ABCG2和V-ATPase在非小细胞肺癌中的表达及与化疗药物耐药相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     检测ABCG2和V-ATPase在非小细胞肺癌(NSCLC)组织中的表达,分析ABCG2和V-ATPase在NSCLC病理分类、TNM分期、病理分级中的表达差异性以及二者表达的相关性。分析二者表达与相应肿瘤组织对化疗药物耐药性的相关性。
     方法:
     收集临床NSCLC组织样本,采用免疫组化EnVinsion法和RT-PCR方法检测ABCG2和V-ATPase在NSCLC中的表达,采用MTT法检测细胞对化疗药物耐药性。用统计学软件分析ABCG2和V-ATPase表达的差异性和相关性,以及和耐药性的相关性。
     结果:
     ABCG2、V-ATPase在腺癌和鳞癌中有表达。二者在鳞癌、腺癌的表达均有差异。ABCG2在腺癌TNM分期中的表达差异性显著;在腺癌和鳞癌病理分级的表达差异性显著,P值分别为0.028、0.000。V-ATPase在腺癌TNM分期、鳞癌病理分级间的表达存在差异。在总体样本及腺癌、鳞癌中ABCG2和V-ATPase表达的相关性检验显示二者存在相关性(P<0.001)。腺癌的耐药性高于鳞癌。ABCG2和V-ATPase的表达量和样本对环磷酰胺、顺铂、卡铂的耐药性相关。
     结论:
     ABCG2的表达水平与腺癌的临床分期有关,和腺癌、鳞癌的恶性程度有关;V-ATPase的表达水平与腺癌的临床分期有关,与鳞癌恶性程度有关。ABCG2和V-ATPase的表达存在相关关系。V-ATPase和ABCG2可能共同参与NSCLC多药耐药的形成。
OBJECTIVE:
     To determine the expressions of ABCG2 and V-ATPase in NSCLC and the expression correlation between ABCG2 and V-ATPase. To investigate the correlation between their expression rates and drug-resistance.
     METHODS:
     Expressions of ABCG2 and V-ATPase were accessed with EnVinsion immunohistochemistry and RT-PCR in tumor samples. Their drug resistance to cyclophosphamide, 5-FU, GEM, TAX, DDP, Doxorubicin, NVB, HCPT, CBP were evaluated by MTT assay. The corresponding data was analyzed statistically.
     RESULT:
     Expressions of ABCG2 and V-ATPase were found both in the lung adenocarcinoma and squamous cell lung cancer. ABCG2 is expressed significantly differently among TNM stages of lung adenocarcinoma as well as among pathological grades of lung adenocarcinoma (P=0.028) and squamous cell lung cancer (P=0.000). The level of V-ATPase expression was associated with TNM stages of lung adenocarcinoma and pathological grades of squamous cell lung cancer. Additionally, significant correlation was found between expression of ABCG2 and V-ATPase in all samples, adenocarcinoma and squamous cell cancer (P<0.001). In the MTT assay, it shows higher resistance level in the adenocarcinoma than in the squamous cell lung cancer. The correlation between the expression of ABCG2 and V-ATPase and the drug resistance level to cyclophosphamide, CBP and DDP is significant .
     CONCLUSION:
     The level of ABCG2 expression is associated with TNM stages of lung adenocarcinoma as well as the degree of the malignancy of both squamous cell lung cancer and lung adenocancinoma. The levels of V-ATPase expression were associated with TNM stages of lung adenocarcinoma and the degree of malignancy of squamous cell lung cancer. Significant correlation was found between expression of ABCG2 and V-ATPase, which indicated that they may co-work to participate the machanism of anticancer drug resistance.
引文
[1] Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal[J]. Cancer Sci, 2003, 94(1):15- 21.
    [2] Huang Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy[J]. Cancer Metastasis Rev, 2007, 26:183- 201.
    [3] Stavrovskaya AA, Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells[J]. Biochemistry, 2008, 73:592- 604.
    [4] Chen YN, Mickley LA, Schwartz AM, et al. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein [J]. Biol Chem, 1990, 265:73- 80.
    [5] Sarkadi B, Homolya L, Szakacs G, et al. Human multidrug resistance ABCB and ABCG transporters: participation in chemoimmunity defense system[J]. Physiol Rev, 2006, 86:179- 236.
    [6] Scheffer GL, Pijnenborg AC, Smit EF, et al. Multidrug resistance related molecules in human and murine lung [J]. Clin Pathol, 2002, 55: 332- 339.
    [7] Brechot JM, Hurgain I, Fajac A, et al. Different pattern of MRP localization in ciliated and basal cells from human bronchial epithelium [J]. Histochem Cytochem, 1998, 46: 513- 517.
    [8] Flens MJ, Zaman GJ, van der Valk P, et al. Tissue distribution of the multidrug resistance protein. Am [J]. Pathol, 1996, 148: 1237- 1247.
    [9] Wright SR, Boag AH, Valdimarsson G, et al. Immunohistochemicaldetection of multidrug resistance protein in human lung cancer and normal lung [J]. Clin Cancer Res, 1998, 4: 2279- 2289.
    [10] Kool M, Haas M, Scheffer GL, et al. Analysis of expression of MRP2, MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines [J]. Cancer Res, 1997, 57: 3537- 3547.
    [11] Mason RJ, Shannon JM. Alveolar type II cells in the lung, 1977, 543- 555.
    [12] Diestra JE, Scheffer GL, Catala I, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material [J]. Journal of Pathology, 2002, 198 (2): 213- 219.
    [13] Abbott BL, Colapietro AM, Barnes Y, et al. Low levels of ABCG2 expression in adult AML blast samples [J]. Blood, 2002, 100 (13): 4594- 4601.
    [14] Steinbach D, Sell W, Voigt A, et al. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia [J]. Leukemia, 2002, 16 (8): 1443- 1447.
    [15] Sauerbrey A, Sell W, Steinbach D, et al. Expression of the BCRP gene (ABCG2/ MXR/ ABCP) in childhood acute lymphoblastic leukaemia [J]. British Journal of Haematology , 2002, 118 (1): 147- 150.
    [16] Plasschaert SL, van der Kolk DM, Bont ES, et al. The role of breast cancer resistance protein in acute lymphoblastic leukemia [J]. Clinical Cancer Res, 2003, 9 (14): 5171- 177.
    [17] Benderra Z, Faussat AM, Sayada L, et al. Breast cancer resistance protein and P-gly coprotein in 149 adult acute myeloid leukemias [J]. ClinicalCancer Res, 2004, 10 (23): 7896- 7902.
    [18] Nakayama K, Kanzaki A, Ogawa K, et al. Coppertransporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP [J]. International Journal of Cancer, 2002, 101 (5): 488- 495.
    [19] Faneyte IF, Kristel PM, Maliepaard M, et al. Expression of the breast cancer resistance protein in breast cancer. Clinical Cancer Res, 2002, 8 (4): 1068- 1074.
    [20] Tsunoda S, Okumura T, Ito T, et al. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma [J]. Oncology, 2006,71 (3–4): 251- 258.
    [21] Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinumbased chemotherapy for advanced non-small cell lung cancer [J]. Clinical Cancer Res, 2004, 10 (5): 1691- 1697.
    [22] Jin Y, Bin ZQ, Qiang H, et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma [J]. Journal of Cancer Research and Clinical Oncology, 2009, 135 (10): 1369- 1376.
    [23] Chen Z, Liu F, Ren Q, et al. Suppression of ABCG2 inhibits cancer cell proliferation [J]. International Journal of Cancer, 2010, 126 (4): 841- 851.
    [24] Sawyers C. Targeted cancer therapy. Nature, 2004, 432 (7015): 294- 297.
    [25] Honjo Y, Hrycyna CA, Yan QW, et al. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP overexpressing cells [J]. Cancer Res, 2001, 61 (18): 6635- 6639.
    [26] E.L. Volk, K.M. Farley, Y.Wu, F. Li, R.W. Robey, E. Schneider,Overexpression of wildtype breast cancer resistance proteinmediates methotrexate resistance, Cancer Res. 62 (17) (2002) 5035–5040.
    [27] Allen JD, Jackson SC, Schinkel AH. A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance [J]. Cancer Res, 2002, 62 (8): 2294- 2299.
    [28] Chen ZS, Robey RW, Belinsky MG, et al. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport [J]. Cancer Res, 2003, 63 (14): 4048- 4054.
    [29] Volk EL, Farley KM, Wu Y, et al. Overexpression of wildtype breast cancer resistance proteinmediates methotrexate resistance [J]. Cancer Res, 2002, 62 (17): 5035–5040.
    [30] Ozvegy C, Varadi A, Sarkadi B. Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation [J]. Biol. Chem, 2002, 277 (50): 47980- 47990.
    [31] Ejendal KF, Diop NK, Schweiger LC, et al. The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding [J]. Protein Sci, 2006, 15 (7): 1597- 1607.
    [32] Hazai E, Bikadi Z. Homology modeling of breast cancer resistance protein (ABCG2) [J]. Struct. Biol, 2008, 162 (1): 63- 74.
    [33] Li Y.F, Polgar O, Okada M, et al. Towards understanding the mechanism of action of the multidrug resistance-linked half-ABC transporter ABCG2: a molecular modeling study [J]. Mol. Graph Model, 2007, 25 (6): 837- 851.
    [34] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATPdependent transporters [J]. Nat. Rev. Cancer, 2002, 2 (1): 48- 58.
    [35] Ambudkar SV, Kimchi SC, Sauna ZE, et al. P-glycoprotein: from genomics to mechanism [J]. Oncogene,2003, 22 (47): 7468- 7485.
    [36] Shilling RA, Venter H, Velamakanni S, et al. New light on multidrug binding by an ATP-binding-cassette transporter [J]. Trends Pharmacol. Sci, 2006, 27 (4): 195- 203.
    [37] Miwa M, Tsukahara S, Ishikawa E, et al. Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants [J]. Int. J. Cancer,2003, 107 (5): 757- 763.
    [38] Ee P, He XL, Ross DD, et al. Modulation of breast cancer resistance protein (BCRP/ ABCG2) gene expression using RNA interference [J]. Molecular Cancer Therapeutics, 2004, 3 (12):1577- 1583.
    [39] Ee P, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene [J]. Cancer Res, 2004, 64 (4): 124-125.
    [40] Wang HG, Zhou L, Gupta A, et al. Regulation of BCRP/ABCG2 expression by progesterone and 17 beta-estradiol in human placental BeWo cells [J]. American Journal of Physiology—Endocrinology and Metabolism, 2006, 290 (5): E798–E807.
    [41] Wang HG, Lee EW, Zhou L, et al. Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells [J]. Molecular Pharmacology,2008, 73 (3): 845- 854.
    [42] Wang HG, Unadkat JD, Mao QC. Hormonal regulation of BCRP expression in human placental BeWo cells [J]. Pharmaceutical Research, 2008, 25 (2): 444- 452.
    [43] Ifergan I, Shafran A, Jansen G, et al. Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression. A role for BCRP in cellular folate homeostasis [J]. The Journal of Biological Chemistry, 2004, 279 (24): 25527- 25534.
    [44] Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme[J]. The Journal of Biological Chemistry, 2004, 279(23): 24218- 24225.
    [45] Martin CM, Ferdous A, Gallardo T, Humphries C, Sadek H, Caprioli A, Garcia JA, Szweda LI, Garry MG, Garry DJ. Hypoxia-inducible factor-2 alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells [J]. Circulation Research , 2008, 102 (9): 1075- 1081.
    [46] Nakanishi T, Bailey-Dell KJ, Hassel BA, Shiozawa K, Sullivan DM, Turner J, Ross DD. Novel 5′untranslated region variants of BCRP mRNA are differentially expressed in drug-selected cancer cells and in normal human tissues: implications for drug resistance, tissue-specific expression, and alternative promoter usage [J]. Cancer Research, 2006, 66 (10): 5007- 5011.
    [47] To KK, Zhan Z, Bates SE. Aberrant promoter methylation of the ABCG2 gene in renal carcinoma [J]. Molecular and Cellular Biology, 2006, 26 (22): 8572- 8585.
    [48] To KK, Polgar O, Huff LM, Morisaki K, Bates SE. Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells [J]. Molecular Cancer Research, 2008, 6 (1): 151- 164.
    [49] To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3′untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line [J]. Molecular and Cellular Biology, 2008, 28 (17): 5147- 5161.
    [50] Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells [J]. Molecular Pharmacology, 2009, 75(6): 1374- 1379.
    [51] Evseenko DA, Paxton JW, Keelan JA. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors[J]. Drug Metabolism and Disposition, 2007, 35 (4): 595- 601.
    [52] Yin L, Castagnino P, Assoian RK. ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial–mesenchymal transition [J]. Cancer Research, 2008, 68(3): 800-807.
    [53] Bhattacharya S, Das A, Mallya K, Ahmad I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling [J]. Journal of Cell Science, 2007, 120 (15): 2652- 2662.
    [54] Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R, Fine A, Quesenberry PJ, Walsh K. Akt signaling regulates side population cell phenotype via Bcrp1 translocation[J]. The Journal of Biological Chemistry, 2003, 278 (40): 39068- 39075.
    [55] Takada T, Suzuki H, Gotoh Y, Sugiyama Y. Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells [J]. Drug Metabolism and Disposition, 2005, 33 (7): 905-909.
    [56] Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells [J]. Cell Stem Cell, 2009, 4 (3): 226- 235.
    [57] Imai Y, Ohmori K, Yasuda S, Wada M, Suzuki T, Fukuda K, Ueda Y. Breast cancer resistance protein/ABCG2 is differentially regulated downstream of extracellular signal-regulated kinase [J]. Cancer Science, 2009, 100 (6): 1118- 1127.
    [58] Kim JE, Singh RR, Cho-Vega JH, Drakos E, Davuluri Y, Khokhar FA, Fayad L, Medeiros LJ, Vega F. Sonic hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma [J]. Modern Pathology, 2009, 22 (10): 1312- 1320.
    [59] Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles [J]. Genes and Development, 2001, 15 (23): 3059- 3087.
    [60] Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA. Hedgehog signalling in prostate regeneration, neoplasia and metastasis [J]. Nature, 2004,431 (7009): 707- 712.
    [61] Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, Ngan HY, Cheung AN. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation [J]. Carcinogenesis, 2009, 30 (1): 131- 140.
    [62] Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells [J]. Nature, 2001, 414 (6859): 105- 111.
    [63] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as ahierarchy that originates from a primitive hematopoietic cell [J]. Nature Medicine, 1997, 3 (7): 730- 737.
    [64] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (7): 3983- 3988.
    [65] Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells [J]. Nature, 2004, 432 (7015): 396- 401.
    [66] Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma [J]. Molecular Vision, 2005,11 (86–87): 729- 737.
    [67] Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu XW, Elder DE, Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas [J]. Cancer Research, 2005, 65 (20): 9328- 9337.
    [68] Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties [J]. Hepatology, 2006, 44 (1): 240- 251.
    [69] Li CW, Heidt DG, Dalerba P, Burant CF, Zhang LJ, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells [J]. Cancer Research, 2007, 67 (3): 1030- 1037.
    [70] O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice [J]. Nature, 2007, 445 (7123): 106- 110.
    [71] Wang J, Guo UP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stemcell-like side population cells in human nasopharyngeal carcinoma cell line [J]. Cancer Research, 2007, 67(8): 3716- 3724.
    [72] Ho MM,Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells [J]. Cancer Research, 2007, 67 (10): 4827- 4833.
    [73] Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (3): 973- 978.
    [74] Tirino V, Desiderio V, d'Aquino R, De Francesco F, Pirozzi G, Galderisi U, Cavaliere C, De Rosa A, Papaccio G. Detection and characterization of CD133+ cancer stem cells in human solid tumours [J]. PLoS One, 2008, 3 (10): 3469.
    [75] Huang D, Gao Q, Guo L, Zhang C, Jiang W, Li H, Wang J, Han X, Shi Y, Lu SH. Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines [J]. Stem Cells and Development, 2009, 18 (3): 465- 473.
    [76] Mahller YY, Williams JP, Baird WH, Mitton B, Grossheim J, Saeki Y, Cancelas JA, Ratner N, Cripe TP. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus [J]. PLoS One, 2009, 4 (1): 4235.
    [77] Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions [J]. Nature Reviews Cancer, 2008, 8 (10): 755- 768.
    [78] Aridor G, Hannan LA. Traffic Jam II: an update of diseases of intracellulartransport. Traffic, 2002, 3:781-790.
    [79] Smith AN, Lovering RC, Futai M, Takeda J, Brown D, Karet FE. Revised nomenclature for mammalian vacuolar-type H+- ATPase subunit genes. Mol Cell 2003, 12:801-803.
    [80] Brown D, Marshansky V. Renal V-ATPase: physiology and pathophysiology. In Handbook of ATPases: Biochemistry, Cell Biology, Pathophysiology. Edited by Futai M, Wada Y, Kaplan JH. Weinheim: Wiley–VCH; 2004:413-442.
    [81] Forgac M: Vacuolar ATPases: rotatory proton pumps in physiology and pathophysiology [J]. Nat Rev Mol Cell Biol, 2007, 11:917-929.
    [82] Nishi T, Forgac M: The vacuolar (H+)-ATPases-nature’s most versatile proton pumps. Nat Rev Mol Cell Biol, 2002, 3:94-103.
    [83] Futai M, Sun-Wada GH, Wada Y: Proton translocating ATPases: introducing unique enzymes coupling catalysis and proton translocation through mechanical rotation. In Handbook of ATPases: Biochemistry, Cell Biology, Pathophysiology. Edited by Futai M, Wada Y, Kaplan JH. Weinheim: Wiley–VCH; 2004:237-260.
    [84] Beyenbach KW, Wieczorek H: The V-type H+ ATPase: molecular structure and function, physiological roles and regulation [J]. Exp Biol, 2006, 209:577-589.
    [85] Forgac M, Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology [J]. Nat. Rev. Mol. Cell Biol, 2008, 7: 917- 929.
    [86] T. Nishi, M. Forgac, The vacuolar (H+)-ATPases-nature's most versatile proton pumps [J]. Nat. Rev. Mol. Cell Biol, 2002, 3: 94- 103.
    [87] Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale [J]. Nat. Rev, 2003, 4: 202- 212.
    [88] Gu F, Gruenberg J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway [J]. Biol. Chem, 2000, 275: 8154- 8160.
    [89] Sun-Wada GH, Toyomur T, Murata Y, Yamamoto A, Futai M, Wada Y. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells [J]. Cell Sci, 2006, 119: 4531–4540.
    [90] Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+-ATPase [J]. Physiol. Rev, 2004, 84: 1263- 1314.
    [91] Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA. Rodriguez- Soriano, Santos F, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness [J]. Nat. Genet, 1999, 2: 84- 90.
    [92] Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis [J]. Nat. Genet, 2000, 25: 343- 346.
    [93] A. Nanda, J.H. Brumell, T. Nordstrom, L. Kjeldsen, H. Sengelov, N. Borregaard, O.D. Rotstein, S. Grinstein, Activation of proton pumping in human neutrophils occurs by exocytosis of vesicles bearing vacuolar-type H+-ATPases, J. Biol. Chem. 271 (1996) 15963–15970.
    [94] C. Pietrement, G.H. Sun-Wada, N.D. Silva, M. McKee, V. Marshansky, D. Brown, M. Futai, S. Breton, Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis, Biol. Reprod. 74 (2006) 185–194.
    [95] J.D. Rojas, S.R. Sennoune, G.M. Martinez, K. Bakunts, C.J. Meininger, G. Wu, D.E. Wesson, E.A. Seftor, M.J. Hendrix, R. Martinez-Zaguilan,Plasmalemmal vacuolar H+-ATPase is decreased in microvascular endothelial cells from a diabetic model, J. Cell. Physiol. 201 (2004) 190–200.
    [96] S.R. Sennoune, K. Bakunts, G.M. Martinez, J.L. Chua-Tuan, Y. Kebir, M.N. Attaya, R. Martinez-Zaguilan, Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity, Am. J. Physiol. Cell. Physiol. 286 (2004) C1443–C1452.
    [97] T. Hirata, A. Iwamoto-Kihara, G.H. Sun-Wada, T. Okajima, Y. Wada, M. Futai, J. Biol. Chem. 278 (2003) 23714–23719.
    [98] S. Wilkens, M. Forgac, J. Biol. Chem. 276 (2001) 44064–44068.
    [99] R. Hirata, L.A. Graham, A. Takatsuki, T.H. Stevens, Y. Anraku, J. Biol. Chem. 272 (1997) 4795–4803.
    [100] T. Murata, I. Yamato, Y. Kakinuma, A.G. Leslie, J.E. Walker, Science 308 (2005) 654–659.
    [101] A.R. Flannery, L.A. Graham, T.H. Stevens, J. Biol. Chem. 279 (2004) 39856–39862.
    [102] T. Nishi, S. Kawasaki-Nishi, M. Forgac, J. Biol. Chem. 278 (2003) 5821–5827.
    [103] Y. Wang, D.J. Cipriano, M. Forgac, J. Biol. Chem. 282 (2007) 34058–34065.
    [104] X.H. Leng, T. Nishi, M. Forgac, J. Biol. Chem. 274 (1999) 14655–14661.
    [105] S.B. Vik, J.C. Long, T. Wada, D. Zhang, Biochim. Biophys. Acta 1458 (2000) 457–466.
    [106] S. Kawasaki-Nishi, T. Nishi, M. Forgac, Proc. Natl. Acad. Sci. USA 98 (2001) 12397–12402.
    [107] Z. Zhang, C. Charsky, P.M. Kane, S. Wilkens, J. Biol. Chem. 278 (2003)47299–47306.
    [108] E. Vasilyeva, M. Forgac, J. Biol. Chem. 271 (1996) 12775–12782.
    [109] Q. Liu, P.M. Kane, P.R. Newman, M. Forgac, J. Biol. Chem. 271 (1996) 2018–2022.
    [110] Q. Liu, X.H. Leng, P.R. Newman, E. Vasilyeva, P.M. Kane, M. Forgac, J. Biol. Chem. 272 (1997) 11750–11756.
    [111] K.J. MacLeod, E. Vasilyeva, J.D. Baleja, M. Forgac, J. Biol. Chem. 273 (1998) 150–156.
    [112] K.J. MacLeod, E. Vasilyeva, K. Merdek, P.D. Vogel, M. Forgac, J. Biol. Chem. 274 (1999) 32869–32874.
    [113] E. Vasilyeva, Q. Liu, K.J. MacLeod, J.D. Baleja, M. Forgac, J. Biol. Chem. 275 (2000) 255–260.
    [114] H. Noji, R. Yasuda, M. Yoshida, K. Kinosita Jr., Nature 386 (1997) 299–302.
    [115] Y. Kato-Yamada, H. Noji, R. Yasuda, K. Kinosita Jr., M. Yoshida, J. Biol. Chem.273 (1998) 19375–19377.
    [116] H. Imamura, M. Nakano, H. Noji, E. Muneyuki, S. Ohkuma, M. Yoshida, K. Yokoyama, Proc. Natl. Acad. Sci. USA 100 (2003) 2312–2315.
    [117] J.J. Tomashek, B.S. Garrison, D.J. Klionsky, J. Biol. Chem. 272 (1997) 16618–16623.
    [118]张宇飞郭丽赵峰等. ABCG2在肺癌中的表达及意义[J].解放军医学杂志.2007, 32( 9) : 965- 967.
    [119]牛海艳申洪. ABCG2在肺癌中表达的定量研究[J].中国体视学与图像分析. 2007, 12(3):167-171
    [120] Yongtao X, Lixin X, Jianzhong S. Vacuolar H+-ATPase[J]. Int J Biochem Cell Biol, 2008, 40: 2002–2006
    [121] Niikura K. Effect of a V-ATPase inhibitor, FR202126, in syngeneic mouse model of experimental bone metastasis[J]. Cancer Chemother Pharmacol, 2007, 60(4): 555-562.
    [122] Martinez Zaguilan R, Raghunand N, Lynch R M, et al. pH and drug resistance. I.Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma celllines. BiochemPharmacol, 1999, 57 :1037-1046
    [123] Breedveld P, Pluim D, Cipriani G, et al. The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models[J]. Mol Pharmacol, 2007, 71(1): 240-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700