视知觉学习特异性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
知觉学习指依赖于训练,由感觉经验引起的在基本知觉任务上表现的改变。此种改变一般需要训练达到一定强度才会发生,且特异于训练的基本设定(如任务、训练方向、频率、位置等),并可保持较长时间。知觉学习的特异性一直是研究的热点之一,较早期的知觉学习特异性研究认为特异性反映了知觉学习的低级中枢加工机制,认为可以藉特异性来探究知觉学习的发生位点,但越来越多互相矛盾的实验结果对知觉学习的低级中枢加工机制提出了挑战。Ahissar和Hochstein认为任务难易度是决定知觉学习特异性的关键因素,而Liu和Weinshall甚至认为知觉学习的传递具有普遍意义。
     本研究主要是从视知觉学习特异性(传递特性)方面出发,分别从任务角度和刺激特征角度研究两种不同形式运动点的知觉学习。包括不同随机运动点任务的知觉学习特异性(实验一)和径向运动点运动速度辨别任务的知觉学习特异性的研究(实验二)。
     实验一比较了随机运动点知觉学习中两种不同任务的学习特异性。被试在训练前后需要进行两种任务(信号点运动识别任务和信号点运动方向辨别任务)的心理物理曲线的测量,通过比较前后结果来衡量不同训练任务的学习特异性。实验将被试随机分为两组进行训练:一组进行信号点识别任务的训练即识别训练(12人);另外一组进行信号点运动方向辨别任务的训练即辨别训练(11人)。结果发现:识别训练组的被试在训练后运动识别任务成绩有显著性的提高,而运动方向辨别任务成绩没有明显变化,即信号点运动识别任务的知觉学习具有任务特异性;不同的是辨别训练组的被试在运动识别任务和运动方向辨别任务中的成绩都有显著的提高,即信号点运动方向辨别任务的知觉学习并不特异于该任务。由于精巧的实验设计,信号点的具体运动方向对于运动识别任务来说是一个无关信息,而信号点的识别则对于两个任务来说都是相关的信息。因此,结果提示在随机运动点知觉学习过程中可能只有与任务相关的信息才能被学会,这为研究知觉学习的本质即知觉学习到底学习的是什么,提供了有力的证据。
     实验二则比较详细地研究了径向运动点运动速度辨别任务的知觉学习特异性。被试需要完成运动点运动速度辨别任务,根据不同研究目的,实验分成两个独立的部分:第一部分主要研究运动点速度辨别知觉学习的运动方向特异性;第二部分主要研究运动点速度辨别知觉学习在不同速度差之间的特异性。第一部分中被试被随机分配到两个不同的训练组中:一组训练所呈现的刺激是径向向内运动的点即向内运动训练(5人);另一组训练所呈现的刺激是径向向外运动的点即向外运动训练(5人)。还有5人作为对照组,没有给予任何训练。在训练前后分别测量向内运动方向和向外运动方向上的心理物理曲线。结果发现:与对照组相比不管是向内运动训练组还是向外运动训练组,训练后被试在各自的训练方向上(向内运动方向或向外运动方向)速度辨别任务成绩都有显著的提高;同时两组被试在没有训练的方向上成绩也都有显著的提高,说明这种径向运动点运动速度辨别的知觉学习可以传递到相反的方向。第二部分的实验被试(12人)在一个中等的观察距离(114cm)进行训练,在训练前后分别测试被试在三个不同观察距离(5.7cm,114cm,228cm)的心理物理曲线,比较训练前后的结果发现:速度辨别任务成绩的提高不仅仅发生在训练距离,而且还发生在另外两个非训练距离。由于与训练距离(114cm)相比,在57cm运动点运动速度差加倍而在228cm速度差减半,这说明径向运动点运动速度辨别的知觉学习在不同速度差之间发生传递。因此径向运动点运动速度辨别任务的知觉学习具有普遍传递的性质。
     综合以上结果:随机运动点的知觉学习过程中可能只有任务相关的信息才能被学会,学习具有任务特异性;而径向运动点速度辨别的知觉学习没有方向特异性和明显的速度差特异性。
Perceptual learning is defined as a change of performance as a result of repeated perceptual task training. The change of performance tends to persist over weeks and months. Perceptual learning is often quite specific for the exact task and stimulus attribute. Specificity is always a central topic in the perceptual field. The specificity of learning was used to support the hypothesis that perceptual learning embodies neuronal modifications in the brain's early cortical areas and specificity was supposed to reflect the location of perceptual learning. However, different studies suggested huge variability of specificity on the same stimulus attribute. Now the low-level mechanism is facing a big challenge. Ahissar & Hochstein suggested that specificity of perceptual learning depends on task difficulty. Liu & Weinshalll found that generalization is a common phenomenon in perceptual learning.
     The present research studied specificity of perceptual learning on dots motion from task and stimulus attributes aspects. The study included two experiments: 1. Task transfer of perceptual learning on random dots motion. 2. The specificity of perceptual learning on speed discrimination.
     Experiment 1 compared task specificity of motion perceptual learning between detection and discrimination. Observers either decided which of the two stimuli contained a coherent motion signal (detection task), or whether the coherent motion direction was clockwise or counter-clockwise relative to a reference direction (discrimination task). Psychometric functions were measured before and after training. Twenty-three observers were randomly assigned to detection training group and discrimination training group. We found that the detection training improved only their detection but not discrimination sensitivity, whereas the discrimination trainees improved both. Whereas the exact direction of the coherent motion signal was irrelevant to the detection task, detection of the coherent motion signal was necessary for the discrimination task. Therefore the importance of task-relevance was demonstrated in both detection and discrimination learning. This suggests that only task-relevant information is learned in motion perceptual learning. This is an evidence that 'What is learned?' during perceptual learning.
     Experiment 2 focused on specificity of perceptual learning on discriminating motion speed of radial moving dots. Observers were asked to perform a speed discrimination task. Two parts of study were included because of the different research purpose. Part 1 studied motion specificity of speed discrimination learning. Part 2 studied the specificity of learning under three speed differences. In part 1, ten observers were randomly assigned to inward training group and outward training group. Inward training group were presented with inward radial motion stimuli and outward training group were presented with outward radial motion stimuli. Also another five observers who went through no training were as controls. We found both groups improved their performance at the training direction (inward or outward), compared with control group. Moreover this improvement of performance happened at non-training direction. This means that perceptual learning of speed discrimination on radial motion dots was not specific to direction. In Part 2, twelve observers were trained at the viewing distance of 114cm. Psychometric functions were measured at three viewing distance of 57cm, 114cm and 228cm. We found that the improvement of performance happened not only at 114cm, but also at 57cm and 228cm. The speed difference doubled at 57 cm and halved at 228cm. We suggested that perceptual learning transferred between three speed differences. In summary, generalization of learning on speed discrimination was a common character.
     In summary, we found two main results. First, we suggested that only task-relevant information was learned in motion perceptual learning. Perceptual learning of motion was task specific. Second, perceptual learning of speed discrimination were not direction specific and speed difference specific.
引文
Ahissar, M., & Hochstein, S. (1993). Attentional control of early perceptual learning. Proc Natl Acad Sci USA, 90(12), 5718-5722.
    
    Ahissar, M., & Hochstein, S. (1996). Learning pop-out detection: specificities to stimulus characteristics. Vision Res, 36 (21), 3487-3500.
    Ahissar, M, & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387 (6631), 401-406.
    Ahissar, M., & Hochstein, S. (1998). Perception learning. In: Perceptual Constancies: Why things look as they do. V. Walsh & J. Kulikowski, Eds. Cambridge MA: Cambridge University Press, 455-498.
    Ahissar, M, & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci, 5(10), 457-464.
    Albright, T. D., Desimone, R. & Gross, C. G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol, 51(1), 16-31.
    Amitay, S., Irwin, A., & Moore, D.R. (2006). Discrimination learning induced by training with identical stimuli. Nat Neurosci, 9 (11), 1446-1448.
    Ball, K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218 (4573), 697-698.
    Ball, K., & Sekuler, R. (1987). Direction-specific improvement in motion discrimination. Vision Res, 27 (6), 953-965.
    Beard, B. L., Levi, D. M., & Reich, L. N. (1995). Perceptual learning in parafoveal vision. Vision Res, 35(12), 1679-1690.
    Beauchamp, M.S., Cox, R.W., & DeYoe, E.A. (1997). Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol, 78(1), 516-520.
    Bedford, F.L. (1993). Perceptual learning. The Psychology of Learning and Motivation, 30, 1-60.
    Bedford, F.L. (1995). Constraints on perceptual learning: objects and dimensions. Cognition, 54(3), 253-297.
    Berardi, N., & Fiorentini, A. (1987). Interhemispheric transfer of visual information in humans: Spatial characteristics. J Physiol, 384, 633-647.
    Bex, P.J., Bedingham, S. & Hammett, S.T. (1999). Apparent speed and speed sensitivity during adaptation to motion. J Opt Soc Am A, 75(12), 2817-2824.
    Biederman, I., & Shiffrar, M.M. (1987). Sexing dayold chicks: a case study and expert systems analysis of a difficult perceptual-learning task. J Exp Psychol Learn Mem Cogn, 1, 640-645.
    Brainard, D.H. (1997). The Psychophysics Toolbox. Spat Vis, 10 (4), 433-436.
    Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382 (6588), 252-255.
    Brooks, L.R., Norman, G.R. & Allen, S.W. (1991). Role of specific similarity in a medical diagnostic task. J Exp Psychol Gen, 120(3), 278-287.
    Burns, B., & Shepp, B.E. (1988). Dimensional interactions and the structure of psychological space: the representation of hue, saturation, and brightness. Percept Psychophys, 43(5), 494-507.
    Cheng, K., Hasegawa, T, Saleem, K.S., & Tanaka, K. (1994). Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J Neurophysiol, 71(6), 2269 -2280.
    Clifford, C.W. & Langley, K. (1996). Psychophysics of motion adaptation parallels insect electrophysiology. Curr Biol, 6(10), 1340-1342.
    Clifford, C.W. & Wenderoth, P. (1999). Adaptation to temporal modulation can enhance differential speed sensitivity. Vision Res, 39(26), 4324-4332.
    Corbetta, M, Miezin, F.M., Dobmeyer, S., Shulman, G.L., & Petersen, S.E. (1990). Attentional modulation of neural processing of shape, color, and velocity in humans. Science, 248(4962), 1556-1559.
    Corbetta, M., Miezi, F.M., Dobmeyer, S., Shulman, G.L., & Petersen, S.E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. Journal of Neurosci, 77(8), 2383-2402.
    Crist, R.E., Li, W., & Gilbert, CD. (2001). Learning to see: experience and attention in primary visual cortex. Nat Neurosci, 4 (5), 519-525.
    DeValois, K. (1977). Spatial frequency adaptation can enhance contrast sensitivity. Vision Res, 17(9), 1057-1065.
    Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. J Exp Psychol Gen, 115(2), 107-117.
    DiCarlo, J.J., & Maunsell, J.H. (2003). Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J Neurophysiol, 89 (6), 3264-3278.
    Dosher, B.A., & Lu, Z.-L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci U S A, 95 (23), 13988-13993.
    Dosher, B.A., & Lu, Z.L. (1999). Mechanisms of perceptual learning. Vision Res, 39 (19), 3197-3221.
    Dudai, Y. (1996). Consolidation: fragility on the road to the engram. Neuron, 17 (3), 367-370.
    Dursteler, M.R., & Wurtz, R.H. (1988). Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol, 60(3), 940-965.
    Elbert, T., Pantev, C, Wienbruch, C, Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305-307.
    Fahle, M. (1994). Human pattern recognition: parallel processing and perceptual learning. Perception, 23 (4), 411-427.
    Fahle, M. (2005). Perceptual learning: specificity versus generalization. Curr Opin Neurobiol, 75(2), 154-60.
    Fahle, M., & Edelman, S. (1993). Long-term learning in vernier acuity: effects of stimulus orientation, range and of feedback. Vision Res, 33 (3), 397-412.
    Fahle, M., Edelman, S., & Poggio, T. (1995). Fast perceptual learning in hyperacuity. Vision Res, 35 (21), 3003-3013.
    Farah, M.J. (1990). Visual agnosia: disorders of object recognition and what they Tell us about normal vision. Cambridge, MA: MIT Press.
    Farah, M.J. (1992). Is an object an object an object? Cognitive and neuropsychological investigations of domain-specificity in visual object recognition. Curr Dir Psychol Sci, 1, 164-169.
    Felleman, D.J., & van Essen, D.C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol, 57(4), 889-920.
    Fine, I., & Jacobs, R. A. (2000). Perceptual learning for a pattern discrimination task. Vision Res, 40(23), 3209-3230.
    Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287 (5777), 43-44.
    Fiorentini, A., & Berardi, N. (1981). Learning in grating waveform discrimination: specificity for orientation and spatial frequency. Vision Res, 21(7), 1149-1158.
    Furmanski, C.S., & Engel, S.A. (2000). Perceptual learning in object recognition: object specificity and size invariance. Vision Res, 40 (5), 473-484.
    Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol, 14(1), 573-578.
    Garraghty, P.E. & Kaas, J.H. (1992). Dynamic features of sensory and motor maps. Curr Opin Neurobiol, 2(4), 522-527.
    Gauthier, I. & Tarr, M.J. (1997). Becoming a .Greeble expert: exploring mechanisms for face recognition. Vis Res, 57(12), 1673-1682.
    
    Geoghegan, W.H. (1976). Polytypy in folk biological taxonomies. Am Ethnol, 5(3), 469-480.
    
    Ghose, G.M. (2004). Learning in mammalian sensory cortex. Curr Opin Neurobiol, 14 (4), 513-518.
    
    Ghose, G.M., Yang, T., & Maunsell, J.H. (2002). Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol, 87 (4), 1867-1888.
    
    Gibson, E. J. (1953). Improvement in perceptual judgments as a function of controlled practice and training. Psychol Bull, 50(6), 401-431.
    
    Gibson, E.J. (1963). Perceptual learning. Annu Rev Psychol, 14,29-56.
    
    Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Appleton-Century-Crofts, 110-256.
    
    Gibson, E. J. (1991). An odyssey in learning and perception. Cambridge MA: MIT Press, 156-179.
    
    Gibson, E.J., & Walk, R.D. (1956). The effect of prolonged exposure to visually presented patterns on learning to discriminate them. J Compar Physiol Psychol, 49(3), 239-242.
    Gilbert, CD. (1994). Early perceptual learning. Proc Natl Acad Sci U S A, 91(4), 1195-1197.
    Goldstein, A.G. (1957). Judgments of visual velocity as a function of length of observation time. J Exp Psychol, 54(6), 457-461.
    Goldstone, R.L. (1998). Perceptual learning. Annu Rev Psychol, 49, 585-612.
    Gorea, A., & Sagi, D. (2000). Failure to handle more than one internal representation in visual detection tasks. Proc Natl Acad Sci USA, 97(22), 12380-12384.
    Haider, H., & Frensch, P.A. (1996). The role of information reduction in skill acquisition. Cogn Psychol, 30(3), 304-337.
    Hawkey, D.J., Amitay, S., & Moore, D.R. (2004). Early and rapid perceptual learning. Nat Neurosci, 7(10), 1055-1056.
    Held, R. (1965). Plasticity in sensory-motor systems. Sci Am, 213 (5), 84-94.
    Held, R., & Bossom, J. (1961). Neonatal deprivation and adult rearrangement: complementary techniques for analyzing plastic sensory-motor coordinations. J Comp Physiol Psychol, 54, 33-37.
    Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of visually guided behavior. J Comp Physiol Psychol, 56, 872-876.
    Herrnstein, R.J. (1990). Levels of stimulus control: a functional approach. Cognition 37(1-2), 133-166.
    Hochstein, S. & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791-804.
    Howells, T.H. (1944). The experimental development of color-tone synesthesia. J Exp Psychol, 34,87-103.
    Hubel, D.H. & Wiesel, T.N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol, 28(6), 1041-1059.
    Huk, A.C., & Heeger, D.J. (2000). Task-related modulation of visual cortex. J Neurophysiol, 83(6), 3525-3536.
    Huk, A.C., Ress, D., & Heeger, D.J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron 32(1), 161-172.
    Hunn, E.S. (1982). The utilitarian factor in folk biological classification. Am Anthropol, 84(4), 830-847.
    Jeter, P.E., Dosher, B.A., Petrov, A.A., & Lu, Z.L. (2005-Abstract). Identical transfer of perceptual learning following easy and difficult task training.
    Kaas, J.H. (1991). Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci, 14, 137-167.
    Kapadia, M.K., Gilbert, C.D., & Westheimer, G. (1994). A quantitative measure for short-term cortical plasticity in human vision. J Neurosci, 14 (1), 451-457.
    Karni, A. (1996). The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Cogn Brain Res, 5(1-2), 39-48.
    Karni, A., & Bertini, G. (1997). Learning perceptual skills: behavioral probes into adult cortical plasticity. Curr Opin Neurobiol, 7 (4), 530-535.
    Karni, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R., & Ungerleider, L.G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377 (6545), 155-158.
    Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci U S A, 88 (11), 4966-4970.
    Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365 (6443), 250-252.
    Kobatake, E., Wang, G, & Tanaka, K. (1998). Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol, 80 (1), 324-330.
    Kohonen, T. (1995). Self-organizing maps. Berlin: Springer-Verlag.
    Koyama, S., Harner, A., & Watanabe, T. (2004). Task-dependent changes of the psychophysical motion-tuning functions in the course of perceptual learning. Perception, 33(9), 1139-1147.
    Krekelberg, B., van Wezel, R.J. & Albright, T.D. (2006). Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol, 95(1), 255-270.
    LaBerge, D. (1973). Attention and the measurement of perceptual learning. Mem Cogn, 1, 268-276.
    Lagae, L, Raiguel, S., & Orban, G.A. (1993). Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol, 69(1), 19-39.
    Levinson, S.C. (1996). Relativity in spatial conception and description. Cambridge: Cambridge Univ. Press.
    Li, W., Piech, V., & Gilbert, CD. (2004). Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci, 7 (6), 651-657.
    Liu, J. & Newsome, W.T. (2005). Correlation between speed perception and neural activity in the middle temporal visual area. J Neurosci, 25(3), 711-722.
    Liu, Z. (1995). Learning a visual skill that generalizes. NEC Tech Rep 95-177 (NEC, Princeton).
    Liu, Z. (1999). Perceptual learning in motion discrimination that generalizes across motion directions. Proc Natl Acad Sci U S A, 96(24), 14085-14087.
    Liu, Z., & Weinshall, D. (2000). Mechanisms of generalization in perceptual learning. Vision Res, 40 (1), 97-109.
    Lively, S.E., Logan, J.S. & Pisoni, D.B. (1993). Training Japanese listeners to identify English /r/ and /l/. II. The role of phonetic environment and talker variability in learning new perceptual categories. J Acoust Soc Am, 94(3 Pt 1), 1242-1255.
    Logan, G.D. (1988). Toward an instance theory of automatization. Psychol Rev, 95(4), 492-527.
    Logan, G.D., Taylor, S.E. & Etherton, J.L. (1996). Attention in the acquisition and expression of automaticity. J Exp Psychol Learn Mem Cogn, 22(3), 620-638.
    Logothetis, N.K., Pauls, J. & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Curr Biol, 5 (5), 552-563.
    Lu, Z.-L., Chu, W., Dosher, B., & Lee, S. (2005). Independent perceptual learning in monocular and binocular motion systems. Proc Natl Acad Sci U S A, 102(15), 5624-5629.
    Luce, R.D., Green, D.M. & Weber, D.L. (1976). Attention bands in absolute identification. Percept Psychophys, 20(1), 49-54.
    Mackintosh, N.J. (1974). The psychology of animal learning. London: Academic.
    
    Maertens, M., & Pollmann, S. (2005). fMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning. J Cogn Neurosci, 17 (10), 1553-1564.
    Malt, B.C. (1995). Category coherence in crosscultural perspective. Cogn Psychol, 29(2), 85-148.
    Mandler, J.M., Bauer, P.J. & McDonough, L. (1991). Separating the sheep from the goats: differentiating global categories. Cogn Psychol, 23, 263-298.
    Marr, D. (1982). Vision, San Francisco: Freeman.
    Maunsell, J.H.R., & van Essen, D.C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed and orientation. J Neurophysiol, 49(5), 1127-1147.
    Mayer, M. (1983). Practice improves adults' sensitivity to diagonals. Vision Res, 23(5), 547-550.
    McKee, S.P., & Westheimer, G. (1978). Improvement in vernier acuity with practice. Percept Psychophys, 24 (3), 258-262.
    Mikami, A., Newsome, W. T. & Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol, 55(6), 1308-1327.
    Mollon, J.D., & Danilova, M.V. (1996). Three remarks on perceptual learning. Spat Vis, 70(1), 51-58.
    Mozer, M.C., Zemel, R.S., Behrmann, M., & Williams, C.K.I. (1992). Learning to segment images using dynamic feature binding. Neural Comput, 4, 650-666.
    Nazir, T. & O'Regan, J. K. (1990). Some results on translation invariance in the human visual system. Spat Vis, 5(2), 81-100.
    Neary, K., Anand, S., & Hotson, J.R. (2005). Perceptual learning of line orientation modifies the effects of transcranial magnetic stimulation of visual cortex. Exp Brain Res, 162 (1), 23-34.
    Newsome, W.T., & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci, 8(6), 2201-2211.
    Newsome, W.T., Wurtz, R.H., Dursteler, M.R., & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci, 5(3), 825-840.
    Nosofsky, R.M. (1986). Attention, similarity, and the identification-categorization relationship. J Exp Psychol Gen, 115(1), 39-61.
    Orban, G.A., Saunders, R.C., & Vandenbussche, E. (1995). Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci,7(11), 2261-2276.
    O'Toole, A.J., Peterson, J. & Deffenbacher, K.A. (1996). An 'other-race effect' for categorizing faces by sex. Perception 25(6), 669-676.
    Palmeri, T.J., Goldinger, S.D. & Pisoni, D.B. (1993). Episodic encoding of voice attributes and recognition memory for spoken words. J Exp Psychol Learn Mem Cogn, 19(2), 309-328.
    Pasternak, T., & Merigan, W.H. (1994). Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex, 4(3), 247-259.
    Pelli, D.G. (1981). Effects of visual noise. PhD Cambridge University.
    Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis, 10 (4), 437-442.
    Pelli, D.G, & Farell, B. (1999). Why use noise? J Opt Soc Am A Opt Image Sci Vis, 16 (3), 647-653.
    Peron, R.M., & Allen, G.L. (1988). Attempts to train novices for beer flavor discrimination: a matter of taste. J Gen Psychol, 115(4), 403-418.
    Perrett, D.I., Smith, P.A.J., Potter, D.D., Mistlin, A.J., Head, A.D. & Jeeves, M.A. (1984). Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Hum Neurobiol, 3(4), 197-208.
    Perrone, J.A., & Thiele, A. (2001). Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci, 4(5), 526-532.
    Poggio, T. & Edelman, S. (1990). A network that learns to recognize three-dimensional objects. Nature, 343(6255), 263-266.
    Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018-1021.
    Polat, U., & Sagi, D. (1994). Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc Natl Acad Sci U S A, 91 (4), 1206-1209.
    Posner, M.I. & Keele, S.W. (1968). On the genesis of abstract ideas. J Exp Psychol, 77(3), 353-363.
    Prins, N., & Kingdom, F.A. (2002). Orientation- and frequency-modulated textures at low depths of modulation are processed by off-orientation and off-frequency texture mechanisms. Vision Res, 42 (6), 705-713.
    Rainer, G, Lee, H., & Logothetis, N.K. (2004). The effect of learning on the function of monkey extrastriate visual cortex. PLoS Biol, 2 (2), E44.
    Ramachandran, V. S., & Braddick, O. (1973). Orientation-specific learning in stereopsis. Perception, 2(3), 371-376.
    Rapoport, J. (1964). Adaptation in the perception of rotary motion. J Exp Psychol, 67, 263-267.
    Rebenstein, B.S. & Sagi, D. (1990). Spatial variability as a limiting factor in texture discrimination tasks: implications for performance asymmetries. J Opt Soc Am, 7, 1632-1643.
    Recanzone, G.H., Merzenich, M.M. & Jenkins, W.M. (1992). Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. J Neurophysiol, 67(5), 1057-1070.
    Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A., & Dinse, H.R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J Neurophysiol, 67(5), 1031-1056.
    Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci, 13(1), 87-103.
    Regan, D., & Beverly, K.I. (1985). Postadaptation orientation discrimination. J Opt Soc Am A, 2(2), 147-155.
    Rock, I. (1985). Perception and knowledge. Acta Psychol, 59(1), 3-22.
    Rodman, H.R., & Albright, T.D. (1987). Coding of visual stimulus velocity in area MT of the macaque. Vision Res, 27(12), 2035-2048.
    Rudy, J.W., Keither, J.R., & Georgen, K. (1993).The effect of age on children's learning of problems that require a configural association solution. Dev Psychobiol, 26(3), 171-184.
    Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by back-propagating errors. Nature, 323, 533-536.
    Rumelhart, D.E., & Zipser, D. (1985). Feature discovery by competitive learning. Cogn Sci, 9(1), 75-112.
    Saarinen, J., & Levi, D.M. (1995). Perceptual learning in vernier acuity: what is learned? Vision Res, 35 (4), 519-527.
    Saffell, T., & Matthews, N. (2003). Task-specific perceptual learning on speed and direction discrimination. Vision Res, 43(\2), 1365-1374.
    Sagi, D., & Tanne, D. (1994). Perceptual learning: learning to see. Curr Opin Neurobiol, 4 (2), 195-199.
    Sagi, D., & Tanne, D. (1998). Perceptual Learning. Finding and current opinion in cognitive neuroscience. The MIT Press: London, 53-57.
    Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci, 6(1), 145-157.
    Salasoo, A., Shiffrin, R.M. & Feustel, T.C. (1985). Building permanent memory codes: codification and repetition effects in word identification. J Exp Psychol Gen, 114(1), 50-77.
    Sathian, K., & Zangaladze, A. (1997). Tactile learning is task specific but transfers between fingers. Percept Psychophys, 59 (1), 119-128.
    Schiller, P.H., & Lee, K. (1994). The effects of lateral geniculate nucleus, area V4, and middle temporal (MT) lesions on visually guided eye movements. Vis Neurosci, 11(2), 229-241.
    Schiltz, C, Bodart, J.M., Dubois, S., Dejardin, S., Michel, C, Roucoux, A., Crommelinck, M., & Orban, G.A. (1999). Neuronal mechanisms of perceptual learning: changes in human brain activity with training in orientation discrimination. Neuroimage, 9 (1), 46-62.
    Schoups, A. & Orban, G. A. (1996). Interocular transfer in perceptual learning of a pop-out discrimination task. Proc Natl Acad Sci U S A, 93(14), 7358-7362.
    Schoups, A., Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412 (6846), 549-553.
    Schoups, A., Vogels, R., & Orban, G.A. (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol, 483 (Pt 3), 797-810.
    Schwartz, S., Maquet, P., & Frith, C. (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci U S A, 99 (26), 17137-17142.
    Schyns, P.G., Goldstone, R.L., & Thibaut, J.P. (1998). The development of features in object concepts. Behav Brain Sci, 21(1), 1-17.
    Schyns, P.G., & Murphy, G.L. (1994). The ontogeny of part representation in object concepts.In The Psychology of Learning and Motivation,ed. DL Medin, 31:305-354. San Diego:Academic
    Seitz, A., & Watanabe, T. (2003). Psychophysics: Is subliminal learning really passive? Nature, 422 (6927), 36.
    Seitz, A., & Watanabe, T. (2005). A unified model for perceptual learning. Trends Cogn Sci, 9(7), 329-334.
    Shapiro, P.N., & Penrod, S.D. (1986). Meta-analysis of face identification studies. Psychol Bull, 100, 139-156.
    Shiu, L.P., & Pashler, H. (1992). Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept Psychophys, 52 (5), 582-588.
    Sinha, P., & Poggio, T. (1996). Role of learning in three-dimensional form perception. Nature, 554(6608), 460-463.
    Smith, L.B. (1989a). From global similarity to kinds of similarity: the construction of dimensions in development. In Similarity and Analogical Reasoning, ed. S Vosniadu, A Ortony, pp. 146-178. Cambridge: Cambridge Univ. Press.
    
    Smith, L.B. (1989b). A model of perceptual classification in children and adults. Psychol Rev, 96(1), 125-144.
    Smith, L.B., Gasser. M., & Sandhofer, C. (1997). Learning to talk about the properties of objects: a network model of the development of dimensions, pp. 219-256.
    Smith, L.B., & Sera, M. (1992). A developmental analysis of the polar structure of dimensions. Cogn Psychol 24(1), 99-142.
    Sowden, P.T., Davies, I.R. & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: a functional role for improvements in adults' visual sensitivity? J Exp Psychol Hum Percept Perform, 2(5(1), 379-390.
    Sowden, P.T., Rose, D., & Davies, I.R. (2002). Perceptual learning of luminance contrast detection: specific for spatial frequency and retinal location but not orientation. Vision Res, 42(10), 1249-1258.
    Stein, B.E., & Wallace, M.T. (1996). Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res, 112, 289-299.
    Stiles, J., & Tada, W.L. (1996). Developmental change in children's analysis of spatial patterns. Dev Psychol, 32, 951-970.
    Tanaka, J., & Taylor, M. (1991). Object categories and expertise: Is the basic level in the eye of the beholder? Cogn Psychol, 23(3), 457-482.
    Thompson, B., & Liu, Z. (2006). Learning motion discrimination with suppressed and un-suppressed MT. Vision Res, 46(13), 2110-2121.
    Thompson, P. (1981). Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli. Vision Res, 21(3), 337-345.
    Tsodyks, M., & Gilbert, C. (2004). Neural networks and perceptual learning. Nature, 431 (7010), 775-781.
    Tsushima, Y., Sasaki, Y., & Watanabe, T. (2006). Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science, 314 (5806), 1786-1788.
    Ullman, S. (1989). Aligning pictorial descriptions: an approach to object recognition. Cognition, 32(3), 193-254.
    Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q J Exp Psychol A, 43(2), 161-204.
    van Essen, D.C, DeYoe, E.A., OlavaRRia, J.F., Knierim, J.J., Fox, J.M. et al.(1989).
    Neural responses to static and moving texture patterns in visual cortex of the macaque monkey. In: Lam D M K, Gilbert C ed. Neural Mechanisms of visual perception. The Woodlands, Texas:Portfolio Publishing, 45-51.
    Vogels, R., & Orban, G.A. (1985). The effect of practice on the oblique effect in line orientation judgments. Vision Res, 25(11), 1679-1687.
    von Mises, R. (1918). Uber die "Ganzzahligkeit" der Atomgewicht und verwandte Fragen. Physikalische Zeitschrift, 19,490-500.
    Walsh, V., Ashbridge, E., & Cowey, A. (1998). Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia, 36 (4), 363-367.
    Watanabe, T., Nanez, J.E., Koyama, S., Sr., Mukai, I., Liederman, J., & Sasaki, Y. (2002). Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature, 5(10), 1003-1009.
    Watanabe, T., Nanez, J.E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413 (6858), 844-848.
    Watson, A.B., & Pelli, D.G. (1983). QUEST: A Bayesian adaptive psychometric method. Percept Psychophys, 33(2), 113-120.
    Weinberger, N.M. (1993). Learning-induced changes of auditory receptive fields. Curr Opin Neurobiol, 3(4), 570-577.
    Weiss, Y., Edelman, S., & Fahle, M. (1993). Models of perceptual learning in vernier hyperacuity. Neural Comput, 5, 695-718.
    Yamasaki, D.S., & Wurtz, R.H. (1991). Recovery of function after lesions in the superior temporal sulcus in the monkey. J Neurophysiol, 66(3), 651-673.
    Yang, T., & Maunsell, J.H. (2004). The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci, 24 (7), 1617-1626.
    Zohary, E., Shadlen, M.N., & Newsome, W.T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370(6485), 140 -143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700