 1992,97(D17):19091—19109.
    [12]Yeh T C, We therald R T, Manabe S. The effect of soil moisture on short term climate and hydrology change-A numerical experiment. Monthly Weather Review,1984.112:474—490.
    [13]Deardoff J W. Efficient prediction of ground surface temperature and moisture with inclusion of a layer vegetation [J]. J Geophy Res,1978,83:1889-1963.
    [14]Chervin R M. Response of the NCAR general circulation model to changed land surface albedo [R]. Report of the JOC Study Conference on Climate Models: Performance, Intercom parision And Sensitivity Studies. GARP Publ Series,1979,1 (22):563-581.
    [15]Manhatan, Karnsas. Report of Third Session of J SC Working Group on Land Surface Processes and Climate[R]. World Meteorological Organization (WMO).1987, WCRP-8, WMO/TD-No.232.
    [16]Yamazaki N, Kalahari H, yatagai A, et al. Current status of GAME reanalysis project and some preliminary results [C].//Internation GAME/HUBEX, Workshop. Sapporo:12-14 September.2000:24-29.
    [17]Sellers P J, Hall F G, Asrar G, et al. The first ISLSCP field ex2periment (FIFE) [J]. Bulletin of the American Meteorological Society,1988,69:22-27.
    [18]Steven P Oncley, FokenT, Vogt R, et al. The energy Balance Experiment EBEX-2000 [C].//15th Conference on Boundary Layer and Turbulence. Wageningen: American Meteorology Society.2002:1-4.
    [19]Bolle H J, AndereJ C, Arrue, et al. EFEDA-European field experiment in a desertification-threatened area [J]. Annual Geophysics,.1993,11 (2):173-189.
    [20]杨兴国,牛生杰,郑有飞.陆面过程观测试验研究进展[J].干旱气象,2003,21(3):83-89.
    [21]Piers Sellers, Forrest Hall, K Jon Ranson, et al. The boreal ecosystem Atmosphere Study (BOREAS):An overview and early results from the 1994 field year [J]. Bulletin of the American Meteorological Society.1995, 76(9):1549-1577.
    [22]胡隐樵,奇跃进,杨选利.河西戈壁(化音)小气候和热量平衡特征的初步分析[J].高原气象,1992,11 (2):113-119.
    [23]邹基玲,侯旭宏,季国良.黑河地区夏末太阳辐射特征的初步分析[J].高原气象,1992,11(4):381-388.
    [24]沈志宝,邹基玲.黑河地区沙漠和绿洲的地面辐射收支[J].高原气象,1994,13(3):316-323.
    [25]季国良,马晓燕,邹基玲等.黑河地区绿州和沙漠地面辐射收支的若干特征[J].高原气象,2003,21(3):29-33.
    [26]Hu Yinqiao, Xueli Yang, Qiang Zhang. The characters of energy budget on the Gobi and desert surface in Hexi region [J]. ACTA Meteor Sin,1992,26:82-91.
    [27]张强,胡隐樵.黑河地区绿洲内农田的气象特征[J].高原气象,1992,11(3):361-370.
    [28]左洪超,胡隐樵.黑河地区农田和戈壁小气候特征对比分析及其季节变化[J].高原气象,1996,13(3):246-256.
    [29]吕达仁,陈佐忠,陈家宜等.内蒙古半干旱草原土壤—植被—大气相互作用(IMGRASS)综合研究[J].地学前缘,2002,9(2):295—306.
    [30]吕达仁,陈佐忠,王庚辰等.内蒙古半干旱草原气候—生态相互作用问题——IMGRASS计划初步结果[J].地学前缘,2002,9(2):307—320.
    [31]刘辉志,洪钟祥.青藏高原改则地区近地层湍流特征[J].大气科学,2000,24(3):289—300.
    [32]王介民.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME—Tibet/TIPEX[J].高原气象,1999,18(3):280—294.
    [33]Zhang Q, Huang H. Water vapor exchange between soil and atmosphere over a Gobi surface near an oasis in summer [J]. Journal of Applied Meteorology,2004,43 (12):1917-1928.
    [34]Zhang Q, Huang H. Parameters of land surface processes on Gobi in Northwest China [J] Boundary-Layer Meteorology,2004,110 (3):471-478.
    [35]张强,卫国安,黄荣辉.敦煌戈壁大气曳力系数的观测与研究[J].中国科学,2001,31(9):783-792.
    [36]张强,黄荣辉,卫国安等.西北干旱区陆面过程观测野外试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441.
    [37]张强,周毅.敦煌绿洲夏季典型晴天地表辐射和能量平衡及小气候特征[J].植物生态学报,2002,26(6):717-723.
    [38]张强,曹晓彦.敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J].大气科学,2003,27(2):245-254.
    [39]王胜,张强,卫国安,等.降水对荒漠土壤水热性质强迫研究[J].高原气象,2004,23(2):253-258.
    [40]张强,王胜.干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究[J].自然科学进展,2007,17(2):211-216.
    [41]张强,王胜,张杰等.干旱区陆面过程和大气边界层研究进展[J].地球科学进展,2009,24(11):1185-1194.
    [42]孙菽芬.陆面过程研究的进展[J].新疆气象,2002,25(6):1-6.
    [43]Diekinson RE. Henderson-Sellers A, Kennedy PJ, et al. Biosphere-Atmosphere transfer Scheme (BATS) for the NCAR Community Climate Model [R]. NCAR Techn. Note-275+STR,1986.
    [44]Diekinson RE., Henderson-Sellers A, Kennedy pJ. Biosphere-atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model[R]. NCAR/TN387+STR,1993.
    [45]Sellers PJ, Mintz Y, Stu YC, et al. A simple biosphere model (Sib) for use with general circulation models [J]. J Atmos Sci,1986,43:505-531.
    [46]Bonan G B. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological and Atmospheric Studies: Technical Description and User's Guide [R]. NCAR Technical Note/TN-417+STR,1996.
    [47]Sellers PJ, Randall DA, Collatz GJ, et al.1996a: A revised land surface parameterization (SIB2) formulation. Journal of Climate,9,676-705.
    [48]Sellers P.J, SO. Los, C.J. Tueker, et al.1996b: A revised land surface parameterization (SIB2) for atmospheric GCMs. Part Ⅱ:The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate,9,706-737.
    [49]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000:4-10.
    [50]韦志刚,文军,吕世华等.黄土高原陆—气相互作用预试验及其地表能量平衡特征[J].高原气象,2005,24(4):494-497.
    [51]Wen J un, Wei Zhigang, LuShihua, et al. The characteristics of land surface energy and water exchange over the loess plateau mesa in China [J]. Advances in Atmospheric Sciences,2007,24 (2):301 ~310
    [52]刘远永,文军,韦志刚等.黄土高原塬区地表辐射和热量平衡观测与分析[J].高原气象,2007,26(5):928~937.
    [53]王锡稳,王毅荣,张存杰.黄土高原典型半干旱区水热变化及其土壤水分响应.中国沙漠,2007,27(1):123-129.
    [54]杨兴国,张强,王润元等.陇中黄土高原夏季地表能量平衡观测研究[J].高原气象,2004,23(6),828-834.
    [55]杨兴国,马鹏里,王润元等.陇中黄土高原夏季地表辐射特征分析[J].中国沙漠,2005,25(1):55-62.
    [56]杨启国,杨兴国,马鹏里等.陇中黄土高原冬季地表辐射和能量平衡特征[J].地球科学进展,2005,20(9):1012-1021.
    [57]闭建荣,黄建平,刘玉芝等.黄土高原半干旱区地表辐射特征[J].兰州大学学报(自然科学版),2008,44(3):33-38.
    [58]张强,王胜.关于黄土高原陆面过程及其观测试验研究[J].地球科学进展,2008,23(2):167-173.
    [59]张强,胡向军,王胜等.黄土高原陆面过程试验研究(LOPEX)有关科学问题[J].地球科学进展,2009,24(4):363-371.
    [60]张强、胡隐樵.“HEIFE”中“中方”微气象塔的仪器精度观测误差.高原气象,1992,11(4),460-469.
    [61]王介民,崔铁民,玉川一郎.一种湍流数据采集与实时处理系统.高原气象,1992,11(4),451-459.
    [62]姜晓勇,张勃,张遇春.张掖地区近35年来气温和降水的变化[J].干旱区资源与环境,2008,22(2).
    [63]Huang J P.2008. An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences (in Chinese),25(6):906-921.
    [64]孙治安,翁笃鸣.青藏高原地区地表及行星反照率[J].应用气象学报,1994,5(4):394-401.
    [65]徐兴奎,林朝晖.青藏高原地表月平均反照率的遥感反演[J].高原气象,2002,21(3):233-237.
    [66]陈向红.地面反照率与若干气象因子关系的初步分析[J].成都气象学院学报,1999,50(3):233-238.
    [67]冯超,古松,赵亮登.青藏高原三江源区退化草地生态系统的地表反照率特征[J].高原气象,2010,29(1):70-77.
    [68]Zhang Qiang, Wang Sheng, Wei Guoan. Study on physical parameters of local land-surface processes on Gobi in Northwest China [J]. Chinese Journal of Geophysics,2003,46(5):883-895.
    [69]沈志宝.藏北地区冬季降雪对地面反照率的影响[J].高原气象,1996,15(3):165-171.
    [70]李英,胡泽勇.藏北高原地表反射率的初步分析研究[J].高原气象,2006,25(6):1034-1040.
    [71]胡隐樵.黑河实验(HEIFE)能量平衡和水汽输送研究进展[J].地球科学进展,1994,9(4):32-34.
    [72]张强,曹晓彦.敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J].大气科学,2003,27(2):245—254.
    [73]Pat rick Wagnon, Pierre Ribstein, Georg Kaser, et al. Energy balance and runoff seasonality of a Bolivian glacier [J]. Global and Planetary Change,1999,44 (14):49-58.
    [74]Pat rick Wangon, J ean-Emmanuel Sicart, Etinne Bert hier, et al. Winter time high-altitude surface energy balance of a Bolivian glacier, Illimani,6340 m above sea level [J]. J Geophys Res,2003,108 (D6):4177-4190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700