天线机电热多场耦合理论与综合分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在影响军用电子装备性能指标的诸多因素中,机电耦合已成为一个重要的瓶颈问题,其具有典型的多学科交叉的特点。本文利用西电在天线结构研究方面的优势,在已有基础上,对面天线、相控阵天线设计与分析过程中的结构位移场、电磁场、温度场的多物理场耦合问题(CMFP)作深入探讨,就其建模理论与综合分析方法进行了研究。
     提出了基于最小二乘原理的拟合抛物面方法,并分别给出了精确计算天线表面轴向、法向和径向误差的方法。基于反映变形天线反射面的形状的目的,提出了一种不同于传统最佳吻合方法的分块拟合变形反射面的方法(DFM),利用周向函数与径向函数来确定每个块域的边界曲线,同时利用Coons曲面拟合每个块域。这里边界拟合函数包括三角函数、多项式函数以及B样条函数等。同时也给出了变形反射面精度的可靠性模型以及两种探索性的变形反射面拟合方法。
     基于天线结构的变形分析,建立了天线的结构位移场模型。利用变形天线口径面的相位分布,根据PO法和傅立叶变换得到天线远区电场分布,建立了面天线机电两场耦合模型。针对天线工程中机电设计分离的现状,利用所建立的面天线机电耦合模型,研制了面天线机电性能综合分析系统,并结合工程案例对平台系统进行了实际测试。同时根据面天线机电耦合理论,直接以天线电性能为优化目标,建立了面天线机电综合优化设计模型。
     通过引入天线电磁计算中包含天线焦距和口径的相关因子,提出了一种新的计算天线增益损失的数学公式,并分别给出了利用表面法向误差和径向误差进行计算的具体公式。利用脉动风荷的风压、风速与反射面结构变形之间的关系,建立了瞬态风荷下与平均风荷下的天线增益损失之间的关系式。
     结合大型空间桁架天线结构的特点,基于提高空间天线电磁性能以及降低作动器能耗的目的,利用拟合变形反射面,建立了一种以天线轴向增益和作动器能耗为目标函数的空间桁架天线机电耦合优化模型,以用较低的作动器能耗,满足天线结构精度控制与电磁性能要求。耦合模型的约束条件主要包括杆件结构强度(应力)、作动器结构强度(轴力)和作动器的行程(变形)。把热载荷作为外载荷,通过智能桁架天线的结构——电磁耦合优化模型,建立了其机电热耦合优化分析模型,从而实现空间智能桁架天线反射面的准静态与动态形状调整与控制。
     分析了矩形阵面APAA辐射单元位置误差对天线电场和方向性的影响,推导出了场强概率公式。针对APAA阵面的两种基本变形,建立了天线阵面热变形误差的数学模型。分析了结构误差对天线副瓣电平和增益的影响,并给出了一个可应用于工程实践的确定公差指标的方法。基于APAA的结构变形分析、热功耗分析,以及相位误差的引入,建立了矩形栅格APAA的机电热三场耦合模型,给出了多场耦合分析的流程,并对阵面弯曲变形和碗状双曲变形下的APAA电性能讲行了仿真分析。
The electromechanical coupling problem has been an important bottleneck of many factors influencing the performances of military electronic fumishments, which have a typical multidisciplinary characteristic. Using the advantage and research achievements of Xidian University in antenna structural design, the dissertation discusses the coupled multifield problems (CMFP) involving the mechanical structural displacement field, electromagnetic (EM) field and temperature field, which mainly take place in design and analysis period of parabolic antenna and phased array antenna. The modeling theory and synthesis analysis method of CMFP are studied in detail.
     The least squared criterion based paraboloid fitting method is proposed. And the accurate calculation method for errors in axial, normal and radial direction of reflector surface is submitted. Based on the actual shape of distorted reflector and according to antenna mechanical structural analysis, a new divided-fitting method (DFM) is presented which is quite different from the traditional best-fit paraboloid method. It determines the boundary condition of each zone by first dividing the distorted reflector into many zones, then adopting Coons surface to fit each zone and combining the hoop function and radial function fitting methods. The boundary fitting functions include a trigonometric, polynomial and B spline functions etc. The reliability model of distorted surface precision and other two explored fitting methods are also introduced.
     Based on the analysis of distorted antenna structure, an accurate structural displacement field model of antenna is made. By the phase distribution of distorted antenna aperture, physical optics (PO) method and Fourier transform are used to calculation far electric field of antennas. Then an electromechanical coupling model of reflector antennas is developed. Aimed at the separated status of structural and EM design in antenna engineering, an integrated synthesis analysis system for large reflector antenna was developed by use of acquired electromechanical coupling model. The analysis platform testing has been made with two antenna engineering cases. Furthermore, based on the electromechanical coupling theory of reflector antennas, a mechatronic synthesis optimization design model is developed, which directly uses the electrical performance as the optimization object.
     A correlation factor consisting of focal length and diameter is introduced used in EM computation to develop a novel modified formula for antenna gainloss. And the corresponding mathematic expressions based on normal and radial error of reflector surface are presented respectively. By using the relationship among the transient wind pressure and speed and structural distortion, the mathematic expression of antenna gainloss under transient and average wind load is developed.
     To obtain an extremely high accurate surface precision and the EM performances, an electromechanical synthesis optimization analysis model of space antenna structures is developed, which adopts the axial gain of antenna and power consumption of actuators as the objective functions, the material strength of bars and actuator's mechanical capability and active travel of actuator as constraint conditions. Based on the synthesis optimization model, a new coupled structural-electromagnetic-thermal optimization model is also given. The applications of coupling optimization model demonstrate the potential for the significant improvement of performances and for less necessary effort for shape control of space antenna.
     The influence of position error of radiation element in rectangular planar active phased array antenna (APAA) on the electrical field intensity and directivity of antenna is studied. And the corresponding probability formula of field intensity is deduced. The characteristic of two basic deformations of APAA planar is analyzed. Then the mathematic model of thermal distortion error in planar of APAA is generated. Whereafter, the influence of rectangular planar distortion on the radiation pattern of APAA is studied. The analysis process of CMFP is also determined. According to the error model of antenna structural distortion, a coupled model involving displacement-electromagnetic-temperature field in rectangular planar APAA is established. The flow of coupled multifield analysis is drawn.
引文
[1] Matthies H G, Niekamp R and Steindorf J. Algorithms for strong coupling procedures. Computer Methods in Applied Mechanics and Engineering, 2006, (195): 2028-2049
    
    [2] Spear M. Multiphysics modelling. Process Engineering, 2004, 85(2): 20-22
    
    [3] Michael R Cho. A review of electrocoupling mechanisms mediating facilitated wound healing. IEEE Trans. Plasma Sci., 2002, 30(4): 1504-1515
    
    [4] Morand H and Ohayon R. Fluid-structure interaction. John Wiley & Sons, 1995
    [5] Dughiero F, Forzan M, Lupi S, et al. Numerical and experimental analysis of an electro-thermal coupled problem for transverse flux induction heating equipment. IEEE Trans.on Magnetics, 1998, 34(5): 3106-3109
    [6] Tadmor E B and Gabor Kosa. Electromechanical coupling correction for piezoelectric layered beams. J Microelectromechanical Systems, 2003,12(6): 899-906
    [7] Pham T H, Wendling P F, Salon S J, et al. Transient finite element analysis for an induction motor with external circuit connections and electromechanical coupling. IEEE Trans. Energy Conversion, 1999, 14(4): 1407-1412
    [8] Yaralioglu G G, Ergun A S, Bayram B, et al. Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers.IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50(4): 449-456
    [9] Piperno S, Farhat C, Larrouturou B. Partitioned procedures for the transient solution of coupled aeroelastic problems. Computer Methods in Applied Mechanics and Engineering,1995, (124): 79-112
    [10] John Voeller. 25 technologies to watch.. Civil Engineering, 2001, 71: 64-69
    
    [11] Felippa C A, Park K, Farhat C. Partioned analysis of coupled mechanical systems. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3247-3270
    
    [12] Fish J and W Chen. Modeling and simulation of piezocomposites. Computer Methods in Applied Mechanics and Engineering, 2Q03, 192(28-30): 3211-3232
    [13] Michopoulos J, Farhat C, Houstis E, et al. Dynamic data driven methodologies for multiphysics system modeling and simulation. Lecture Notes in Computer Science, 2005,(3515): 616-623
    [14] Adamidis P, Beck A, Becker-Lemgau U, et al. Steel strip production - a pilot application for coupled simulation with several calculation systems. J Materials Processing Technology, 1998,80-81:330-336
    [15] Michael Raulli and Kurt Maute. Optimization of fully coupled electrostatic-fluid-structure interaction problems. Computers and Structures, 2005, 83(2-3): 221-233
    [16] Lawrence C. An overview of three approaches to multidisciplinary aeropropulsion simulations. NASA TM-107443, 1997
    [17] Kay Hameyer, Johan Driesen, Herbert De Gersem, et al. The classification of coupled field problems, IEEE Trans. Magnetics, 1999, 35(3): 1618-1621
    [18] Kus-netsov Y, Periaux, J, Quarteroni A, et al. Domain decomposition methods in science and engineering. American Mathematical Society Press, 1992
    [19] Matthies H G, Steindorf J. Strong coupling methods. Analysis and Simulation of Multifield Problems, Springer Verlag, Berlin, 2003.
    [20] Boivin Charles. Infrastructure for solving generic multiphysics problems[Ph. D, thesis]. University of British Columbia, 2003
    [21] Anna-Margarete Sandig, Schiehlen W O, Wendland W L. Multifield problems: state of the art. Berlin: Springer, 2000
    [22] Kassab A J and Aliabadi M H. Advances in boundary elements: coupled field problems. WIT Press, Southampton and Boston, 2001
    [23] Carl F, Ollivier-Gooch. A toolkit for numerical simulation of PDE's: Ⅰ. Fundamentals of generic finite-volume simulation. Computer Methods in Applied Mechanics and Engineering, 2003, 192(9-10): 1147-1175
    [24] Boivin Charles and Ollivier-Gooch Carl. A toolkit for numerical simulation of PDE's: Ⅱ. Generic solution of multiphysics problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193(36-38): 3891-3918
    [25] 宋少云.多场耦合问题的建模与耦合关系的研究.武汉工业学院学报,2005,24(4):21-23+29
    [26] Katsikadelis J T. Boundary elements: theory and applications. New York: Elsevier, 2002
    [27] ANSYS GUI Help Manual. ANSYS MultiPhysics Software V10.0. ANSYS公司, 2005
    [28] John A Wass. FEMLAB 3: Multiphysics modeling, scientific computing & instrumentation. Sep 2004; 21, 10; ABI/INFORM Trade & Industry, p. 34
    [29] 北京飞箭软件有限公司,http://www.fegensoft.com/fepg.htm
    [30] Fleeter S, Houstis E N, Rice J R, et al. GasTurbnLab: A problem solving environment for simulating gas turbines. Proc. 16th IMACS World Congress, 2000: 104-105
    [31] John Michopoulos, Panagiota Tsompanopoulou, Elias Houstis, et al. DDEMA: A data driven environment for multiphysics applications. ICCS 2003, LNCS 2660: 309-318
    [32] Xiangmin Jiao, Michael T Campbell, Michael T Heath. Roccom: An object-oriented data-centric software integration framework for multiphysics simulation. ICS'03, San Francisco, California, USA, June 23-26, 2003
    [33] Felippa C A, Farhat C, Lanteri S, et al. High performance parallel analysis of coupled problems for aircraft propulsion. Final Report, NASA CR-195335, July 1994
    [34] Liu J S, Hollaway L. Integrated structure-electroma-gnetic optimization of large reflector antenna systems. Structural and Multidisciplinary Optimization, 1998, 16(1): 29-36
    [35] Rieger A, Wriggers P. Adaptive methods for thermomechanical coupled contact problems. J Numerical Methods in Engineering, 2004, 59(6): 871-894
    [36] Gilbert J R, Ananthasuresh G K, and Senturia S D. 3D modeling of contact problems and hysteresis in coupled electro-mechanics. IEEE MEMS workshop, Diego, USA, February 11-15, 1996: 127-132
    [37] Ye W and Mukherjee S. Optimal three-dimensional analysis and design of electrostatic comb drives using boundary element method. J Numerical Methods in Engineering, 1999, 45(2): 175-194
    [38] Project summary. High Performance Simulation of Multiphysics Problems. http://titan.colorado.edu/CF.d/
    [39] Tkachenko S V, Vodopianov G V, Martinov L M. Electromagnetic field coupling to an electrically small antenna in a rectangular cavity. 13th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, Zurich, February 16-18, 1999
    [40] Fukui K, Nogi S, Tanaka S. Importance of device-field coupling for efficient microwave power combining. Singapore Journal of Physics, 1989, 6(1): 71-78
    [41] Whitescarver C D. Field coupling transfer functions for the transmission line cable model: an experimental verification. IEEE Trans Nucl Sci, 1969, NS-16(6): 169-171
    [42] Fiachetti C, Issac F, Michielsen B, Reineix, A. Modelling field to equipment coupling in mode stirred chambers. IEEE Int. Symposium on Electromagnetic Compatibility, 2001, 2: 762-767
    [43] Charnock D. Electromagnetic interference coupling between power cables and sensitive circuits. IEEE Trans. on Power Delivery, 2005, 20(2): 668-73
    [44] Hiroaki Kogure, Hideki Nakano, Kohji Koshiji and Eimei Shu. Analysis of electromagnetic field coupled through an aperture of equipment housing. Transactions of the Institute of Electronics, Information and Communication Engineers B-Ⅱ, 1997, JSOB-Ⅱ(9): 809-811
    [45] 王文涛.KFM2系列断路器的机构优化与仿真分析[硕士学位论文].哈尔滨:哈尔滨工业大学,2004
    [46] 候其坤.机载雷达系统内电磁干扰耦合算法和干扰抑制技术数据库[硕士学位论文].南京:东南大学,1996
    [47] 李正红,孟凡宝,常安碧等.利用场耦合理论研究开放微波谐振腔.物理学报,2004,53(11):3627-3631
    [48] 于建国,叶庆泰.多孔机械结构的耦合应力分析.机械与电子,2004,(2):17-20
    [49] 马迅,秦剑.制动鼓的热—结构耦合分析.湖北汽车工业学院学报,2004,18(3):5-9
    [50] 徐新琦,成学军.热—机耦合分析的有限元法及其应用.海军航空工程学院学报,2004,19(3):380-382
    [51] 王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究.机械工程学报,2003,39(4):1-5
    [52] 贺建军.复杂机电系统机电耦合分析与解耦控制技术[博士学位论文].长沙:中南大学,2004
    [53] 邱家俊.机电耦联动力学的研究进展.力学进展,1998,28(4):453-460
    [54] 赵淳生,李志荣,赵向东.超声电机机电耦合系统建模方法综述.微电机,2003,36(4):43-46
    [55] 郑晓静.电磁固体力—磁—电作用的耦合效应.兰州大学学报,1999,35(3):17-21
    [56] 边文凤,孙芳,王彪.哈密顿体系下机电耦合问题的基本方程.计算力学学报,2005,22(4):411-414
    [57] 冯永平.复合材料结构多场耦合问题多尺度方法及其有限元算法[博士学位论文].北京:中国科学院数学与系统科学研究院,2003
    [58] 顾元宪,陈飙松.传热—结构耦合系统优化设计方法.中国力学学会学术大会(CCTAM 2005),2005年8月26-28日,北京
    [59] 李培超.多孔介质流—固耦合渗流数学模型研究.岩石力学与工程学报,2004,23(16):2842-2842
    [60] 孙道恒.MEMS耦合场分析与系统级仿真.中国机械工程,2002,13(9):735-768
    [61] 董平川,徐小荷,何顺利.流固耦合问题及研究进展.地质力学学报.1999,5(1):17-26
    [62] 郭术义,陈举华.流固耦合应用研究进展.济南大学学报,2004,18(2):123-126
    [63] 梁迪,赵春雨.振动系统机电耦合研究的现状与展望.机械设计与制造.2005,(2):111-112
    [64] 王保林,杜善义,韩杰才.功能梯度材料的热/机械耦合分析研究进展.力学进展,1999,29(4):528-548
    [65] 南策文.热电材料及多场耦合效应.中国科学基金.1999,(4):199-203
    [66] Dughiero F. Numerical and experimental analysis of an electro-thermal coupled problem for transverse flux induction heating equipment. IEEE Trans. on Magnetics. 1998, 34(5): 35-46
    [67] Amari S, Vahldiech R and Bornemann J. Analysis of propagation in corrugated waveguides with arbitrary corrugation profile. IEEE AP-S Int. Symp., Orlando, USA, July 1999: 290-293
    [68] Yaralioglu G G, Ergun A S, Bagram B, et al. Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers. IEEE Trans. on Ultrasonic, Ferroelectrics, and Frequency Control, 2003, 50(4): 449-456
    [69] Pham T H, Wending P F, Salon S J, et al. Transient finite element analysis of an induction motor with external circuit connections and electromechanical coupling. IEEE Trans. on Energy Conversion, 1999, 14(4): 1407-1412
    [70] Adelman H M and Padula S L. Integrated thermal-structural-electromagnetic design optimization of large space antenna reflectors. NASA Technical Memorandum 87713
    [71] Price D C. A review of selected thermal management solutions for military electronic systems. IEEE Trans. on Components and Packaging Technologies, 2003, 26(1): 26-39
    [72] 段宝岩.天线结构分析、优化与测量.西安:西安电子科技大学出版社,1998
    [73] 段宝岩.柔性天线结构分析、优化与精密控制.北京:科学出版社,2005
    [74] Levy R. Structural engineering of microwave antennas for electrical, mechanical and civil engineers. IEEE Press, 1996
    [75] Alpatova A V, Gorin A M, Kad'kalo I N. Calculation of non-axisymmetrical parabolic reflector antennas. The 4th International Conference on Antenna Theory and Techniques, 9-12 Sept. 2003, Vol.1, 248-250
    [76] Sinton S, Rahmat-Samii Y. Random surface error effects on offset cylindrical reflector antennas. IEEE Trans. Antennas Propag., 2003, 51(6): 1331-1337
    [77] Duan B Y. Review of antenna structural design with mechatronics in China. Int J Mechatronics, 2002, 12(5): 657-667
    [78] 叶尚辉,李在贵.天线结构设计.西安:西北电讯工程学院出版社,1986
    [79] 朱钟淦,叶尚辉.天线结构设计.北京:国防工业出版社,1980
    [80] BathE K J. Finite element procedures in engineering analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1982
    [81] 魏文元,宫德明,陈必森.天线原理.北京:国防工业出版社,1985
    [82] 谢处方,邱文杰.天线原理与设计.西安:西北电讯工程学院出版社,1985
    [83] Constantine A Balanis. Antenna theory: analysis and design(3rd Edition). New York: Wiley, 2005
    [84] 约翰·克劳斯.天线(上册、下册).北京:电子工业出版社,2004
    [85] 刘其中,宫德明.天线的计算机辅助设计.西安:西安电子科技大学出版社,1988
    [86] Gao W, Chen J J. Dynamic response analysis of linear stochastic truss structures under stationary random excitation. J Sound and Vibration, 2004, 275(2): 368-370
    [87] 方同.振动理论及应用.西安:西北工业大学出版社,1998
    [88] 艾云慧,周擎坤,金忠庆.舰载天线稳定平台振动分析与减振设计.新技术新工艺,2006,(2):61-64
    [89] 刘继承,周传荣.某机载雷达天线振动试验夹具设计.振动、测试与诊断,2003,23(3):210-212
    [90] 王宏杰.天线传动系统扭转振动固有频率计算分析.雷达与对抗,2001,(3):63-67
    [91] 陈建军.天线结构风荷响应的研究.应用力学学报,1986,(3):81-87+141
    [92] 张相庭.结构风压和风振计算.上海:同济大学出版社,1997
    [93] 王之宏.风荷载的模拟研究.建筑结构学报,1994,15(1):44-52
    [94] Davenport A G. Buffeting of a suspension bridge by storm winds. ASCE J Structural Division, 1962, 88(3): 233-268
    [95] 李在贵,贾建援,戌斌等.某雷达天线及天线座结构系统模态分析.电子机械工程,1994,(6):30-33
    [96] 林昌禄.天线工程手册.北京:电子工业出版社,2002
    [97] Lindley A. Analysis of distorted reflector antenna. 6th International Conference on Antennas and Propagation, ICAP 89: 32-34
    [98] Chan K K and Raab A R. Surface current analysis of distorted reflector antennas. IEEE Proc., 1981, 128(4): 206-212
    [99] Boag A and Letrou C. Fast radiation pattern evaluation for lens and reflector antennas. IEEE Trans. Antennas Propag., 2003, 51(5): 1063-1068
    [100] Rahmat-Samii Y. Effects of deterministic surface distortion on reflector antenna performance. Antenna De Telecommunication, 1985, 40(7-8): 350-360
    [101] Ruze J. Antenna tolerance theory-a review. IEEE Proc, 1966, 54(4): 633-640
    [102] Boswell A G P. The parabolic torus reflector antenna. Marconi Rev, 1978, 41(211): 237-248
    [103] Schrank H E. Low sidelobes reflector antenna. IEEE Aps News letter, 1985, 4: 5-16
    [104] Hao Ling. Tolerance study of reflector antenna systems[Ph. D. thesis]. University of Illinois at Urbana-Champaign, 1986
    [105] Shu S F, Chang M H. Integrated thermal distortion analysis for satellite antenna reflectors. 22nd AIAA Aerospace Sciences Meeting, Jan. 9-12, 1984
    [106] Clark S C, Allen G E. Thermo-mechanical design and Analysis system for the Hughes 76-Inch parabolic antenna. AIAA ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, June 7-11, 1982
    [107] Rysch W. Surface tolerance loss for dual-reflector antenna. IEEE Trans Ant. Prop., 1982, 32(4): 784-785
    [108] Olver A D. Tolerances on millimeter wave reflector antennas, IEE Colloquium on Reflector Antennas for the 90's, London: IEE, 1992: 1-4
    [109] Lindley A. analysis of distorted reflector antennas. Sixth IEE International conference on Antennas and Propagation(ICAP), 1989: 32-34
    [110] Phntoppidan k. Reflector surface tolerance effects. IEEE Antennas and propagation society linternational Symposium, Philadelphia, 1986: 413-416
    [111] Anon. Requirements design and development of large space antenna structures. AGARD Report R-676, May 1980
    [112] 叶云裳.星载毫米波反射面天线结构.空间科学学报,2003,23(5):379-387
    [113] 刘少东,焦永昌,张福顺.表面误差对侧馈偏置卡塞格伦天线辐射场的影响.西安电子科技大学学报,2005,32(6):865-868
    [114] 刘彦,张庆明,黄风雷等.反射面变形对天线辐射特性的影响.北京理工大学学报,2004,24(6):541-544
    [115] 章日荣.反射面天线及波纹喇叭.北京:无线电工程编辑部,1977
    [116] 华慕麟.天线变形曲面的一种拟合方法.现代雷达,1994,16(1):75-82
    [117] Wang S H, Yao J T P, and Chen W F. Serviceability and reliability of antenna structures Part 1: Theory. Technical Report CE-STR-81-25, West Lafayette, Ind. Ang., 1981
    [118] 苏步青.实用微分几何引论.北京:科学出版社,1998
    [119] 孙家昶.样条函数与计算几何.北京:科学出版社,1982
    [120] 孙家广.计算机图形学.北京:清华大学出版社,2003
    [121] 柴杰,江青茵.RBF神经网络的函数逼近能力及其算法.模式识别与人工智能,2002,15(3):310-316
    [122] Love AW. Some highlight in reflector antenna development. Radio Science, 1976, 11: 671-684
    [123] Franceschetti G and Mohsen A. Recent development in the analysis of reflector antennas. IEE Proc., 1986, 133(1): 65-76
    [124] Duan Dahweih, Y. Rahmat Samii. A generalized diffraction synthesis technique for high performance reflector antennas. IEEE Trans. Antennas Propagat., 1995, 43(1): 27-40
    [125] Spencer R C. A least square analysis of the effect of phase errors on antenna gain. Air Force Cambridge Research Center, Bedford, Mass., AFCRC Rept. E5025, 1949.
    [126] Hoernor V. Homologous deformation of tiltable telescope. J Structural Division, Proc. ASCE, 1967, vol 93, No. ST5.
    [127] Vu T B. Influence of correlation interval and illumination taper in a antenna tolerance theory. Proc. Inst. Elec. Eng., 1969, 116(2): 195-202.
    [128] Ruze J. The effect of aperture errors on the antenna radiation pattern. Suppl. al Nuovo Cimento., 1952, 9(3): 364-388.
    [129] Thomas B M. Effect of surface distortion on the crosspolarzation performance of paraboloical reflectors. Electron. Lett., 1977, 13(6): 478-480
    [130] Tripp V K. A new approach to the analysis of random errors in aperture antennas. IEEE Trans. Antennas Propagat., 1984, 32(8): 857-863
    [131] Hao Ling and Lo Y T. Reflector sidelobe degradaion due to random surface errors, IEEE Trans. Antennas Propagat., 1986, 34(2): 164-172
    [132] Rahmat-Samii Y. An efficient computational method for characterizing the effect of random surface errors on the average power pattern of reflectors. IEEE Trans. Antennas Propagat., 1983, 31(1): 92-98
    [133] Rahmat-Samii Y. Effects of derterministis surface distortion on reflector antenna performance. Antennas De Teleco,, unication, 1985, 40(7-8): 350-360
    [134] Kraus J D. Antennas since Hertz and Marconi. IEEE Trans. Antennas Propagat., 1985, AP-33: 131-137
    [135] Greve A and Hooghoudt B G. Quality evaluation of radio reflector surfaces. Astronomy and Astrophysics, 1981, 93(1-2): 76-78
    [136] Shu C F, Chang M H. Integrated thermal distortion analysis for satellite antenna reflectors. AIAA 22nd Aerospace Science Meeting, United States, Jan 9-12, 1984, AIAA paper 84-0142
    [137] Clark S C, Allen G E. Thermo-mechanical design and analysis system for the Hughes 76 inch parabolic antenna reflector. AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference. St. Louis, June 7-11, 1982, AIAA paper 82-0864.
    [138] Padula S L, Adelman H M, Bailey M C, et al. Integrated structural electromagnetic shape control of large space antenna reflectors. AIAA Journal, 1989, 27(6): 814-819
    [139] Adelman Howard M and Padula Sharon L. Integrated thermal structural electromagnetic design optimization of large space antenna reflectors. NASA TM-89110, 1986
    [140] Padula S L, Adelman H M, Bailey M C. Integrated structural electromagnetic optimization of large space antenna reflectors. AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Materials Conference, Monterey, Calif., April 6-8, 1987, AIAA-1987-824
    [141] Padula Sharon L, Sandridge Chris, Walsh Joanne, et al. Integrated controls-structures optimization of a large space structure. Computers & Structures, 1990, 42(5): 725-732
    [142] Cherrette A R, Acosta R J, Lam P T, et al. Compensation of reflector antenna surface distortion using an array feed. IEEE Trans. Antennas Propag., 1989, 37(8): 966-978
    [143] Imbriale W A. Distortion compensation techniques for large reflector antennas. IEEE Proceedings of Aerospace Conference, 10-17 March 2001, vol.2, 799-805
    [144] Duan B Y, Qi Y H, Xu G H, et al. Study on optimization of mechanical and electronic synthesis for antenna structures. Int J Mechatronics, 1994, 4(6): 553-564
    [145] 段宝岩.我国天线结构机电一体化设计的现状与发展.电子机械工程,1999,(3):2-6+14
    [146] 漆一宏.反射面天线的机电一体化设计.电波科学学报,1991,6(1):150-152
    [147] 漆一宏.反射面天线机电一体化系统技术研究[博士学位论文].西安:西安电子科技大学,1989
    [148] 徐国华,王君英.反射面天线机电一体化系统分析.通信与测控,1990,(3):43-49
    [149] 徐国华,邵志国.天线机电系统工程设计思想.电子机械工程,1996,(5):30-34
    [150] 刘国玺.天线的机电一体化分析方法.无线电通信技术,2004,30(4):25-26
    [151] 徐国华,施浒立.双反射面天线表面形状预优设计.西北电讯工程学院学报,1984,(4):13-19
    [152] 刘京生.天线副面(馈源)支撑结构的机电综合优化设计.通信学报,1988,9(6):62-65
    [153] 刘京生,曾余庚.天线副面(馈源)支撑结构参数对电性能的影响及其优化.天线结构分析、设计与试验的研究论文集.西安:西北电讯工程学院,1986
    [154] 李云.双反射面天线旁瓣的机电一体化研究[硕士学位论文].西北电讯工程学院,1985
    [155] 王五免.反射面天线系统的机电一体化设计技术研究——结构参数对交叉极化的影响[博士学位论文].西安:西安电子科技大学,1988
    [156] 徐国华,漆一宏,段宝岩,王五兔.变形反射面天线效率与馈源相位中心的研究.西安电子科技大学学报,1990,17(4):63-70
    [157] 漆一宏,吴鸿适.反射面天线馈源的混合相位中心.电子学报,1992,20(9):22-26
    [158] 王五兔.反射面变形对天线辐射方向图的影响.电子学报,1994,22(12):46-49
    [159] 段宝岩.天线结构拓扑、形状与机电综合优化设计[博士学位论文].西安电子科技大学,1999
    [160] Christiansen W N and Hogbom J A. Radiotelescopes. Cambridge University Press, 1985
    [161] Ruddick R C, Chang Y C. Numerical electromagnetic code-reflector antenna code-NEC-REF(version 2) Part 1: user's manual. Report 712242-16. The Ohio State University ElectroScience Laboratory, December 1982
    [162] Kim J W, Kim B S, Lee C W. Computation of the average power pattern of a reflector antenna with random surface errors and misalignment errors. IEEE Trans. Antennas Propagat., 1996, 44(7): 996-999
    [163] Garba J A, Wada B K, Fanson J L. Adaptive structures for precision controlled large space system. J Intelligent Material Systems and Structures, 1992, 3(2): 348-366
    [164] Chopra I. Review of state of art of smart structures and integrated systems. AIAA Journal, 2002, 40(11): 2145-2187
    [165] Duong K A, Garcia E, Waites HB. Smart piezo stacks as actuators for precision control of adaptive reflectors. Proc. of SPIE Conference on Smart Structures and Intelligent Systems, 1994, Vol.2190, 454-462
    [166] Jenkins C H. Adaptive shape control of precision membrane antennae and reflectors. Proc. of 1998 ASME Mechanical Engineering Congress and Exposition, Anaheim, CA, 177-188.
    [167] Washington G. Smart aperture antennas. Smart Materials and Structures, 1996, 5: 801-805
    [168] Furuya H, Haftka R T. Static shape control of space trusses with partial measurements. J Spacecraft and Rockets, 1995, 32(5): 856-865
    [169] Saravanan U, Sivakumar S M, Kalyanaraman V. A study on the design and behavior of smart antenna. Smart Materials and Structures, 2001, 10: 580-598
    [170] Yoon H S, Washington G, Theunissen W H. Analysis and design of doubly curved piezoelectric strip-actuated aperture antennas. IEEE Trans. Antennas Propagat., 2000, 48(5): 755-762
    [171] Yoon H S and Washington G. A piezoceramic actuated aperture antennae. Smart Materials and Structures, 1998, 7: 537-542
    [172] 王永,马运领,陈斌等.智能抛物面桁架天线的建模和模型降阶.中国科学技术大学学报,2005,35(4):530-537
    [173] 龙连春,隋允康.自适应天线结构位移最优控制.工程力学,2005,22(2):236-240
    [174] 刘明治,刘军.网状天线反射面形状精度控制智能结构作动器的位置优化.西安电子科 技大学学报,2003,30(2):251-254
    [175] Tolson R H, Huang J K. Integrated control of thermally distorted large space antennas. J Guidance, Control, and Dynamics, 1992, 15(3): 605-614
    [176] Florio F A, Josloff A T. Thermo/structural analysis of a large flexible paraboloid antenna. J Spacecraft and Rockets, 1968, 5(12): 1417-1424
    [177] Thornton E A, Paul Donald B. Thermal-structural analysis of large space structures: an assessment of recent advances. J Spacecraft and Rockets, 1985, 22(4): 385-393
    [178] Thornton E A, Mahaney J, Dechaumphai P. Finite element thermal-structural modeling of orbiting truss structures. NASA CP-2215, 1981, 93-108
    [179] Mahaney J, Thornton E A, Dechaumphai P. Integrated thermal-structural analysis of large space Structures. NASA CP-2216, 1981, 179-198
    [180] 丁勇,薛明德.辐射换热条件下空间薄壁圆管结构瞬态温度场、热变形有限元分析.宇航学报,2002,23(5):49-56
    [181] 安翔,冯刚,张铎.大型空间桁架结构热分析的有限元方法.强度与环境,2000,27(1):54-61
    [182] 张立华.有限元法在空间飞行器天线反射器热分析中的应用.中国空间科学技术,1999,19(1):32-37
    [183] Au T M, Luk K M. Effect of parasitic element on the characteristics of microstrip antennas. IEEE Trans. Antennas Propagat, 1991, 39: 1244-1251
    [184] Lightner E B. Large space antenna systems technology. NASA CP-2269, 1983
    [185] Steinbach, Russell E and Winegar Steven R. Interdisciplinary design analysis of a precision spacecraft antenna. AIAA-1985-804
    [186] Greene William H. Effects of random member length errors on the accuracy and internal loads of truss antennas. J Spacecraft and Rockets, 1985, 22(5): 554-559
    [187] Haftka R T and Adelman H M. An analytical investigation of shape control of large space structures by applied temperatures. AIAA Journal, 1985, 23(3): 450-457
    [188] 钱令希.工程结构优化设计.北京:水利水电出版社,1983
    [189] 王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,2003
    [190] 陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2004
    [191] Hansen R C. Phased array antennas. New York: John Wiley and Sons, 2001
    [192] Pell Christopher. Phased array radars-present and future. International Conference on Radar 89, Paris, France, Apr. 24-28, 1989, 18-24
    [193] Hill Robert T. Active phased arrays-Status and promise. International Conference on Radar 89, Paris, France, Apr. 24-28, 1989, 16-24
    [194] Colin J M. Phased array radars in France: present and future. IEEE International Symposium on Phased Array Systems and Technology, 15-18 Oct. 1996
    [195] 张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006
    [196] 张光义.相控阵雷达系统.北京:国防工业出版社,1994
    [197] 张光义,王德纯,华海根等.空间探测相控阵雷达.北京:科学出版社,2001
    [198] 张光义.相控阵雷达中的一些关键技术.南京:南京电子技术研究所,1999
    [199] 王德纯.有源相控阵技术.相控阵雷达技术文集(第六集),1995:1-5
    [200] 蒋庆全.有源相控阵雷达技术发展趋势.国防技术基础.2005,(4):9-11
    [201] 吴曼青,靳学明,谭剑美.相控阵雷达数字T/R组件研究.现代雷达,2001,23(2):57-60
    [202] Takashi Katagiand and Isamu Chiba. Review on recent phased array antenna technologies in Japan. International Symposium on Antennas and Propagation, 2000
    [203] Eli Brookner. Phased arrays and radars-past, present and future. IEEE Conference on Radar RADAR, 2002
    [204] Lacomme P, Syst T A, Elancourt F. New trends in airborne phased array radars. IEEE International Symposium on Phased Array Systems and Technology, 14-17 Oct. 2003
    [205] Neng-Jing L. A review of Chinese designed surveillance radars-past, present and future. IEEE Conference on Radar, 1995
    [206] Ruze J. Pattern Degradation of Space Fed Phased Arrays. Proj. Report. SBR-1, MIT Lincoln Lab., December 1979
    [207] Wang H S C. Performance of phased-array antennas with mechanical errors. IEEE Trans Aerospace and Electronic Systems, 1992, 28(2): 535-545
    [208] Wang H S C. Performance of phased array antennas under error conditions. IEEE Aerospace Applications Conference, Breckenridge, CO, Feb. 12-17, 1989
    [209] Hsiao J K. Array sidelobes, error tolerance, gain and beamwidth. NRL Report 8841, 1984
    [210] Hans Hommel, Heinz-Peter Feldle. Current status of airborne active phased array(AESA) radar systems and future trends. 1st European Radar Conference, Netherlands, Oct 14, 2004
    [211] Fenn A J, Temme D H, Delaney W P, et al. The development of phased-array radar technology. Lincoln Laboratory Journal, 12(2): 312-340
    [212] Zaghlou Gupta R J, Koh E C, Kilic O. Design and performance assessment of active phased arrays for communications satellites. Proceedings of IEEE International Conference on Phased Array Systems and Technology, May 21-25, 2000: 193-196
    [213] Katagi Takashi, Konishi Yoshihiko, Tamai Yasuo, et al. A large deployable active phased array antenna for satellite use. The 15th AIAA International Communications Satellite Systems Conference, San Diego, CA, Feb 28-Mar 3, 1994, 1075-1084. AIAA-1994-1070
    [214] Diamond B L. A generalized approach to the analysis of infinite planar phased array antennas. Proc. IEEE, 1968, 56(11): 1837-1851
    [215] Tsandoulas G N. Unidimensionally scanned phased arrays. IEEE Trans. Antennas Propag. 1980, 28(1): 86-99
    [216] Fenn A J. Theoretical and experimental study of monopole phased array antennas. IEEE Trans. Antennas Propag., 1985, 34(10): 1118-1126
    [217] Brookner E. Radar technology. Artech House, Dedharn, Mass., 1991
    [218] Aumann H M and Willwerth F G. Phased array calibrations using measured element patterns. IEEE Int. Symp. on Antennas and Propagation, Newport Beach, 18-23 June 1995, 918-921
    [219] Zhang Wen Xun. Antenna development in China. IEEE Antennas and Propagation Magazine, 196, 38(6): 49-63
    [220] 文朝.有源相控阵天线系统流热耦合分析及散热试验研究[硕士学位论文].北京航空航天大学,2000
    [221] 陈杰,周荫清.星载SAR相控阵天线热变形误差分析.北京航空航天大学学报,2004, 30(9):839-843
    [222] 李建新,高铁.固态有源相控阵天线中的单元失效与容差分析.现代雷达,1992,14(6):36-44
    [223] 李建新,高铁.低副瓣固态有源相控阵天线波瓣统计特性研究.电波科学学报,1993,8(2):64-69+77
    [224] 高铁,李建新.固态有源相控阵天线多阶振幅量化及副瓣特性的研究.电子学报,1994,22(3):11-17
    [225] 罗震.某舰载相控阵雷达热设计技术研究.电子机械工程,2005,21(2):18-21
    [226] 叶菁.相控阵雷达天线的热设计.电子机械工程,2001,(1):42-46
    [227] 叶菁.一种相控阵雷达天线的散热风量分配.现代雷达,1999,21(3):95-99
    [228] 文朝,于春国.固态相控阵天线热稳定系统试验研究.第二届全国电子设备热设计专题学术会议:140-144
    [229] Scott Mike. SAMPSON MFR active phased array antenna. IEEE International Symposium on Phased Array Systems and Technology, 14-17 Oct. 2003, 119-123
    [230] Aung Win. Cooling technology for electronic equipment. New York: Hemisphere, 1988
    [231] Agrawal A K, Mattioli J A, Landry N R. An active phased array antenna packaging scheme. IEEE Antennas and Propagation Society International Symposium, 1996, 1608-1611
    [232] Masayuki Nakagawa, Eihisa Morikawa, Yoshisada Koyama. Development of thermal control for phased array antenna. Ryutaro Suzuki 2003
    [233] 宋志行,关宏山,钱海涛等.机载有源相控阵天线的结构设计.雷达科学与技术,2005,3(3):189-192
    [234] Elliott R E. Mechanical and electrical tolerances for two-dimensional scanning antenna arrays. IEEE Trans. Antennas Propag., 1958, 6: 114-120
    [235] Jiang W, Guo Y C, Liu T H, et al. Comparison of random phasing methods for reducing beam pointing errors in phased array. IEEE Trans. Antennas Propag., 2003, 51(4): 782-787
    [236] Dufort E C. Low sidelobe electronically scanned antenna using identical transmit/receive modules. IEEE Trans. Antennas Propag., 1988, 36(3): 349-356
    [237] Hsiao J K. Design of error tolerance of a phased array. Electronic Letters, 1985, 21(19): 834-836
    [238] Hsiao J K. Constraints on low sidelobe phased array. IEEE antennas and Propagation symp. Vol.2, 1982, 687-690

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700