改进的无网格局部边界积分方程方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无网格方法是目前科学和工程计算方法的研究热点之一,也是科学和工程计算发展的趋势。
     无网格局部边界积分方程方法是将局部边界积分方程和移动最小二乘方法相结合而形成的。该方法的优点是无论构造形函数,还是数值积分都不需要网格,是完全的无网格方法。但是移动最小二乘法的使用影响了该方法的计算效率,而且很容易形成病态方程组。本文针对这些问题,将计算量小、精度高以及性能稳定的新的近似函数与局部边界积分方程相结合,建立了改进的无网格局部边界积分方程方法。
     径向基函数和多项式基函数耦合可以构造具有插值特性的近似函数。本文将这种近似函数与势问题对应的局部边界积分方程相结合,建立了势问题的径向基函数—局部边界积分方程方法;接着将这种近似函数引入弹性力学的局部边界积分方程方法,提出了弹性力学的径向基函数—局部边界积分方程方法。
     为了提高局部边界积分方程方法求解裂纹问题的精度和效率,本文引入考虑裂纹尖端场的扩展的多项式基函数,并将其和径向基函数耦合构造了具有插值特性的近似函数,建立了基于径向基函数—扩展的局部边界积分方程方法。
     针对移动最小二乘法存在的计算量大、容易形成病态方程组的问题,本文将改进的移动最小二乘法引入势问题的局部边界积分方程方法,建立了势问题的改进的局部边界积分方程方法;并进一步将改进的移动最小二乘法和弹性力学的局部边界积分方程相结合,提出了弹性力学的改进的局部边界积分方程方法。
     现有的局部边界积分方程方法在模拟断裂力学问题时,存在计算量大、精度低以及裂纹尖端的应力数值解容易发生振荡等问题。为了改善这些不足,本文在扩展的多项式基函数的基础上,利用Schmidt正交化方法构造带权的正交基函数,建立了断裂力学的改进的局部边界积分方程方法。
     为了证明本文提出的改进的无网格局部边界积分方程方法的有效性,本文编制了MATLAB计算机程序。数值算例说明了本文所建立的方法的正确性和有效性。
The meshless(or meshfree) method has been a hot direction and the development trend of numerical methods for science and engineering problems in recent years.
     The local boundary integral equation(LBIE) method is a meshless method, which combines moving least-squares(MLS) approximation with the local boundary integral equation. The advantages of the LBIE method are that the method is a true meshless method, as no mesh is required either for the approximation functions of the variables, or for the numerical integration. Because the MLS is used in this method, the disadvantages of the method are its less efficiency, and can form an ill-conditioned or singular equations sometimes. To these problems, combining the new interpolation function, which has higher accuracy and stablity, with LBIE method, the improved meshless local boundary integral equation methods are presented in this dissertation.
     A new approximation function based on the coupling of radial basis functions and polynomial basis functions is obtained, which has the property of Delta function. Combining this new approximate function with LBIE for potential problems, the LBIE method based on radial basis functions is presented for potential problem in the paper. And then combining this new approximate function with LBIE for elasticity problems, the LBIE method based on radial basis functions is proposed for elasticity problem.
     To increase the precision and efficiency of the LBIE for fracture problems, by introducing the analysis solution of displacements at the tip of a crack, the approximation function based on the coupling of radial basis functions and enriched polynomial basis functions is obtained, and a new enriched LBIE method based on radial basis functions is proposed in this dissertation. This method used to solve the crack problems has greater precision and computational efficiency.
     With the problems of the MLS, such as ill-conditioning equations, precision and efficiency, the improved MLS approximation is combined with LBIE for potential problems, then an improved LBIE method for potential problems is presented. Furthermore, the improved MLS approximation is combined with LBIE for elasticity problems, and an improved LBIE method for elasticity problems is presented too.
     When simulating fractures problems with the conventional LBIE method, some problems, such as the computing time, less precision and the vibration of the solution at the tip of the crack, exist. In order to reduce these shortcomings, on the basis of enriched polynomial basis functions, weighted orthogonal basis functions are used to obtain the MLS approximation by using a Schmidt orthogonalization. In the end, the improved LBIE method for elasticity fracture is proposed.
     In order to show the validity of the improved LBIE methods in the dissertation, corresponding MATLAB codes of these methods have been written. Some numerical examples are provided, and the validity and efficiency of these methods are demonstrated.
引文
[1] Christopher R J. Advanced Methods in Scientific Computing Computer Science 6220, University of Utah, Spring Semester, 2002, 13-26
    [2] 徐次达.固体力学加权残值法.上海:同济大学出版社,1978
    [3] Zienkiewicz O C. The finite element method(Third edition). McGraw-Hill, 1977
    [4] 李开泰,黄艾香,黄庆怀.有限元方法及其应用(修订本).西安:西安交通大学出版社.1992
    [5] 嵇醒,臧跃龙,程玉民.边界元进展及通用程序.上海:同济大学出版社,1997
    [6] Brebbia C A. The Boundary Element Method for Engineers. London Pentech Press, 1978
    [7] Belytschko T, Krongauz Y, Organ D et al. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 3-47
    [8] Li Shaofan, Liu W K. Meshless and particles methods and their applications. Applied Mechanics Review, 2002, 55(1): 1-34
    [9] 唐少武,冯振兴.关于无单元法的若干注记.力学进展,2003,33(4):560-561
    [10] Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astrophysical Journal, 1977, 8(12): 1013-1024
    [11] Gingold R A, Moraghan J J. Smoothed particle hydrodynamics: theory and applications to nonspherical stars. Mon Not Roy Astrou Soc, 1977, 18: 375-389
    [12] Liu W K, Jun S, Zhang Y F. Reproducing kernel partical methods. International Journal for Numerical Methods in Fluid, 1995, 20: 1081-1106
    [13] Lancaster P, Salkauskas K. Surfaces generated by moving least square methods. Mathematics of Computation, 1981, 37: 141-158
    [14] Babuska I, Melenk J M. The partition of unity method. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758
    [15] Frink R. Scattered data interpolation: test of some methods. Mathematics of Computation, 1972, 38: 181-199
    [16] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 2001, 50: 937-951
    [17] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256
    [18] Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 1996, 39: 3839-3866
    [19] 张雄,胡炜,潘小飞等.加权最小二乘无网格法.力学学报,2003,35(4):425-431
    [20] Atluri S N, Zhu T. A new Meshless local Petrov-Galerkin(MLPG) approach in computational mechanics. Computational Mechanics, 1998, 22(2): 117-127
    [21] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin(MLPG) approach for solving problems in elasto-statics. Computational Mechanics, 2000, 25: 169-179
    [22] Atluri S N, Zhu T L. New concepts in meshless methods. International Journal for Numerical Method in Engineering, 2000, 47: 537-556
    [23] Atluri S N, Kim H G et al. A critical assessment of the truly meshless local Petrov-Galerkin(MLPG), and local boundary integral equation(LBIE)methods. Computational Mechanics 1999, 24: 348-372
    [24] Frank C Gunther, Liu W K. Implementation of boundary conditions for meshless methods. Computer Methods in Applied Mechanics and Engineering, 1998, 163: 205-230
    [25] Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method. Computational Mechanics, 1997, 19: 264-270
    [26] Ventura G. An augmented Lagranging approach to essential boundary conditions in meshless methods. International Journal for Numerical Methods in Engineering, 2002, 53: 825-843
    [27] Zhang X, Liu X H, Song K Z et al. Least-square collocation meshless method. International Journal for Numerical Methods in Engineering, 2001, 51(9): 1089-1100
    [28] Zhu T, Atluri S N. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21: 211-222
    [29] Duarte C A, Oden J T. Hp clouds-a meshless method to solve boundary-value problems. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 1995
    [30] Liu W K, Chen Y, Uras R A, Chang C T. Generalized multiple scale reproducing kernel particle. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 91-157
    [31] Liu W K, Chen Y J. Wavelet and multiple scale reproducing kernel methods. International Journal of Numerical Methods in Fluids, 1995, 21: 901-931
    [32] Chen W. New RBF collocation methods and kernel RBF with applications. In: Meshfree methods for partial differential equations(Griebel M and Schweitzer M A Eds.), Vol.1, Springer Verlag, 2000
    [33] Idelsohn S R, Onate E, Calvo N, Del P F. The meshless finite element method. International Journal for Numerical Methods in Engineering, 2003, 58: 893-912
    [34] Sukumar N, Moran T, Belytschko T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 1998, 43(5): 839-887
    [35] 程玉民,彭妙娟,李九红.复变量移动最小二乘法及其应用.力学学报,2005,37(6):719-723
    [36] 程玉民,李九红.弹性力学的复变量无网格法.物理学报,2005,54(10),4463-4471
    [37] Chati M K. Meshless standard and hypersingular boundary node method---applications in three dimensional potential theory and linear elasticity. Ph. D. thesis, Cornell Univversity, Ithaca, NY, 1999
    [38] Mukherjee Y X, Mukherjee S. The boundary node method for potential problems. Internatioal Journal for Numerical Methods in Engineering, 1997, 40: 797-815
    [39] Kothnur V S, Mukherjee S, Mukherjee Y X. Two dimensional linear elasticity by the boundary node method. International Journal of Solids and Structures, 1999, 36(8): 1129-1147
    [40] Chati M K, Mukherjee S, Mukherjee Y X. The boundary node method for three-dimensional linear elasticity. International Journal for Numerical Methods in Engineering, 1999, 190: 1163-1184
    [41] Chati M K and Mukherjee S. The boundary node method for three-dimensional problems in potential theory. International Journal for Numerical Methods in Engineering, 2000, 47: 1523-1547
    [42] Hwang W S. A boundary node method method for airfoils based on the Dirichlet condition. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 1679-1688
    [43] Zhu T, Zhang J, Atluri S N. A local boundary integral equation(LBIE) method in computational mechanics and a meshless discretization approach. Computational Mechanics, 1998, 21: 223-235
    [44] Atluri S N, Sladek J, Sladek V et al. The local boundary integral equation(LBIE) and it's meshless implementation for linear elasticity. Computational Mechanics, 2000, 25: 180-198
    [45] Zhu T, Zhang J, Atluri S N. A local boundary integral equation(LBIE) method for solving nonlinear problems. Computational Mechanics, 1998, 22: 174-186
    [46] Sladek V, Sladek J, Atluri S N et al. Numerical integration of singularities in meshless implementation of local boundary integral equations. Computational Mechanics, 2000, 25: 394-403
    [47] Zhu Tulong. Meshless Methods in Computational Mechanics. Ph. d thesis, Georgia Institute of Techanology, 1998
    [48] Sladek J, Sladek V, Atluri S N. Application of the local boundary integral equation(LBIE) method to boundary-value problems. International Applied Mechanics, 2002, 38(9): 1025-1047
    [49] 程玉民,陈美娟.弹性力学的一种边界无单元法.力学学报,2003,35(2):181-186
    [50] 程玉民,彭妙娟.弹性动力学的边界无单元法.中国科学,2005,35(4):435-448
    [51] 秦义校,程玉民.弹性力学的重构核离子边界无单元法.物理学报,2006,55(7):3215-22
    [52] Zhang Jianming, Yao Zhenhan, Li Hong. A hybrid boundary node method. International Journal for Numerical Methods in Engineering, 2002, 53: 751-763
    [53] Liu G R, Gu Y T. Boundary meshless methods based on the boundary point interpolation methods. Engineering Analysis with Boundary Elements, 2004, 28: 475-487
    [54] Gu Y T, Liu G R. A boundary point interpolation method for stress analysis of solids. Computational Mechanics, 2002, 28(1): 47-54
    [55] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys, 1995, 116: 123-134
    [56] Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics, 1998,23: 279-287
    
    [57] Johnsons G R, Beissel S R. Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering, 2002, 53: 825-843
    [58] Nayroles B Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 1992, 10: 307-318
    [59] Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Computational Mechanics, 1999,23: 219-230
    [60] Belytschko T, Krongauz Y et al. Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math., 1996, 74: 111-126
    [61] Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. International Journal for Numerical Methods in Engineering, 1998,41: 1215-1233
    [62] Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by element free Galerkin methods. Modlling Simul. Mater. Sci. Eng.. 1994, 2: 519-534
    [63] Lu Y Y, Belytschko T. Element-free Galerkin methods for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, 1995,126: 131-153
    [64] Krysl P, Belytschko T. ESFLIB: A library to compute the element free Galerkin shape functions. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 2181-2205
    [65] Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method. Computational Mechanics, 1995, 17: 26-35
    [66] Belytschko T, Lu Y Y, Gu L, Tabbara M. Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995, 32: 2547-2570
    [67] Sukumar N, Moran B, Black T, Belytschko T. An element-free Galerkin method for three-dimensional fracture mechanics. Computational Mechanics, 1997, 20: 170-175
    [68] Belytschko T, Organ D, Gerlach C. Element-free galerkin methods for dynamic fracture in concrete. Computer Methods in Applied Mechanics and Engineering, 2000, 187: 385-399
    [69] Xu Y, Saigal S. An Element Free Galerkin analysis of steady dynamic growth of a mode I crack in elastic-plastic materials. International Journal of sounds and structures, 1999, 36: 1045-1079
    [70] Kargarmovin M H, Toussi H E, Faribotz S J. Elasto-plastic element-free Galerkin method. Computational Mechanics, 2004, 33(3): 206-214
    [71] Bouillard Ph, Seleau S. Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect. Computer Methods in Applied Mechanics and Engineering, 1998, 162: 317-335
    [72] Lee S H, Yoon Y C. An improved crack analysis technique by element-free Galerkin. International Journal for Numerical Methods in Engineering, 2003, 56: 1291-1314
    [73] Rao B N and Rahman S. An enriched meshless method for non-linear enriched fracture mechanics. International Journal for Numerical Methods in Engineering, 2004, 59: 197-223
    
    [74] Fleming M, Chu Y A, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 1997,40: 1483-1504
    [75] Beissel S, Belytschko T. Nodal integration of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49-74
    [76] Smolinski P, Palmer T. Procedures for multi-time step integration of element free Galerkin methods for diffusion problems. Comput. Struct., 2000, 77: 171-183
    [77] Alves M K, Rossi R. A modified element-free Galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function. International Journal for Numerical Methods in Engineering, 2003, 57: 1523-1552
    [78] Kaljevic I, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering, 1997,40: 2953-2974
    [79] Ponthot J P, Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1998, 152: 19-46
    [80] Liew K M, Ren J and Kitipornchai S. Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method. Engineering Analysis with Boundary Elements, 2004, 28: 497-507
    [81] Liu G R, Gu Y T. Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation. Computational Mechanics, 2000, 26: 166-173
    [82] Belytschko T, Organ D, Krongauz Y. A coupled finite element- element free Galerkin method. Computational Mechanics, 1995, 17: 186-195
    [83] Krysl P, Belytschko T. Element-free Galerkin method convergence of the continuous and discontinuous shape functions. Computer Methods in Applied Mechanics and Engineering, 1997, 148: 257-277
    [84] Chung H J, Belytschko T. An error estimate in the EFG menthod. Computational Mechanics, 1998,21:91-100
    [85] Gavete L, Falcon S, Ruiz A. An error indicator for the element free Galerkin method. Eur. J. Mech. A/Solids, 2001, 20, 327-341
    [86] Voth T E, Christon M A. Discretization errors associated with reproducing kernel methods: one-dimensional domains. Computer Methods in Applied Mechanics and Engineering, 1996, 190: 2429-2446
    [87] Han W, Meng X. Error analysis of the reproducing kernel particle method. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 6157-6181
    [88] Chen J S, Pan C, Wu C T, Liu W K. Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 195-227
    [89] Liew K M, Ng T Y, Wu Y C. Meshfree method for large deformation analysis-a reproducing kernel particle approach. Engineering structures, 2002,24: 543-551
    
    [90] Li S, Liu W K. Moving least-square reproducing kernel method (I) Methodology and Convergence. Computer Methods in Applied Mechanics and Engineering, 1997, 143: 113-154
    
    [91] Li S, Liu W K. Moving least-square reproducing kernel method Part II Fourier analysis. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 159-193
    [92] Chen J S, Yoon S, Wang H P, Liu W K. An improved reproducing kernel particle method for nearly incompressible finite elasticity. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 117-145
    [93] Danielson K T, Hao S, Liu W K et al. Parallel computation of meshless methods for explicit dynamic analysis. International Journal for Numerical Methods in Engineering, 2000,47: 1323-1341
    [94] Chen J S, Han W, You Y, Meng X. A reproducing kernel method with nodal interpolation property. International Journal for Numerical Methods in Engineering, 2003, 56: 935-960
    [95] Uras R A, Cheng C T, Chen Y et al. Multiresolution reproducing kernel particle methods in acoustics. J. Comput. Acoust., 1997, 5: 71-94
    [96] Liu W K, Jun S et al. Multiresolution reproducing kernel particle methods for computational fluid dynamics. International Journal for Numerical Methods in Fluid, 1997, 24: 1391-1415
    [97] Liu W K, Jun S. Multiple-scale reproducing kernel particle methods for large deformation problem. International Journal for Numerical Methods in Engineering, 1998, 41: 1339-1362
    [98] Duarte A, Oden J T. Hp clouds: a h-p meshless method. Numerical Methods for Partial Differential Equations, 1996, 12:673-705
    [99] Duarte M, Oden J T. An h-p adptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 237-262
    [100] Oden J T, Duarte A, Zienkiewicz O C.A new cloud-based hp finite element method. International Journal for Numerical Methods in Engineering, 1998, 50: 160-170
    [101] Babuska I, Melenk J M. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 289-314
    [102] Strouboulis T, Babuska I, Copps K. The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 43-69
    [103] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Computational Mechanics, 1998, 21: 283-292
    [104] Atluri S N, Cho J Y, Kim H G.. Analysis of thin beam, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, 1999, 24: 334-347
    [105] Lin H, Atluri S N. The Meshless Local Petrov-Galerkin(MLPG) Method for Solving Incompressible Navier-Stokes Equations. Computer Modeling in Engineering & Sciences(CMES), 2001, 2: 117-142
    [106] Tang Z, Shen S, Atluri S N. Analysis of materials with strain gradient effects: A Meshless Local Petrov-Galerkin(MLPG) approach, with nodal displacements only. Computer Modeling in Engineering & Sciences(CMES), 2003, 4(1): 177-196
    [107] Atluri S N, Shen S P. The Meshless Local Petrov-Galerkin(MLPG): a simple & less-costly alternative to the finite element and boundary element methods. CMES: Computer modeling in Engineering and Sciences, 2002, 3(1), 11-51
    [108] Raju I S, Phillips D R, Krishnamurthy T. A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems. Computational Mechanics, 2004, 34: 464-474
    [109] 蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,35(2),187-193
    [110] Xiao J R. Local Heaviside weighted MLPG meshless methods for two-dimensional solids using compactly supported radial basis functions. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 117-138
    [111] Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002, 54: 1623-1648
    [112] Liu G R, GuY T. A matrix triangularization algorithm for point interpolation method. Computer Methods in Applied Mechanics and Engineering, 2003, 28(1): 2269-95
    [113] 吴宗敏.径向基函数、散乱数据拟和与无网格偏微分方程数值解.工程数学学报,2002,19(2),1-11
    [114] Buhmann M D. Radial Basis Functions. Acta Numerica, 2000, 1-38
    [115] Wu Z M, Hon Y C. Convergence error estimate in solving free boundary diffusion problem by radial basis functions method. Engineering Analysis with Boundary Elements, 2003, 27: 73-79
    [116] Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Advances in Computational Mathematices, 1995, 4: 389-396
    [117] Schaback R. Error estimation and condition number for radial basis function interpolation. Preprint, 1993
    [118] Kansa E J. Multiquadrics-a scatered data approximation scheme with applications to computational fluid dynamics-I. Comp. Math. Applic., 1990, 19(8/9): 127-145
    [119] Wong S M, Hon Y C, Li T S et al. Multizone decomposition of time-dependent problems using the multiquadric schem. Comput. Math. Applic., 1999, 37(8): 23-43
    [120] Wu Z M. Multivariate compactly supported positive definite radial functions. Advances in Computational Mathematics, 1995, 4: 283-292
    [121] Buhmann M D. Radial functions on compact support. Proceedings of the Edinburgh Mathematical Society, 1998, 41: 3-46
    [122] Song Kangzu, Zhang xiong, Lu Mingwan. Collocation with Modified Compactly Supported Radial Basis Function. Proceedings of International Conference on Computational Engineering & Sciences, August 19-25, 2001, Puerto Vallarta
    [123] Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 2611-2630
    [124] Wendland H. Meshless Galerkin method using radial basis functions. Math. Comput., 1999, 68(228): 1521-1531
    [125] 潘小飞,张雄,陆明万.Meshless Galerkin least square method.工程与科学中的计算力学,北京,2003
    [126] Wu Z M. Solving PDE with radial basis functions and error estimation. In: Chen Z, Li Y, Micchelli CA et al. Advances in Computational Mathematics, Lecture Notes on Pure and Applied Mathematics. GuangZhou, 1998, 202
    [127] Wu Z M, Schaback R. Local error estimates for radial basis function interpolation of scattered data. IMA Journal of Numerical Analysis, 1993, 13: 13-27
    [128] Franke C, Schaback R. Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput., 1998, 93: 73-82
    [129] Braun J, Sambridge. A numerical method for solving partial differential equation highly irregular evolving gride. Natural, 1995, 376: 655-660
    [130] 王兆清,冯伟.自然单元法研究进展.力学进展,2004,34(4):437-445
    [131] Cueto E, Sukumar N, Calvol B et al. Overview and recent advances in natural neighbour Galerkin methods. Archives of Computational Methods in Engineering, 2003, 10(4): 307-384
    [132] Liu G R, Gu Y T. Meshless Local Petrov-Galerkin(MLPG) Method in combination with finite element and boundary element approaches. Computational Mechanics, 2000, 26: 536-546
    [133] Krongauz Y, Belytschlo T. Enforcement of essential boundary conditions in meshless approximations using finite element. Computer Methods in Applied Mechanics and Engineering, 1996, 131: 133-145
    [134] Liu W K, Uras R A, Chen Y. Enrichment of the finite element method with reproducing kernel particle method. ASME Journal of Applied Mechanics, 1997, 64: 861-870
    [135] Huerta A, Fernandez-Mendez S. Enrichment and coupling of the finite element and meshless methods. International Journal for Numerical Methods in Engineering, 2000, 48: 1615-1636
    [136] Wagner G J, Liu W K Hierarchical enrichment for bridging scales and mesh-free boundary conditions. International Journal for Numerical Methods in Engineering, 2001, 50: 507-524
    [137] Hegen D. Element-free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering, 1996, 135: 143-166
    [138] Attaway S, Heinstein M, Swegle J. Coupling of smooth particle hydrodynamics with the finite element method. Nucl. Eng. Des., 1994, 150: 199-205
    [139]李九红.复变量无网格方法及其应用研究.博士学位论文,西安理工大学,2004
    
    [140] Park H, Liu W K. An introduction and tutorial on multiple-scale analysis in solids. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1733-1772
    
    [141] Abraham F F, Broughton J Q, Bernstein N et al. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhysics Letters, 1998,44(6): 783-787
    [142] Qian D, Wagner G J, Liu W K. A multiscale projection method for the analysis of carbon nanotubes. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1603-1632
    [143] Xiao S P and Yang W X. A Nanoscale Meshfree Particle Method with the Implementation of Quasicontinuum Method. International Journal of Computational Methods, 2005, 2(3): 293-313
    [144] Xiao S P, Yang W X. Temperature-related Cauchy-Born rule for multiscale modeling of crystalline solids. Computational Materials Science, 2006, 37: 374-379
    [145] Liu M B, Liu G R, Lam K. Y. Constructing smoothing functions in smoothed particle hydrodynamics applications. Journal of Computational and Applied Mathematics, 2003, 155(2):263-284
    [146] Quinlan N J, Basa M and Lastiwka M. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering, 2006, 66: 2064-2085
    [147] Maria G Armentano and Ricardo G Duran. Error estimates for moving least square approximations. Applied Numerical Mathematics, 2001, 37: 397-416
    [148] Carlos Z. Good quality point sets and error estimates for moving least square approximations. Applied Numerical Mathematics, 2003,47: 575-585
    [149] Chung H J, Belytschko T. An error estimate in the EFG menthod. Computational Mechanics, 1998,21: 91-100
    [150] Krysl Petr and Belytschko T. Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions. Computer Methods in Applied Mechanics and Engineering, 1997, 148: 257-277
    [151] Liu G R, Tu Z H. An adaptive procedure based on background cells for meshless methods. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 1923-1943
    [152] Enrique P. Convergence and accuracy of the path integral approach for elastostatics. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 2191-2219
    [153] Franke C, Schaback R. Convergence order estimates of the meshless collocation methods using radial basis functions. Advances in Computational Mathematics, 1998, 8: 381-399
    [154] Wu Z, Hon Y C. Convergence error estimates in solving free boundary diffusion problem by radial basis functions. Engineering Analysis with Boundary Elements, 2003, 27, 73-79
    [155] Gu Y T. Development of Meshless techniques for computational mechanics. Ph D thesis, National University of Singapore, 2002
    [156] Atluri S N, Kim H G. Arbitrary placement of secondary nodes, and error control, in the meshless local Petrov-Galerkin(MLPG) method. Computer Modeling in Engineering & Science,2002:1(3):11-32
    [157] 张雄,宋康祖,陆明万.无网格法研究进展及其应用.计算力学学报,2003,20(6):731-741
    [158] 姜弘道,曹国金.无单元法研究和应用现状及动态.力学进展,2002,34(4):526-534
    [159] 李九红,程玉民.无网格方法的研究进展与展望.力学季刊,2006,143-152
    [160] 娄路亮,曾攀.影响无网格方法求解精度的因素分析.计算力学学报,2003,20(3):313-319
    [161] 刘欣,朱德懋,陆明万等.平面裂纹问题的h,p,hp型自适应无网格方法研究.力学学报,2000,32(3):308-318
    [162] Wang M Z, Sun S L. The local boundary integral equation and mean value theorem in the theory of elasticity. Journal of Elasticity, 2002, 67: 51-59
    [163] Song K Z, Zhang X. Meshless method based on collocation for elasto-plastic analysis, Proceedings of Internal Conference on Computational Engineering & Science. August, 20-25, 2000, Los Angeles, USA
    [164] 张雄,宋康祖,陆明万.紧支试函数加权残值法.力学学报,2003,35(1):43-49
    [165] 周进雄,李梅娥,张红艳,张陵.再生核质点法研究进展.力学进展,2002,32(4):535-544
    [166] 史宝军,袁明武,李君.基于核重构思想的最小二乘配点型无网格方法.力学学报,2003,35(6):697-706
    [167] 史宝军,袁明武,舒东伟.基于核重构的最小二乘配点法求解Helmholtz方程.力学学报,2006,38(1):125-129
    [168] 张见明,姚振汉,李宏.二维势问题的杂交边界点法.重庆建筑大学学报,2000,22(6):105-107
    [169] 张见明,姚振汉.一种新型无网格法-杂交边界点法.中国计算力学大会,2001会议论文集,广州,2001,339-343
    [170] 蔡永昌,李晓军,朱合华.基于局部Petrov-Galerkin过程的自然单元法及其面向对象的设计与实现.岩石力学与工程学报,2003,22(8):1263-1268
    [171] 朱合华,杨宝红,蔡永昌等.无网格自然单元法在弹塑性分析中的应用.岩土力学,2004,25(4):671-674
    [172] 龙述尧,许敬晓.弹性力学问题的局部边界积分方程方法.力学学报,2000,32(5):566-577
    [173] 龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报,2001,33(4):508-517
    [174] 熊渊博,龙述尧,李光耀.弹性地基板分析的局部Petrov-Galerkin方法.土木工程学报,2005,38(11):79-83
    [175] 高凌天,刘凯欣,刘颖.瞬态应力波传播问题的MLPG方法.北京力学学会第12届学术年会论文摘要集,北京,2006:121-122
    [176] Gao L, Liu K, Liu Y. Applications of MLPG method in dynamic fracture problems. CMES: Computer Modeling in Engineering & Sciences, 2006, 12: 181-196
    [177] 陈美娟,程玉民.改进的移动最小二乘法.力学季刊,2003,24(2):266-272
    [178] 李树忱,程玉民.基于单位分解法的无网格数值流形方法.力学学报,2004,36(4):496-500
    [179] 李树忱.断续节理岩体的无网格流形方法和实验研究.上海大学博士学位论文,2004
    [180] 李树忱,程玉民.裂纹扩展分析的无网格数值流形方法.岩石力学与工程学报,2005,24(7):1187-1195
    [181] Li S C, Li S C and Cheng Y M. Enriched meshless manifold method for two-dimensional crack modeling. Theoretical and Applied Fracture Mechanics, 2005, 44(3): 201-346
    [182] Kitipornchai S, Liew K M, Cheng Yumin. A boundary element-free method (BEFM) for three-dimensional elasticity problems. Computational Mechanics, 2005, 36(1): 13-20
    [183] Liew K M, Cheng Yumin, Kitipornchai S. Boundary element-free method(BEFM) for two-dimensional elastodynamic analysis using Laplace transform. International Journal of Numerical Methods in Engineering, 2005, 64(12): 1610-1627
    [184] Liew K M, Cheng Yumin, Kitipornchai S. Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems. International Journal of Numerical Methods in Engineering, 2006, 65(8): 1310-1332
    [185] 程玉民,彭妙娟.弹性动力学的边界无单元法.中国科学G辑,2005,35(4):435-448
    [186] Cheng Yumin, Peng Miaojuan. Boundary element-free method for elastodynamics, Science in China Ser. G Physics, Mechanics & Astronomy, 2005, 48(6): 641-657
    [187] 程玉民,李九红.断裂力学的复变量无网格方法.中国科学G辑,2005,35(5):548-560
    [188] 戴保东,程玉民.基于径向基函数的局部边界积分方程方法.机械工程学报,2006,(11):
    [189] 苗雨,蒋和祥,王元汉.工程力学中的正交基无网格方法.岩土力学,2004,25(增刊):126-129
    [190] Zhang X, Lu M W. A 2-D meshless model for jointed rock structures. Int. J. Numer. Methods Engrg., 2000, 47(10): 1649-1661
    [191] 寇晓东,周维垣.应用无单元法近似计算拱坝开裂.水利学报,2000,10:28-35
    [192] 张伟星,庞辉.弹性地基板计算的无单元法.工程力学,2000,17(3):138-144
    [193] 庞作会,葛修润.无网格伽辽金法在边坡开挖问题中的应用.岩土力学,1999,20(1):61-64
    [194] 陈建,吴林志,杜善义.采用无单元计算含边沿裂纹功能梯度材料板的应力强度因子.工程力学,2000,17(5):139-144
    [195] 曾清红,卢德唐.无网格方法求解稳定渗流问题.计算力学学报,2003,20(4):440-445
    [196] 郭隽,陶智.非线性问题的MPS无网格算法.北京航空航天大学学报,2003,29(1):83-86
    [197] 张延军,王思敬.有限元与无网格伽辽金耦合法分析二相连续多孔介质.计算物理,2003,20(2):142-146
    [198] 娄路亮,曾攀等.应力高梯度问题的无网格分析.应用力学学报,2002,19(2):121-124
    [199] 袁振,李子然等.无网格法模拟复合型疲劳裂纹的扩展.工程力学,2002,19(1):25-28
    [200] 龙述尧.用无网格局部Petrov—Galerkin法分析非线性地基梁.力学季刊,2002,23(4):547-551
    [201] 李卧东,谭国焕等.无网格法在弹塑性问题中的应用.固体力学学报,2001,22(4):361-367
    [202] 李卧东,陈晓波.无网格法在断裂力学中的应用.岩石力学与工程学报,2001,20(4):462-466
    [203] 庞作会,朱岳明.无网格伽辽金法(EFGM)求解接触问题.河海大学学报(自然科学版),2000,28(4):54-58
    [204] 庞作会,葛修润.无网格伽辽金法(EFGM)模拟不连续面.工程地质学报,2000,8(3):364-368
    [205] 庞作会,葛修润.对无网格伽辽金法(EFGM)的两点补充.岩石力学与工程学报,1999,18(5):581-584
    [206] 周瑞忠,廖圆冰,周小平.小波函数在无单元法中的应用.岩石力学与工程学报,2001,20(增2):1604-1608
    [207] 吴琛,周瑞忠.小波基无单元法及其与有限元法的比较.工程力学,23(4):28-32
    [208] 何沛祥,李子然,冯森林等.非均质材料的Galerkin法.机械强度,2002,24(1):070-072
    [209] 刘岩,杨海天.基于时域算法的EFG/FE-EFG方法求解热传导问题.应用基础与工程科学学报,2002,10(3):307-317
    [210] Atluri S N, Shen P. The Meshless Local Petrov-Galerkin(MLPG) method. Califomia: Tech Science Press, 2002
    [211] Liu G R. Mesh Free Methods: Moving Beyond the Finite Method. CRC Press, 2002
    [212] Liu G R, Liu M B Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific, 2003
    [213] Li S F, Liu W K. Meshfree Particle Methods. Berlin Heidelberg: Springer-Verlag, 2004
    [214] 张雄,刘岩.无网格法.北京,清华大学出版社,2004
    [215] 余德浩.自然边界元方法的数学理论.北京:科学出版社,1993
    [216] Timoshenko S P and Goodier JN. Theory of Elasticity. New York: McGraw Hill, 1970
    [217] 范天佑.断裂理论基础.北京:科学出版社,2003
    [218] Anderson T L. Fracture Mechanics: Fundamentals and applications(First ed.). CRC Press. 1991
    [219] Lu Y Y, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1994, 113: 397-414
    [220] Belytschko T and Black T. Elastic crack growth in finite element with minimal remeshing. Internatioal Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620
    [221] Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Comput. Struct., 1999, 71: 173-195
    [222] 夏道行,吴卓人,严绍宗等.实变函数轮与泛函分析(下册).北京:高等教育出版社,1979
    [223] 杨桂通.弹性力学.北京,高等教育出版社,1980
    [224] 赵建生.断裂力学及断裂物理.武汉,华中科技大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700