生态位模型在外来入侵物种风险评估中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济一体化进程的不断加快,世界贸易自由化越来越成为一种趋势。以此为背景的国际大环境为外来物种的入侵、传播和扩散创造了条件。外来物种的入侵在给世界很多国家造成不可逆转的生态灾难的同时也造成了巨大的经济损失。由于我国幅员广阔,地理气候多样,其生态环境极为复杂,几乎所有的生物在我国境内均可找到适合生境,加强对外来入侵物种的防御对于保障我国动植物及人类健康来说尤为重要。为保障国际贸易的正常进行,避免将检疫措施作为变相的贸易保护主义采用的手段,世界贸易组织(WTO)就实施检疫措施作出规定,SPS协议便是这些规定中最集中的代表。我国作为WTO成员国之一,在积极采取检疫措施的同时必须注意保持与SPS协议一致,SPS协议规定允许各国采取一定的检疫措施来防止和减少随国际贸易传入生物体为害本国动植物及人类健康,但这些检疫措施必须符合国际有关标准,否则必须提供科学依据,而有害生物的风险分析是最核心的科学依据。
     对外来入侵物种的定量化风险评估是发展的总趋势,而目前风险的定量化主要体现在外来入侵物种的定殖风险、扩散风险及社会影响等方面,对外来入侵物种在目标地区的适生性分析是定殖风险评估的基础。由于外来入侵物种一旦定殖后将其铲除非常困难,所以不可能在目标地区进行野外试验来验证其适生性。目前一般采用相关数学模型进行适生区预测,在假设物种的生态位需求保守的前提下,可应用基于生态位理论的模型预测外来入侵物种在目标地区的适生区,从而为决策者制定相应管理措施提供技术支撑。
     生态位模型的基本原理是根据每种生物均有其特殊的小生境,即生态位要求,从该物种的已知分布区出发,利用数学模型归纳或模拟其生态位需求,然后将其投射到目标地区即可得到该物种的适生区分布。应用生态位模型一般需要两种数据,一个为物种现有分布信息,另一个为环境数据。物种现有分布数据可通过野外调查、查阅文献和查询相关物种分布数据库得到。各类数字化的环境数据越来越多,环境变量选择的好坏直接影响预测结果,如何选择环境变量是应用生态位模型首先要解决的一个问题。本文以生态位因子分析(ENFA)结果为基础,分析影响物种分布的主要环境因子,并以此为指导选择环境因子。模型评价是选择模型的依据,本文应用应试者工作特征曲线(ROC曲线)分析法对不同模型的预测效果进行评价,选择效果最好的模型进行最后预测,得到其适生区分布图,以Boyes指数曲线为指导并结合真阳性率进行适生图的分级显示,从而建立了基于生态位模型进行外来入侵物种风险评估的技术框架。
     本文应用生态化模型对相似穿孔线虫、大豆疫霉、马铃薯癌肿病菌的中国适生区进行了预测。结果表明,所选6种生态位模型:BIOCLIM、DOMAIN、ENFA、GARP、Mahalanobis和Maxent均可用来预测外来入侵物种的适生区,预测结果均能较好地与实际分布相吻合,但以Maxent模型预测效果最好,且使用方便、运行速度快。相似穿孔线虫在我国的适生区主要集中我国南部,如海南、福建、广东、广西、云南、台湾等省。大豆疫霉在我国的适生区较广,主要高风险区有黑龙江、吉林、辽宁、北京、河北、山东、汀苏、浙江、安徽、湖北、江西等省市,另外在湖南、福建、广东、广西、云南、四川、重庆、山西、内蒙等省市部分地区也适合大豆疫霉发生。在我国,马铃薯癌肿病主要分布在广西、贵州、四川、甘肃、陕西、湖北以及江苏等省区。
     应用生态位模型进行外来入侵物种适生区预测的一个前提条件是假设物种的生态位需求是保守的,即在原产地的生态位要求与入侵地相同或相近。但物种的生态位有时会发生漂移(nicheshift),外来入侵物种的生态位漂移现象更为突出,这主要有两个原因,一是外来入侵物种本身的快速进化作用产生了新的生态位适应机制从而影响其“基本生态位”(fundamental niche),另一方面是入侵物种在入侵地缺少天敌和竞争者和空生态位(empty niche)的存在会导致入侵物种的“实际生态位”(realized niche)发生漂移。获取外来入侵物种生态位漂移的直接证据往往很困难,本文基于生态位模型,以原产地和入侵地分布互为训练数据,建立了获取入侵物种生态位漂移的间接证据的方法。以我国区域性恶性外来入侵杂草—胜红蓟为例分析其生态位漂移现象,结果表明,胜红蓟在入侵我国后其生态位已发生部分漂移。
     本文所建立的“基于生态位模型进行外来入侵物种风险评估技术框架”为我国农业外来入侵生物的风险评估提供了必要的技术基础,并探讨了生态位模型在研究外来入侵物种生态位漂移现象中的应用。
The world trade globalization has greatly promoted with the accelerating of the global economy integration, which provide a pathway for the alien species to invade, disseminate and spread around the world. The biological invasion has caused irreversible ecological disaster and enormous economic losses in many countries in the world. The geography and climate of China are tremendously diverse, and almost all kind of species can found suitable places to live in our country. Due to the vast, diverse ecological environment, it is particularly important to strengthen the defense against the biological invasion in our country. In order to promote the international trade and avoid using quarantine measures as a disguised mean by the trade protectionism, the World Trade Organization (WTO) has made some provisions to guarantee the measures being used appropriately, the Sanitary and Phytosanitary measures agreement (SPS) is one of the most important representatives. China, as one of WTO member, we must obey the agreement as we take active quarantine measures to protect the health of plant, animal and human in our country against the invasion of the alien species. A scientific reason must be provided to support decision when the measures did not agree with the international standards. The risk analysis is the centre of the scientific basis.
     The quantitative risk assessment of invasive alien species (IAS) is the developing trend all over the world, and currently this quantification is mainly embodied in the establish risk, spread risk and social impact of IAS. The suitability analysis lays the foundation of establish risk of IAS. It is very difficult to eradicate the IAS once it had successfully invaded, so we could not to test the suitability of the IAS in the novel region by introducing the species into this area. Fortunately we can predict the potential geographic distribution of IAS in the target region by using mathematical models. The niche based models were commonly employed to predict the habitat suitable maps of species, which can provide essential technical support for the policy-maker when they formulate the corresponding measures.
     The principle of ecological niche modeling was based on that there is a special niche - the set of environmental factors that determine where a species can or cannot maintain populations - for each specific species. We can deduce the ecological niche requirement of a species from the species' distribution information, and then project the niche requirement onto the novel area the species never been found before to predict the suitable maps of the species. Typically, applying niche models needs two types of data, one is the distribution of the species, the other is the environmental data. The locations of species distribution can be obtained from field survey, consulting the literature and searching the occurrence database of species, such as GBIF (Global Biodiversity Information Facility). The choice of environment variables has a direct effect on the final result. We select the predict variables which determine the species geographical distribution mostly based on the ecological niche factors analysis (ENFA) results. Receive operating characteristic curve (ROC) analysis was employed to evaluate the performance of different models, and based on the assessment results we chose the best model to give the final prediction suitable maps of the IAS. The habitat suitable maps were scaled by combining the Boyes index curve and the true positive rate. Thus we proposed a framework of the risk assessment of IAS based on ecological niche modeling.
     Using this risk assessment framework, we analyzed the potential geographic distribution of Radopholus similis (R.similis), Phatophthora sojae (P.sojae) and Synchytrium endobioticum (S.endobioticum) in China with 6 common used niche models: BIOCLIM, DOMAIN, ENFA, GARP, Mahalanobis and Maxent. The results showed that all of the 6 models can be used to predict the distribution of species with acceptable results, but the performance of different models varied dramatically. From the cases studied in this paper, the performance of Maxent is on top of the range with easy use and fast speed. From the results predicted by the models, the suitable areas of R.similis concentrates in the south of China, such as Hainan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan provinces and areas, the high risk regions of P.sojae including the Heilongjiang, Jilin, Liaolning, Beijing, Hebei, Shandong, Jiangsu, Zhejiang, Anhui, Hubei, Jiangxi provinces, the potential distribution of S.endobioticum would lie in Guangxi, Guizhou, Sichuan, Gansu, Shanxi, Hubei and Jiangsu provinces.
     Using the ecological niche models to predict the distribution of species, we assumed that the niche requirement of species is conserved, which means that the niche of the species in the original region is the same or very similar to that of in the invaded area. But this presumption was not always correct in all conditions, the niche of species may shift some time. The niche of IAS tends to shift due to following two reasons: one is the fundamental niche of IAS can be changed as a result of the fast evolution of invasive species, the other is the realized niche of IAS can be alternated by lacking of natural enemies and competitors, and existing lots of empty niches. It is difficult to obtain the direct evidence of niche shift of IAS by traditional experiment. We proposed a method to gain an indirect evidence of niche shift of IAS by applying the niche models. Using Ageratum conyzoides (A.conyzoides) - one of regional distress invasive weed in China - as a case study, we analyzed the niche shift phenomenal of A.conyzoides. The results showed that the niche of tropical ageratum has shifted after invaded in China.
     The framework of risk assessment of IAS based on niche modeling has provided an essential technical support and useful tool for us to struggle with invasive species. We also investigated the possibility of applying the niche models in studying the niche shift of IAS during the invading process.
引文
[1]万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策[J].生物多样性,2002,10(1):119-125.
    [2]Mooney,H.A.,Mack,R.N.,McNeely,J.A.et al.Invasive alien species[M].Washington:ISLAND PRESS,2005.
    [3]徐汝梅.生物入侵--数据集成、数量分析与预警[M].科学出版社,2004.
    [4]陈洪俊,范晓虹,李尉民.我国有害生物风险分析(PRA)的历史与现状[J].植物检疫,2002,16(1):28-32.
    [5]Simberloff,D.Risk assessments,blacklists,and white lists for introduced species:Are predictions good enough to be useful?[J].Agricultural and Resource Economics Review,2006,35(1):1-10.
    [6]Andersen,M.C,Adams,H.,Hope,B.et al.Risk analysis for invasive species:General framework and research needs[J].Risk Analysis,2004,24(4):893-900.
    [7]bClare Shine,Nattley Williams,Gundling,L.A Guide to Designing Legal and Institutional Frameworks on Alien Invasive Species[M].IUCN,Gland,Switzerland Cambridge and Bonn.,2000:xvi + 138pp.
    [8]Baker,R.,Cannon,R.,Bartlett,P.et al.Novel strategies for assessing and managing the risks posed by invasive alien species to global crop production and biodiversity[J].Annals of Applied Biology,2005,146(2):177-191.
    [9]陈克,范晓虹,李尉民.有害生物的定性与定量风险分析[J].植物检疫2002,16(5):257-261.
    [10]魏淑秋.中国与世界农业气候相似距研究办法及概要分析[A].程纯枢.中国农业气候资源调查和世界生物区划论文集[C].北京:气象出版社,1986.174-191.
    [11]魏淑秋,章正,郑耀水.应用生物气候相似距对小麦矮化腥黑穗病在我国定殖可能性的研究[J].北京农业大学学报,1995,21(2):127-131.
    [12]陈林,D.Korzukhin,M.,程登发等.基于GIS和气候、种群动态模型的红火蚁适生性分析[J].植物保护学报,2006,33(4):384-390.
    [13]沈佐锐,马晓光,高灵旺等.植保有害生物风险分析研究进展[J].中国农业大学学报,2003,8(3):51-55.
    [14]程俊峰,万方浩,郭建英.入侵昆虫西花蓟马的潜在适生区分析[J].昆虫学报,2006,49(3):438-446.
    [15]侯柏华,张润杰.基于CLIMEX的桔小实蝇在中国适生区的预测[J].生态学报,2005,25(7):1569-1574.
    [16]蒋青,姚文国.有害生物危险性评价指标体系的初步确立[J].植物检疫,1994,8(6):331-334.
    [17]万方浩,Harri.,P.生物防治作用物风险评价的方法[J].中国生物防治,1997,13(1):37-41.
    [18]程俊峰,万方浩,郭建英.西花蓟马在中国适生区的基于CLIMEX的GIS预测[J].中国 农业科学,2006,39(3):525-529.
    [19]王运生,谢丙炎,万方浩等.ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007,15(4):365-372.
    [20]Bartell,S.M.,Nair,S.K.Establishment risks for invasive species[J].Risk Analysis,2004,24(4):833-845.
    [21]Rudiger,W.,J.W.,C.M.Invasive Alien Species:A Toolkit of Best Prevention and management Practices[M].CAB International,Wallingford,Oxon,UK,2001:xii-228.
    [22]Hutchinson,G.E.Concluding remarks[J].Cold spring harbor sym posium Quantitative Biology,1957,22:425-427.
    [23]Brown,J.H.,Stevens,G.C,Kaufman,D.M.The geographic range:size,shape,boundaries and internal structure[J].Ann Rev Ecol Syst,1996,27:597-623.
    [24]Hirzel,A.H.,Hausser,J.,Chessel,D.et al.Ecological-niche factor analysis:how to compute habitat-suitability maps without absence data[J].Ecology,2002,83(7):2027-2036.
    [25]Hijmans,R.J.,Cameron,S.E.,Parra,J.L.et al.Very high resolution interpolated climate surfaces for global land areas[J].International Journal of Climatology,2005,25(15):1965-1978.
    [26]Anderson,R.P.,Lew,D.,Peterson,A.T.Evaluating predictive models of species' distributions:criteria for selecting optimal models[J].Ecological Modelling,2003,162(3):211-232.
    [27]Fielding,A.H.,Bell,J.F.A review of methods for the assessment of prediction errors in conservation presence/absence models[J].Environmental Conservation,1997,24(1):38-49.
    [28]Araujo,M.B.,Guisan,A.Five(or so)challenges for species distribution modelling[J].Journal of Biogeography,2006,33(10):1677-1688.
    [29]Brotons,L,Thuiller,W.,Arau?jo,M.B.et al.Presence-absence versus presence-only modelling methods for predicting bird habitat suitability[J].Ecography,2004,27(4):437-448.
    [30]Wiley,E.O.,McNyset,K.M.,Peterson,A.T.et al.Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm.[J].Oceanography,2003,16(3):120-127.
    [31]Peterson,A.T.Predicting the geography of species' invasions via ecological niche modeling[J].Quarterly Review of Biology,2003,78(4):419-433.
    [32]Guisan,A.,Zimmermann,E.N.Predicting habitat distribution models in ecology[J].Ecol Model,2000,135:147-186.
    [33]Prentice,l.C,Cramer,W.,Harrison,S.P.A global biome model based on plant physiology and dominance,soil properties and climate[J].JBiogeo,1992,19:117-134.
    [34]Sutherst,R.W.,Maywald,G.F.,Skarratt,D.B.Predicting insect distributions in a changed climate[A].R.Harrington,and N.E.Stork.Insects in changing environment[C].London:Academic Press,1995.59-91.
    [35]Worner,S.P.Ecodimatic assessment of portential establishment of exotic pests[J]. JEcolEntmol, 1988, 81(4): 973-983.
    [36] Scott, J. K., Yeoh, P. B. Bionomics and the predicted distribution of the aphid Brach caudus rumexicolens (Hemiptera: Aphididae)[J]. Bull Entomol Res, 1999, 89: 97-106.
    
    [37] 张清芬,徐岩.日本金龟子在中国适生区的预测[J].植物检疫,2002,16(2):73-77.
    [38] Nix, H. A. A biogeogaphic analysis of Australian Elapid snakes, in Longmore, R. (ed.)Atlas of Australian Elapid Snakes[J]. Australian Flora and Fauna Series, 1986,8: 4-15.
    [39] Busby, J. R. BIOCLIM - a bioclimate analysis and prediction system [A]. C. R. Margules, and M. P. Austin. Nature Conservation: Cost Effective Biological Surveys and Data Analysis[C]. Melbourne: CSIRO, 1991.64-68.
    [40] Doran, B., Olsen, P. (2001). Customizing BIOCLIM to investigate spatial and temporal variations in highly mobile species. Paper presented at: Proc 6th Int Conf GeoComputation.
    [41] Booth, T. H. A climatic analysis method for expert systems assisting three species introductions[J]. Agroforestry Syst 1990,10:33-45.
    [42] Walker, P. A., Cocks, K. D. HABITAT: a procedure for modelling a disjoint environmental envelope for a plant or animal species[J]. Glob Ecol Biogeo Lett, 1991, 1:108-118.
    [43] Carpenter, G., Gillison, A. N., Winter, J. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals[J]. Biodiversity and Conservation, 1993, 2: 667-680.
    [44] Belbin, L. Comparing two sets of community data: A method for testing reserve adequacy[J]. Aust J Ecol, 1992, 27:255-262.
    [45] Gower, J. C. A general coefficient of similarity and some of its properties[J]. Biometrics, 1971, 27: 857-871.
    [46] Peterson, A. T. Predicting species' geographic distributions based on ecological niche modeling[J]. Condor, 2001,103(3): 599-605.
    [47] Mahalanobis, P. C. On the generalised distance in statistics[J]. Proceedings of the National Institute of Science of India, 1936,12:49-55.
    [48] Foody, G. M., Campbell, N. A., Trodd, N. M. et al. Derivation and Applications of Probabilistic Measures of Class Membership from the Maximum Likelihood Classification[J]. Photogrammetric Engineering and Remote Sensing, 1992, 58(9): 1335-1341.
    [49] Hirzel, A. H., Arlettaz, R. Modeling habitat suitability for complex species distributions by environmental-distance geometric mean[J]. Environmental Management, 2003, 32(5): 614-623.
    [50] Guisan, A., Edwards, J., Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecol Model, 2002, 157:89-100.
    [51] Guisan, A., Weiss, S. B., Weiss, A. D. GLM versus CCA spatial modeling of plant species distribution[J]. Plant Ecol, 1999,143:107-122.
    [52] Yee, T. W., Mitchell, N. D. Generalized additive models in plant ecology[J]. Journal of Vegetation Science, 1991, 2: 587-602.
    [53] Lehmann, A., Overton, J. M., Leathwick, J. R. GRASP: generalized regression analysis and spatial prediction[J]. Ecological Modelling, 2002,157:189-207.
    [54] Thuiller, W., Richardson, D. M., Pyssek, P. et al. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale[J]. Global Change Biology, 2005,11 (12): 2234-2250.
    
    [55] Stockwell, D., Peters, D. The GARP modelling system: Problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information Systems, 1999,13(2): 143-158.
    [56] Stockwell, D. R. B., Beach, J. H., Stewart, A. et al. The use of the GARP genetic algorithm and Internet grid computing in the Lifemapper world atlas of species biodiversity[J]. Ecological Modelling, 2006,195(1-2): 139-145.
    
    [57] Berger, A. L, Delia Pietra, V. J., Delia Pietra, S. A. A maximum entropy approach to natural language processing[J]. Computational Linguistics, 1996, 22(1): 39-68.
    [58] Phillips, S. J., Dudik, M., Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. Paper presented at: Proceedings of 21st International Conference on Machine Learning (New York, ACM Press).
    
    [59] Phillips, S. J., Anderson, R. P., Schapire, R. E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006,190(3-4): 231-259.
    [60] Breiman, L., Friedman, J. H., Olshen, R. A. et al. CART: Classification and Regression Trees[M]. CA: WadswortlrBelmont, 1983.
    [61] Elith, J., Graham, H. C, Anderson, P. R. et al. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2006,29(2): 129-151.
    [62] Reichard, S. H., Hamilton. Predicting invasions of woody plants introduced into North America[J]. Conservation Biology, 1997,11:193-203.
    [63] Vapnik, V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
    [64] Drake, J. M., Randin, C, Guisan, A. Modelling ecological niches with support vector machines[J]. Journal of Applied Ecology, 2006, 43:424-432.
    [65] Guo, Q., Kelly, M., Graham, H. C. Support vector machines for predicting distribution of sudden oak death in California[J]. Ecological Modelling, 2005,182: 75-90.
    [66] Soberon, J., Peterson, A. T. Interpretation of models of fundamental ecological niches and species' distributional areas[J]. Biodiversity Informatics, 2005,2(1-10).
    [67] Peterson, A. T., Dawson, T. E. Predicting the impacts of climate change on the distributions of species: are biolcimate envelope models useful?[J]. Global Ecology and Biogeography, 2003,12: 361-371.
    [68] Chase, J. M., Leibold, M. A. Ecological niches - linking classical and contemporary approaches[M]. Chicago: The University of Chicago Press, 2003.
    [69] Yamamura, N., Higashi, M., Behera, N. et al. Evolution of mutualism through spatial effects[J]. Journal of Theoretical Biology, 2004, 226:421-428.
    [70] Travis, J. M. J., Brooker, R. W., Dytham, C. The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model[J]. Biology Letters, 2005,1: 5-8.
    [71] Leathwick, J. R., Austin, M. P. Competitive interactions between tree species in New Zealand's old-growth indigenous forests[J]. Ecology, 2001, 82:2560-2573.
    [72] Anderson, R. A., Peterson, A. T., Gomez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice[J]. Oikos, 2002, 98: 3-16.
    [73] Gutierrez, D., Fernandez, P., Seymour, A. S. et al. Habitat distribution models: are mutualist distributions good predictor of their associates?[J]. Ecological Applications, 2005,15:3-18.
    [74] Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis[J]. Ecology Letters, 2003, 6:1109-1122.
    [75] Guisan, A., Thuiller, W. Predicting species distribution: Offering more than simple habitat models[J]. Ecology Letters, 2005, 8(9): 993-1009.
    [76] Peterson, A. T. Uses and requirements of ecological niche models and related distributional models[J]. Biodiversity Informatics, 2006, 3: 59-72.
    [77] Araujo, M. B., Whittaker, R. J., Ladle, R. et al. Reducing uncertainty in projections of extinction risk from climate change[J]. Global Ecology and Biogeography, 2005, 14: 529-538.
    [78] Hirzel, A., Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling[J]. Ecological Modelling, 2002,157:331-341.
    [79] Edwards, T. C. J., Cutler, R., Zimmermann, N. E. et al. Model-based stratifications for enhancing the detection of rare ecological events: lichens as a case study [J]. Ecology, 2005, 86:1081-1090.
    [80] Guisan, A., Broennimann, O., Engler, R. et al. Using niche-based distribution models to improve the sampling of rare species[J]. Conservation Biology, 2006,20:501 -511.
    [81] Visscher, D. R. GPS measurement error and resource selection functions in a fragmented landscape[J]. Ecography, 2006, 29:458-464.
    [82] Graham, C. H. Factors influencing movement patterns of Keel-billed Toucans in a fragmented tropical landscape in Southern Mexico[J]. Conservation Biology, 2001, 15:115-128.
    [83] Stockman, A. K., Beamer, D. A., Bond, J. E. An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species[J]. Diversity and Distributions, 2006,12: 81-89.
    [84] Drake, J. M. Risk analysis for invasive species and emerging infectious diseases: Concepts and applications[J]. American Midland Naturalist, 2005,153(1): 4-19.
    [85] Araujo, M. B., New, M. Ensemble forecasting of species distributions[J]. Trends Ecol Evol, 2007, 22(1): 42-47.
    [86] Elith, J. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants[M]. New York: Springer, 2000.
    [87] Thuiller, W., Araujo, M. B., Lavorel, S. Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales[J]. Journal of Vegetation Science, 2003,14:145-148.
    [88] Brotons, L., Thuiller, W., Araujo, M. B. et al. Presence-absence versus presence-only based habitat suitability models for bird atlas data: the role of species ecology and prevalence[J]. Ecography, 2004, 27:437-448.
    [89] Maggini, R., Lehmann, A., Zimmermann, N. E. et al. Improving generalized regression analysis for the spatial predictions of forest communities[J]. Journal of Biogeography, 2006, 33(10): 1729-1749.
    [90] Segurado, P., Araujo, M. B., Kunin, W. E. Consequences of spatial autocorrelation for niche-based models[J]. Journal of Applied Ecology, 2006, 43: 433-444.
    [91] Segurado, P., Araujo, M. B. An evaluation of methods for modelling species' distributions[J]. Journal of Biogeography, 2004, 31:1555-1568.
    [92] Heikkinen, R. K., Luoto, M., Araujo, M. B. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change[J]. Progress in Physical Geography, 2006, 30(6): 751-777.
    [93] Stockwell, D. R. B. Improving ecological niche models by data mining large environmental datasets for surrogate models[J]. Ecological Modelling, 2006, 192(1-2): 188-196.
    [94] Gevrey, M., Worner, S., Kasabov, N. et al. Estimating risk of events using SOM models: A case study on invasive species establishment[J]. Ecological Modelling, 2006, 197(3-4): 361-372.
    [95] Murtaugh, P. A. The statistical evaluation of ecological indicators[J]. Ecological Applications, 1996, 6(1): 132-139.
    [96] Manel, S., Williams, H. C, Ormerod, S. J. Evaluating presence-absence models in ecology: the need to account for prevalence[J]. Journal of Applied Ecology, 2001, 38: 921-931.
    [97] Allouche, O., Tsoar, A., Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. Journal of Ecology, 2006,43:1223-1232.
    [98] Hirzel, A. H., Lay, G. L, Heifer, V. et al. Evaluating the ability of habitat suitability models to predict species presences[J]. Ecological Modelling, 2006,199:142-152.
    [99] Leshowitz, B. COMPARISON OF ROC CURVES FROM ONE-AND TWO- INTERVAL RATINGSCALE PROCEDURES[J]. Acoustical Soc America-J, 1969, 46(2 pt 2): 399-402.
    [100] Goodenough, D. J., Rossmann, K., Lusted, L. B. Radiographic applications of receiver operating characteristic (ROC) curves[J]. Radiology, 1974,110(1): 89-95.
    [101] Metz, C. E. Basic principles of ROC analysis[J]. Seminars in Nuclear Medicine, 1978, 8(4): 283-298.
    [102] Zweig, M. H., Cambell, G. Receiver operating characteristic (ROC) plots:a fundamental evaluation tool in clinical medicine[J]. Clinical Chemistry, 1993, 39(4): 561-577.
    [103] 宁传华.诊断试验评价[A].余松林.医学统计学[C].北京:人民卫生小版社, 2002.164-178.
    [104] Vanagas, G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interactive Cardiovascular and Thoracic Surgery, 2004, 3:319-322.
    [105] McPherson, J. M., Jetz, W., Rogers, D. J. The effects of species' range sizes on the accuracy of distribution models:Ecological phenomenon or statistical artefact?[J].Journal of Applied Ecology,2004,41(5):811-823.
    [106]Broennimann,O.,Treier,U.A.,Muller-Scharer,H.et al.Evidence of climatic niche shift during biological invasion[J].Ecology Letters,2007,10(8):701-709.
    [107]彭德良,谢丙炎.香蕉穿孔线虫[A].万方浩,郑小波,and郭建英.重要农林外来入侵物种的生物学与控制[C].北京:科学出版社,2005.640-649.
    [108]EPPO.List of A2 pests regulated as quarantine pests in the EPPO region(version 2005-09).
    [109]黄法余,梁琼超.从进口凤梨科植物截获香蕉穿孔线虫[J].植物检疫,2002,16(5):267.
    [110]蒋寒,陈杰,黄箭等.南海局从马来西亚进境蒲桃种苗中截获香蕉穿孔线虫[J].植物检疫,2006,20(2):112.
    [111]李芳荣,李一农,徐春玲等.深圳口岸从进境旅客携带红掌苗上截获香蕉穿孔线虫[J].植物保护,2005,31(5):71-73.
    [112]钟国强,赵立荣,冯黎霞.进口生姜中检获香蕉穿孔线虫[J].植物检疫,2005,19(2).
    [113]周立群.香蕉穿孔线虫适生区分析及快速检测研究.生物安全科学技术学院,湖南农业大学,2006.(硕士学位论文)
    [114]张淑珍,丁广文,李文滨等.大豆疫霉根腐病研究进展[J].中国油料作物学报,2004,26(2):102-107.
    [115]王振东,王化波,王晓鸣等.中国大豆疫霉菌分布及毒力多样性研究[J].中国农业科学,2003,36(7):793-799.
    [116]吴浩,王良华,吴新华等.大豆疫霉在江苏省适生性的初步研究[J].南京农业大学学报,2002,25(1):39-42.
    [117]王云月,马俊红,朱有勇.云南省马铃薯癌肿病发生现状[J].云南农业大学学报,2002,17(4):430-431.
    [118]HAMPSON,M.C.A qualitative assessment of wind dispersal of resting spores of Synchytrium endobioticum,the causal agent of wart disease of potato[J].Plant disease 1996,80(7):779-782.
    [119]李兰英,高岚,温亚利等.松材线虫病研究进展[J].浙江林业科技,2006,26(5):74-80.
    [120]韩兵,朴春根,汪来发等.中国松材线虫病的发生现状及治理对策[J].中国农学通报,2007,23(2):146-150.
    [121]吕全,王卫东,梁军等.松材线虫在我国的潜在适生性评价[J].林业科学研究,2005,18(4):460-464.
    [122]宋红敏,徐汝梅.松墨天牛的全球潜在分布区分析[J].昆虫知识,2006,43(4):535-539.
    [123]Deines,A.M.,Chen,V.C,Landis,W.G.Modeling the risks of nonindigenous species introductions using a patch-dynamics approach incorporating contaminant effects as a disturbance[J].Risk Analysis,2005,25(6):1637-1651.
    [124]Peterson,A.T.,Papes,M.,Kluza,D.A.Predicting the potential invasive distributions of four alien plant species in North America[J].Weed Science,2003,51(6):863-868.
    [125]Muller-Scharer,H.,Schaffner,U.,Steinger,T.Evolution of invasive plants:implications for biological control[J].Trends Ecol Evol,2004,19:417-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700