CMOS振荡器噪声理论及优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无线通信系统中,随着无线用户更加有效使用已经稀少的频率资源的要求的增多,频谱已是一种重要的商品。通信收发器主要通过本地振荡器实现频率转换,因此接收器和发送器中的振荡器频谱纯度是限制最多信道和用户的因素之一。正因为如此,深入理解限制振荡器性能的基本问题以及开发解决这些问题的设计准则是必要的。
     本文在完成对CMOS振荡器领域国内外研究现状调研的基础上,进行CMOS振荡器噪声理论和优化技术研究。探讨适合于高频集成电路设计的深亚微米MOSFET高频噪声模型;进行CMOS振荡器相位噪声建模的研究;探索CMOS振荡器低相噪技术的优化方法;并且对CMOS振荡器的电路结构进行深入的研究,包括以下几个方面的内容:
     研究深亚微米MOSFET高频噪声模型。首先考虑MOSFET的短沟道效应(迁移率退化、速度饱和、热载流子效应、体电荷效应、沟道长度调制效应等)对器件噪声的影响,将短沟道效应模型,特别是热载流子效应的模型引入MOSFET热噪声模型的推导过程,以提高深亚微米MOSFET热噪声模型的精确度;然后从高频集成电路设计者方便使用的角度出发,提出了一种只包括器件的设计参数和工艺参数,不存在微积分表达方式和拟合参数的MOSFET热噪声代数解析模型,促进了深亚微米MOSFET热噪声模型的易用性;最后通过沟道热噪声、栅极诱导噪声和栅极电阻噪声三种高频噪声源建立了完整的MOSFET器件高频噪声代数解析模型,对深亚微米MOSFET的噪声性能进行较为全面地评估,并验证了沟道热噪声是MOSFET的主要高频噪声源。
     研究CMOS振荡器相位噪声模型。线性时不变分析、线性时变分析和非线性分析三种方法是研究振荡器相位噪声理论的主要途径。由于线性时变分析方法在预测CMOS振荡器相位噪声的准确度和易用性这两个方面作了很好地折衷,因此将首先被用作建立CMOS振荡器相位噪声模型的方法;然后将提出的深亚微米MOSFET热噪声模型引入CMOS振荡器相位噪声模型,进一步提高CMOS振荡器相位噪声模型的精确度;最后通过对脉冲敏感函数进行合理地简化,进而为CMOS振荡器设计者提供了方便使用的振荡器相位噪声模型。
     研究CMOS振荡器噪声优化技术。本质上来说,CMOS振荡器内在的相位噪声主要来源于电阻和MOSFET的噪声,并经过调制作用转化成为CMOS振荡器的相位噪声。因此,从电阻和深亚微米MOSFET器件噪声分析以及CMOS振荡器相位噪声分析两方面入手,全面地分析CMOS振荡器的相位噪声机理,并且提出了CMOS振荡器噪声优化方法,为促进CMOS振荡器噪声性能奠定基础。
     研究CMOS振荡器的电路结构。基于以上对深亚微米MOSFET器件噪声理论、CMOS振荡器相位噪声理论和CMOS振荡器噪声优化技术的研究,通过改变振荡器的电路结构和MOSFET器件类型的方法,提出低相噪环形振荡器的电路结构。
     本文不仅研究了器件高频噪声对CMOS振荡器相位噪声的影响,而且也分析了低频噪声(例如闪烁噪声)模型,给出了一种经验表达模型,并定量地分析了低频噪声对CMOS振荡器相位噪声的影响。
In wireless communications, the frequency spectrum is a valuable commodity as the ever increasing number of wireless users demands more efficient usage of the already scarce frequency resources. Communication transceivers rely heavily on frequency conversion using local oscillators (LOs) and therefore the spectral purity of the oscillators in both the receiver and the transmitter is one of the factors limiting the maximum number of available channels and users. For that reason, a deeper understanding of the fundamental issues limiting the performance of oscillators, and development of desing guidelines to improve them, are necessary.
     Based on the domestic and foreign study state in CMOS oscillator, noise theory and optimization technology in CMOS oscillator is studied. High-frequency noise modeling in submicron MOSFET, phase noise modeling in CMOS oscillator, noise optimization technology, and CMOS oscillator circuit are studied to be suitable for high-frequency IC design. These studies are included as following aspects in detail.
     Study on high-frequency noise modeling in submicron MOSFET. Firstly, the effect on device noise by short-channle effects of deep submicron MOSFETs, such as mobility degradation, hot carrier, bulk change and channel length modulation effect are considered, and the models of short-channel effect, especially the model of hot carrier effect, are introduced into the modeling process of MOSFET channel thermal noise to improve the precision of the modeling. Secondly, the algebraic analytical model which include device design and model parameters and not include calculous is proposed to improve simplify for RF IC designer. Thirdly, the high-frquency noise modeling which include three kinds of noise source: channel thermal noise, induced gate noise and gate resistance noise is proposed, and can analyze roundly noise in submicron MOSFET. By measurement, channel thermal noise is main noise source in submicron MOSFET.
     Study on phase noise modeling in CMOS oscillator. Linear time invariant (LTI), linear time variant (LTV) and nolinear analysis are three kinds of methods for study on phase noise theory in oscillator. For LTV analysis can predict well phase noise of oscillator in precision and simplify, the method is selected as modeling phase noise in CMOS oscillator. Then, channel thermal noise model in submicron MOSFET is introduced into modeling process of phase noise to improve well precision. By simplifying in reason impulse sensitive function (ISF), phase noise modelings in CMOS oscillator are suitable for CMOS oscillator designer.
     Study on noise optimization technology in CMOS oscillator. Basically, in CMOS oscillator, the noise in resistance and MOSFET is main reason, and modulated to translate phase noise. So, device noise modeling in resistance and submicron MOSFET and phase noise modeling in CMOS oscillator are selected as analyzing underlying physical mechanisms of oscillator, and the optimization methods for oscillators are proposed to improve noise performance in CMOS oscillator.
     Study on CMOS oscillator circuit. Based on noise theory in submicron, phase noise theory in CMOS oscillator, and noise optimization technology in CMOS oscillator, a low phase noise ring oscillator is proposed by changing oscillator ciruit and device type of MOSFET.
     The thesis studies not only the high frequency device noise, but also the low frequency device noise (1/f noise) effect on CMOS oscillators by experiential modeling and analyzing quantificationally of flicker noise.
引文
1 A. A. Abidi. RF CMOS Comes of Age. IEEE Journal of Solid-State Circuits. 2004, 39(4): 549~561
    2 A. Zolfaghari and B. Razavi. A Low-power 2.4-GHz Transmitter/receiver CMOS IC. IEEE Journal of Solid-State Circuits. 2003, 38(2): 176~183
    3 M. Zargari, M. Terrovitis, S. H. Jen, B. J. Kaczynski, et al. A Single-chip Dual-band Tri-mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN. IEEE Journal of Solid-State Circuits. 2004, 39(12): 2239~2249
    4 R. Ahola, A. Aktas, J. Wilson, R. Rama, et al. A Single-chip CMOS Transceiver for 802.11a/b/g wireless LANs. IEEE Journal of Solid-State Circuits. 2004, 39(12): 2250~2258
    5 P. Zhang, L. Der, D. Guo, I. Sever, et al. A Single-chip Dual-band Direct-conversion IEEE 802.11a/b/g WLAN Transceiver in 0.18-um CMOS. IEEE Journal of Solid-State Circuits. 2005, 40(9): 1932~1937
    6 B. A. Floyd, S. K. Reynolds, T. Zwick, L. Khuon, et al. WCDMA Direct-conversion Receiver Front-end Comparison in RF-CMOS and SiGe BiCMOS. IEEE Journal of Solid-State Circuits. 2005, 53(4): 1181~1188
    7 P. Sivonen, J. Tervaluoto, N. Mikkola, A. Parssinen. A 1.2-V RF Front-end with On-chip VCO for PCS1900 Direct Conversion Receiver in 0.13-um CMOS. IEEE Journal of Solid-State Circuits. 2006, 41(2): 384~393
    8 G. Gramegna, P. G. Mattos, M. Losi, S. Das, et al. A 56-mW 23-mm2 Single-chip 180-nm CMOS GPS Receiver with 27.2-mW 4.1-mm2 Radio. IEEE Journal of Solid-State Circuits. 2006, 41(3): 540~550
    9 B. Bakkaloglu, P. Fontaine, A. N. Mohieldin, S. Peng, et al. A 1.5-V Multi-mode Quad-band RF Receiver for GSM/EDGE/CDMA2K in 90-nm Digital CMOS Process. IEEE Journal of Solid-State Circuits. 2006, 41(5): 1149~1158
    10 G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto. A 0.18-um CMOS Selective Receiver Front-end for UWB Applications. IEEE Journal of Solid-State Circuits. 2006, 41(8): 1764~1771
    11 K. Muhammad, Y. Ho, T. L. Mayhugh Jr, C. Hung, et al. The First Fully Integrated Quad-band GSM/GPRS Receiver in a 90-nm Digital CMOS Process. IEEE Journal of Solid-State Circuits. 2006, 41(8): 1772~1781
    12 T. Maeda, N. Matsuno, S. Hori, T. Yamase, et al. A Low-power Dual-band Triple-mode WLAN CMOS Transceiver. IEEE Journal of Solid-State Circuits. 2006, 41(11): 2481~2489
    13 S. Lo, I. Sever, S. Ma, P. Jang, et al. A Dual-antenna Phased-array UWB Transceiver in 0.18-um CMOS. IEEE Journal of Solid-State Circuits. 2006, 41(12): 2776~2785
    14 K. Lee, I. Nam, I. Kwon, J. Gil, et al The Impact of Semiconductor Technology Scaling on CMOS RF and Digital Circuits for Wireless Application. IEEE Transactions on Electron Devices. 2005, 52(7): 1415~1422
    15 B. Razavi. Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001: 340~351
    16 P. C. Huang, M. D. Tsai, H. Wang, C. H. Chen, and C. S. Chang. A 114GHz VCO in 0.13μm CMOS Technology. IEEE International Solid-State Circuits Conference, San Francisco, CA, United States, 2005: 330~331
    17 P. C. Huang, R. C. Liu, H. Y. Chang, C. S. Lin, M. F. Lei, H. Wang, C. Y. Su, and C. L. Chang. A 131 GHz Push-push VCO in 90-nm CMOS Technology. IEEE Radio Frequency Integrated Circuits Symposium, Long Beach, CA, United States, 2005: 613~616
    18 C. Cao, E. Seok, and K. K. O. 192 GHz Push-push VCO in 0.13μm. Electronics Letters. 2006, 42(4): 208~210
    19 H. Q. Liu, W. L. Goh, and L. Siek. Design and Frequency/phase-noise Analysis of a 10-GHz CMOS Ring Oscillator with Coarse and Fine Frequency Tuning. Analog Integrated Circuits and Signal Processing. 2006, 48(2): 85~94
    20 A. A. Abidi. Phase Noise and Jitter in CMOS Ring Oscillators. IEEE Journal of Solid-State Circuits. 2006, 41(8): 1803–1816
    21 M. Bhushan, A. Gattiker, M. B. Ketchen, K. K. Das. Ring Oscillators for CMOS Process Tuning and Variability Control. IEEE Transactions on Semiconductor Manufacturing. 2006, 19(1): 10~17
    22 R. Dehghani. Wide Band Injection-locked Quadrature Frequency Divider Based on CMOS Ring Oscillators. Microwaves, Antennas and Propagation. 2006, 153(5): 420~425
    23 W. Zhao, A. Seabaugh, B. Winstead, D. Jovanovic, and V. Adams. Influence of Uniaxial Tensile Strain on the Performance of Partially Depleted SOI CMOS Ring Oscillators. IEEE Electron Device Letters. 2006, 27(1): 52-54
    24 C. Samori, S. Levantino, and A. L. Lacaita. Integrated LC Oscillators for Frequency Synthesizer in Wireless Applications. IEEE Communication Magazine. 2002, 40(5): 166~171
    25 J. Craninckx and M. S. J. Steyaert. A 1.8-GHz CMOS Low-phase-noise Voltage-controlled Oscillator with Prescaler. IEEE Journal of Solid-State Circuits. 1995, 30(12): 1474~1482
    26 J. Craninckx and M. S. J. Steyaert, and H. Miyakawa. A Fully Integrated Spiral-LC CMOS VCO Set with Precaler for GSM and DCS-1800 System. IEEE Custom Integrated Circuits Conference, Santa Clara, CA, USA, 1997: 404~406
    27 J. Craninckx and M. S. J. Steyaert. A 1.8-GHz Low-phase-noise CMOS VCO Using Optimized Hollow Spiral Inductors. IEEE Journal of Solid-State Circuits. 1997, 32(5): 736~744
    28 C. M. Hung and K. O. Kenneth. A Packaged 1.1-GHz CMOS VCO with Phase Noise of -126 dBc/Hz at a 600-kHz offset. IEEE Journal of Solid-State Circuits. 2000, 35(1): 100~103
    29 A. Kral, F. Behbahani, and A. A. Abidi. RF-CMOS Oscillators with Swithched Tuning. Proc. IEEE Custom Integrated Circuits Conf., Santa Clara, CA, USA, 1998: 555~558
    30 A. D. Beerny, A. M. Niknejad, and R. G. Meyer. A Wideband Low-phase –noise CMOS VCO. IEEE Custom Integrated Circuits Conference, San Jose, CA, United States, 2003: 555~558
    31 N. Sneed. A 2-GHz CMOS LC-tuned VCO Using Switched-capacitors to Compensate for Bondwire Inductance Variation. Master Thesis of University of California. 2000: 55~66
    32 S. M. Oh, C. W. Kim, and S. G. Lee. A 74%, 1.56-2.71 GHz, Wide-tunableLC-tuned VCO in 0.35-μm CMOS Technology. Microwave and Optical Technology Letters. 2003, 37(2): 259~261
    33 F. Herzel, H. Erzgraber, and N. Ilkov. A new Approach to Fully Integrated CMOS LC-oscillators with a Very Large Tuning Range. IEEE Custom Integrated Circuits Conference, Orlando, FL, USA, 2000: 573~576
    34 F. Herzel, H. Erzgraber, and P. Weger. Integrated CMOS wideband oscillator for RF applications. Electronics Letters. 2001, 37(6): 330~331
    35 P. Vancorenland and M. S. J. Steyaert. A 1.57 GHz Fully Integrated Very Low Phase Noise Quadrature VCO. IEEE Symp VLSI Circuits Dig Tech Pap, Kyoto, Japan, 2001: 111~114
    36 P. Vancorenland and M. S. J. Steyaert. A 1.57 GHz Fully Integrated Very Low Phase Noise Quadrature VCO. IEEE Journal of Solid-State Circuits. 2001, 37(5): 653~656
    37 M. Tiebout. Low-power Low-phase-noise Differentially Tuned Quadrature VCO Design in Standard CMOS. IEEE Journal of Solid-State Circuits. 2001, 36(7): 1018~1024
    38 P. Andreani, A. Bonfanti, L. Romano, and C. Samori. Analysis and Design of a 1.8-GHz CMOS LC Quadrature VCO. IEEE Journal of Solid-State Circuits. 2002, 37(12): 1737~1747
    39 J. Cabanillas, L. Dussopt, J. M. Lopez-Villegaz, and G. M. Rebeiz. A 900-MHz Low Phase Noise CMOS Quadrature Oscillator. IEEE Radio Frequency Integrated Circuits Symposium, Seatle, WA, 2002: 63~66
    40 H. Jacobsson, B. Hansson, H. Berg, and S. Gevorgian. Very Low Phase-noise Fully-integrated Coupled VCOs. IEEE Radio Frequency Integrated Circuits Symposium, Seatle, WA, 2002: 467~470
    41 S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Baccuzzi. A Low-phase-noise 5-GHz CMOS Quadrature VCO Using Superharmonic Coupling. IEEE Journal of Solid-State Circuits. 2003, 38(7): 1148~1154
    42 T. H. Lee. The Design of CMOS Ratio-Rrequency Intergrated Circuits. 2nd ed. Cambridge University Press, 2004: 136~146
    43 陈邦媛. 射频通信电路. 科学出版社, 2002: 43~45
    44 L. Dai and R. Harjani. Design of Low-phase-noise CMOS Ring Oscillators. IEEE Trans. Circuits Syst.–II. 2002, 49(5): 328–338
    45 D. B. Leeson. A Simple Model of Feedback Oscillator Noises Spectrum. Proc. IEEE, 1966: 329~330
    46 B. Razavi. A Study of Phase Noise in CMOS Oscillators. IEEE Journal of Solid-State Circuits. 1996, 31(3): 331~343
    47 A. Hajimiri, T. H. Lee. A General Theory of Phase Noise in Electrical Oscillators. IEEE Journal of Solid-State Circuits. 1998, 33(2): 179~194
    48 A. Demir, A. Mehrotra, J. Roychowdhury. Phase Noise in Oscillators: A Unifying Theory and Numerical Methods for Characterization. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications. 2000, 47(5): 655~674
    49 E. Hegazi, H. Sjoland, and A. A. Abidi. A Filtering Technique to Lower LC Oscillator Phase Noise. IEEE Journal of Solid-State Circuits. 2001, 36(12): 1921~1930
    50 A. Hajimiri, T. H. Lee. Design Issues in CMOS Differential LC Oscillators. IEEE Journal of Solid-State Circuits. 1999, 34(5): 717~724
    51 E. Hegazi and A. A. Abidi. Varactor Characteristics, Oscillator Tuning Curves, and AM-FM Conversion. IEEE Journal of Solid-State Circuits. 2003, 38(6): 1033~1039
    52 J. Maget and M. Tiebout. MOS Varactors with n- and p-type Gates and Their Influence on an LC-VCO in Digital CMOS. IEEE Journal of Solid-State Circuits. 2003, 38(7): 1139~1147
    53 B. Soltanian, P. R. Kinget. Tail Current-Shaping to Improve Phase Noise in LC Voltage-Controlled Oscillators. IEEE Journal of Solid-State Circuits. 2006, 41(8): 1792~1802
    54 J. B. Johnson. Thermal Agitation of Electricity in Conductors. Phys. Rev. 1928, 32: 97~109
    55 H. Nyquist. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 1928, 32: 110~13
    56 T. H. Lee. The Design of CMOS Ratio-Rrequency Intergrated Circuits. 2nd ed. Cambridge University Press, 2004: 334~358
    57 P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer. Analysis and Design of Analog Integrated Circuits. 4th ed. John Wiley & Sons, 2001: 748~807
    58 A. Cappy. Noise Modeling and Measurement Techniques. IEEETransactions on Microwave Theory and Techniques. 1988, 36(1): 1~10
    59 A. van der Ziel. Noise in Solid State Devices and Circuit. New York: Wiley, 1986: 33~45
    60 B. Razavi. RF Microelectronics. NJ: Prentice Hall PTR, 1998: 1~10
    61 廖承恩. 微波技术基础. 西安电子科技大学出版社, 2001: 1~12
    62 G. Gonzalez. Mircowave Transistor Amplifiers: Analysis and Design. NJ: Prentice-Hall, 1984: 95~102
    63 P. E. Allen and D. R. Holberg. CMOS Analog Circuit Design. 2nd ed. Oxford University Press, 2002: 1~21
    64 H. T. Friis. Noise Figure of Radio Receivers. Pro. IRE. 1944, 32: 419~422
    65 H. Hillbrand and P. H. Russer. An Efficient Method for Computer Aided Noise Analysis of Linear Amplifier Networks. IEEE Trans Circuits and System. 1976, 23(4): 235~238
    66 H. Samavati, H. R. Rategh, and T. H. Lee. A 5-GHz CMOS Wireless LAN Receiver Front End. IEEE Journal Solid-State Circuits. 2000, 35(5): 765-772
    67 A. G. Jordan, N. A. Jordan. Theory of noise in metal oxide semiconductor devices. IEEE Transactions on Electron Devices. 1965, ED-12(3): 148~156
    68 F. M. Klaassen, J. Prins. Thermal Noise of MOS Transistors. Philips Res. Rep. 1967, 22: 504~514
    69 A. van der Ziel. Noise in Solid State Devices and Circuit. New York: Wiley, 1986: 167~199
    70 A. Schenk, B. Schmithusen, A. Wettstein, A. Erlebach, S. Brugger, F. Buffler, T. Freudel, and W. Fichtner. Simulation of RF Noise in MOSFETs Using Different Transport Models. IEICE Transaction Electron. 2003, E86-C(3): 481~489
    71 Y. Tsividis. Operation and Modeling of the MOS Transistor. 2nd ed. New York: McGraw-Hill, 1999: 414~421
    72 R. P. Jindal. Hot-electron Effects on Channel Thermal Noise in Fine-line NMOS Field Effect Transistors. IEEE Transactions on Electron Devices. 1986, ED-33(9): 1395~1397
    73 P. Klein. An Analytical Thermal Nosie Mode of Deep Submicron MOSFETs. IEEE Electron Device Lett. 1999, 20(8): 399~401
    74 C. H. Park and Y. J. Park. Modeling of Thermal Noise in Short-channel MOSFETs at Saturation. Solid State Electron. 2000, 44(11): 2053~2057
    75 D. P. Triantis, A. N. Birbas, and D. Kondis. Thermal Noise Modeling for Short-channel MOSFETs. IEEE Transactions on Electron Devices. 1996, 43(11): 1950~1955
    76 G. Knoblinger, P. Klein, and M. Tiebout. A New Model for Thermal Channel Noise of Deep-submicron MOSFETs and Its Application in RF CMOS Design. IEEE Journal of Solid-State Circuits. 2001, 36(5): 831~837
    77 C. H. Chen, M. J. Deen. Channel Noise Modeling of Deep Submicron MOSFETs. IEEE Transactions on Electron Devices. 2002, 49(8): 1484~1487
    78 A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, P. W. H. De Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree, and D. B. M. Klaassen. Accurate Thermal Noise Model for Deep-submicron CMOS. IEDM Tech. Dig. 1999: 155~158
    79 A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, A. T. A. Zegeres-van Duijnhoven, and V. C. Venezia. Noise Modeling for RF CMOS Circuit Simulation. IEEE. Trans. Electron Devices. 2003, 50(3): 618~632
    80 T. L. Chen and G. Gildenblat. Symmetric Bulk Charge Linearization on Charge-sheet MOSFET Model. Electron. Lett. 2001, 37(12): 791~793
    81 H. Wang, T. L. Chen, and G. Gildenblat. Quasi-static and Non-quasistatic Compact MOSFET Models Based on Symmetric Linearization of the Bulk and Inversion Charges. IEEE. Trans. Electron Devices. 2003, 50(11): 2262~2272
    82 G. Gildenblat, H. Wang, X. Li, W. Wu, R. van Langevelde, G. D. J. Smit, A. J. Scholten, and D. B. M. Klaassen. New Surface-potential-based Model: PSP. IEEE Transactions on Electron Devices. To be published in 2006 special issue on compact modeling
    83 PSP Model. http:// pspmodel.ee.psu.edu
    84 K. Han, H. Shin, and K. Lee. Analytical Drain Thermal Noise Current Model Valid for Deep Submicron MOSFETs. IEEE Transactions on Electron Devices. 2004, 51(2): 261~269
    85 A. S. Roy, C. C. Enz. Compact Modeling of Thermal Noise in the MOSTransistor. IEEE Transactions on Electron Devices. 2005, 52(4): 611~614
    86 S. Asgaran, M. J. Deen, C. H. Chen. Analytical Modeling of MOSFETs Channel Noise and Noise Parameters. IEEE Transactions on Electron Devices. 2004, 51(12): 2109~2114
    87 M. J. Deen, C. H. Chen, S. Asgaran, G. A. Rezvani, J. Tao, Y. Kiyota. High-Frequency Noise of Modern MOSFETs: Compact Modeling and Measurement Issues. IEEE Transactions on Electron Devices. 2006, 53(9): 2062~2081
    88 A. van. der Ziel. Gate Noise in Field Effect Transistor at Moderately High Frequencies. Pro. Inst. Electr. Eng. 1963, 51(3): 461~467
    89 M. Shoji. Analysis of High-frequency Thermal Noise of Enhancement Mode MOS Field-effect Transistors. IEEE Transactions on Electron Devices. 1966, ED-13(6): 520~524
    90 D. P. Triantis, A. N. Birbas, and S. E. Plevridis. Induced Gate Noise in MOSFETs Revised: The Submicron Case. Solid State Electron. 1997, 41(12): 1937~1942
    91 Y. Cheng, M. J. Deen, and C. H. Chen. MOSFET Modeling for RF IC Design. EEE Transactions on Electron Devices. 2005, 52(7): 1286~1303
    92 C. H. Chen, M. J. Deen, Y. Cheng, and M. Matloubian. Extraction of the Induced Gate Noise, Channle Noise, and Their Correlation in Submicron MOSFETs from RF Noise Measurement. IEEE Transactions on Electron Devices. 2001, 48(12): 2884~2892
    93 A. Litwin. Overlooked Interfacial Silicide-polysilicon Gate Resistance in MOS Transistors. IEEE Transactions on Electron Devices. 2001, 48(9): 2179~2181
    94 Y. Ma, D. R. Evans, T. Nguyen, Y. Ono, and S. T. Hsu. Fabrication and Characterization of Sub-quarter-micron MOSFET’s with a Copper Gate Electrode. IEEE Electron Device Lett. 1999, 20(5): 254~255
    95 H. C. Lin, R. Lin, W. F. Wu, R. P. Yang, M. S. Tsai, T. S. Chao, and T. Y. Huang. A Novel Self-aligned T-shaped Gate Process for Deep Submicron Si MOSFET’s Fabrication. IEEE Electron Device Lett. 1998, 19(1): 26~28
    96 R. van Langevelde and F. M. Klaassen. Effect of Gate-Field Dependent Mobility Degradation on Distortion Analysis in MOSFET’s. IEEETransactions on Electron Devices. 1997, 44(11): 2044~2052
    97 BSIM3 Model. http://www-device.eecs.berkeley.edu/~bsim3/latenews.html
    98 BSIM4 Model. http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html
    99 Philips Model9. http://www.semiconductors.philips.com/Philips_Models/mos_models/model9/index.html
    100 Philips Model1. http://www.semiconductors.philips.com/Philips_Models/mos_models/model11/code_history/index.html
    101 C. C. Enz, F. Krummenacher, and E. A. Vittoz. An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-current Applications. Analog Integrated Circuits and Signal Processing. 1995, 8(1): 83~114
    102 EKV Model. http://legwww.epfl.ch/research/pdf/ekvf.pdf
    103 EKV2 Model. http://legwww.epfl.ch/ekv/pdf/ekv_v262.pdf
    104 C. Enz. An MOS Transistor Model for RF IC Design Valid in All Regions of Operation. Microwave Theory and Techniques. 2002, 50(1): 342~359
    105 Y. Tsividis. Operation and Modeling of the MOS Transistor. 2nd ed. New York: McGraw-Hill, 1999: 286~290
    106 M. Lundstrom. Fundamentals of Carrier Transport. 2nd ed. Cambridge Univ. Press, 2000: 111~131
    107 K. Hess. Phenomenological Physcis of Hot Carriers in Semiconductors. In Physics of Nonliear Transport in Semiconductors. D. K. Ferry, J. R. Barker, and C. Jacoboni. New York: Plenum, 1980: 1~43
    108 K. Hess. Advanced Theory of Semiconductor Devices. New York: IEEE Press, 2000: 212~244
    109 R. Navid and R. W. Dutton. The Physical Phenomena Responsible for Excess Noise in Short-Channel MOS Devices. Simulation and Semiconductor Processes and Devices. 2002: 75~78
    110 H. A. Haus and R. B. Adler. Circuit Theory of Linear Noisy Networks. New York: Technology Press of MIT and Wiley, 1959: 232~255
    111 E. J. Baghdady, R. N. Lincoln, and B. D. Nelin. Short-term frequency stability: Characterization, Theory, and Measurement. Proc. IEEE, 1965, 53:704~722
    112 L. S. Cutler and C. L. Searle. Some Aspects of the Theory and Measurement of Frequency Fluctuations in Frequency Standards. Proc. IEEE, 1966, 54: 136~154
    113 J. Rutman. Characterization of Phase and Frequency Instabilities in Precision Frequency Sources; Fifteen Years of Progress. Proc. IEEE, 1978, 66: 1048~1174
    114 A. A. Abidi and R. G. Meyer. Noise in Relaxation Oscillators. IEEE Journal of Solid-State Circuits. 1983, SC-18(6): 794~802
    115 T. C. Weigandt, B. Kim, and P. R. Gray. Analysis of Timing Jitter in CMOS Ring Oscillators. IEEE International Symposium on Circuits and Systems, London, England, 1994, 4: 27~30
    116 J. McNeil. Jitter in Ring Oscillators. IEEE International Symposium on Circuits and Systems, London, England, 1994, 6: 201~204
    117 J. Craninckx and M. Steyaert. Low-noise Voltage-controlled Oscillators Using Enhanced LC-tanks. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing. 1995, 30(12): 1474~1482
    118 高明伦, 胡永华, 李丽. 深亚微米芯片设计中相位噪声的讨论. 微电子学与计算机. 2002, 9: 57-60
    119 王博, 郭林. CMOS 环形振荡器的噪声分析. 微电子学. 2003, 33(3): 221-224
    120 李长生, 王文骐, 詹福春. 射频应用的压控振荡器相位噪声的研究. 通信技术. 2003, 12: 26-28
    121 林蔚然, 来金梅, 章倩苓等. 基于随机非线性微分方程的振荡器相位噪声研究. 固体电子学研究与进展. 2004, 24(1): 86-91
    122 A. Hajimiri, S. Limotyrakis, T. H. Lee. Jitter and Phase Noise in Ring Oscillators. IEEE Journal of Solid-State Circuits. 1999, 34(6): 790~804
    123 P. Andreani, X. Wang, L. Vandi, and A. Fard. A Study of Phase Noise in Colpitts and LC-tank CMOS Oscillators. IEEE Journal of Solid-State Circuits. 2005, 40(2): 360~369
    124 P. Andreani and X. Wang. On the Phase-noise and Phase-error Performances of Multiphase LC CMOS VCOs. IEEE Journal of Solid-State Circuits. 2004, 39(11): 1883~1893
    125 D. Ham, A. Hajimiri. Concepts and Methods in Optimaization of Integrated LC VCOs. IEEE Journal of Solid-State Circuits. 2001, 36(6): 896~909
    126 K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian. High Q Inductors for Wireless Applications in a Complementary Silicon Bipolar Process. IEEE Journal of Solid-State Circuits. 1996, 31(1): 4~9
    127 L. Zu, Y. Lu, R. C. Frye, M. Y. Lau, S. C. S. Chen, D. P. Kossives, J. Lin, and K. L. Tai. High Q-factor Inductors Integrated on MCM Si Substrates. IEEE Trans Compon Packag Manuf Technol Part B Adv Packag. 1996, 19(3): 635~643
    128 J. Y. C. Chang and A. A. Abidi. Large Suspended Inductors on Silicon and Their Use in a 2-μm CMOS RF Amplifier. IEEE Electron Device Letters. 1993, 14(5): 246~248
    129 ASITIC. http://formosa.eecs.berkeley.edu/~niknejad/asitic.html
    130 B. Kim. High Speed Clock Recovery in VLSI Using Hybrid Analog/digital Techniques. Ph.D. dissertation, Univ. OF California, Berkeley, Memo. UCB/ERF M90/50. 1990: 91~103
    131 L. Dai and R. Harjani. A Low-Phase-Noise CMOS Ring Oscillator with Differential Control and Quadrature Outputs. IEEE Procedings of 14th annual International ASIC/SOC Conference, 2000: 134~138
    132 W. Yan and H. C. Luong. A 900-MHz CMOS Low-phase-noise Voltage-controlled Ring Oscillator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing. 2001, 48(2): 216~221
    133 D. A. Badillo and S. Kiaei. A Novel Low Phase Noise 1.8V 900MHz CMOS Voltage Controlled Ring Oscillator. IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, 2003(3): 160~163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700