数字颅颌面修复重建外科中对称修复的精确化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的对称,是正常人体和人体美学的基本要素之一。不对称性畸形是先天性和后天性颅颌面畸形中最常见的形式,严重影响患者容貌和心理。对严重的不对称性颅颌面畸形,以往单纯的手术方法很难达到对称性修复重建的目的。本研究基于反求工程(reversed engineering)原理,利用数字化工程技术试图解决严重颅颌面畸形修复重建中的精确化问题。实验通过采集CT数据、CAD/CAM、快速成型(rapid prototyping, RP)技术、数控铣削技术,利用新鲜猪头进行头骨的头模及个体化补件的制作,通过对实体、CT、三维重建及头模标志点间距离的测量,比较基于RP技术的头颅模型制作过程中各环节所产生的误差;通过对实体、补件树脂模型及纯钛补件各项数据的测量,比较钛补件、补件树脂模型与实体间是否存在误差,并将此修复方法用于临床修复颅颌面缺损,观察临床效果。
     方法动物实验部分以市售新鲜检疫后的4个猪头为实验对象,通过对称选取3组标志点,用钛钉(中邦公司长12mm、直径2mm)垂直于骨面钉入标志点作为标志。这3组标志点分别是额骨与上颌骨相交骨缝的眶缘点,颞骨颧突与颧骨颞突相交“>”型骨缝的尖端,下颌角点。然后进行CT扫描,得到整个猪头的CT断层数据,以医学数字图像通讯格式(digital imaging and communications in medicine, DICOM)刻成光盘。最后将新鲜猪头的软组织去除,制成猪头头骨标本。实验一利用猪头的CT断层数据进行猪头头模的制作,首先将CT数据导入3DMSR(3-dimension medicine surface renderin)软件中进行猪头头骨三维曲面重建,得到三维图像,再将三维图像数据以.stl文件格式传输至快速成型机制作猪头RP树脂头模。分别测量头骨实体、CT断层图像、3D MSR软件中三维曲面重建图像及头骨RP树脂头模上对称标志点间的距离,比较四组数据是否存在差异,并得到各加工环节产品与实体间的具体误差。实验二在猪头头骨标本上设计一侧颧弓部的截骨范围,并按设计截取这段颧弓待测。然后利用CT扫描断层数据输入3D MSR软件中进行猪头头骨骨面三维曲面重建,将三维曲面重建图像传至Surfacer9.0软件中进行模拟截骨,根据在实体标本的设计,虚拟截取相同的一段颧弓,将截取的颧弓的截面进行修整,得到截取颧弓的三维模型,再将三维模型数据分别传至快速成型机及数控机床制作该段颧弓的补件树脂模型及钛补件。最后测量截取的颧弓的实体、补件树脂模型及钛补件的各向数据,统计学比较三组间是否存在差异,统计处理两种制作方法与实体间的误差及两种制作方法间的误差。
     临床部分,利用动物实验制作补件树脂模型及钛补件的方法,应用镜像技术(mirror technique)设计补件模型,在树脂头模上试装并修改后,用数控铣削法制作纯钛补件,通过适当的手术入路完成颅颌面缺损或发育畸形的修复重建7例,取得满意的临床效果。
     结果动物实验及临床应用结果显示:利用CT数据、CAD/CAM、快速成型技术制作的三维头颅模型能详尽、直观、立体的再现机体的三维解剖结构,利用镜像技术个体化制作的修复体补件与缺损具有极强的适配性,能达到对称修复的目的。
     1通过对实体、CT断层图像、三维重建图像及RP树脂头颅模型的对称标志点间距离的测量,用方差分析得到四组数据间无显著性差异(F=0.021,P=0.996>0.05)。
     2对称性标志点间的误差: CT与实体间误差为1.54±1.31mm,三维重建与实体间的误差为2.62±1.64mm,RP树脂头模与实体间的误差为1.89±0.79mm。CT、三维重建及RP树脂头模的测量结果均较实体测量结果放大,其中放大程度最大为三维重建,最小为CT扫描。
     3猪头头骨经过双侧组织的边缘提取后,两侧标志点间距离所产生的误差为0.09~3.03mm ,平均值为1.89±0.79mm,单侧组织边缘提取后,一侧骨面至中线所产生的误差为0.05~1.52mm,平均值为0.94±0.40mm。
     4根据实体和截取部分颧弓制作的补件树脂模型及纯钛补件进行各向数据测量得到三组数据,采用方差分析得到三组间无明显差异(F=0.497,P=0.615>0.05)。
     5纯钛补件与实体间误差为1.16±0.39mm,补件树脂模型与实体间误差为1.17±0.47mm,纯钛补件与补件树脂模型间误差为0.00±0.26mm。补件树脂模型、纯钛补件较实体均有放大,补件树脂模型与纯钛补件间误差可以忽略。
     6临床应用中通过制作补件前设计的手术入路,很容易将补件置入需要重建的部位,补件的骨面部分与受床适配性很好,大大缩短了手术时间,简化了手术操作,减少了手术创伤,术后外形的对称性恢复满意,在2年多随访期间未发现不良反应和功能障碍。
     结论
     1三维头颅模型能直观、详尽的反映机体的三维解剖结构及病变缺损的形状、大小,个体化修复体与缺损具有极强的适配性,能达到对称修复的目的。
     2三维头颅模型及纯钛补件所产生的误差主要来自于图像的处理过程,此过程中CT数据的提取及三维重建后表面光滑处理,为产生误差的主要原因。
     3数字化颅颌面修复重建技术在临床应用中使修复的效果更加真实、满意,并且简化了术中操作,缩短了手术时间,减少了手术创伤,近期整复效果满意。
     4虽然本研究发现的实体与用RE技术制作的修复体补件间的误差在实际修复重建手术中可以被视觉忽略,但考虑到硬组织的增容与软组织的扩张之间存在的不一致性,在实际应用中是否需要对修复体补件进行适当的修改或补偿,尚有待进一步研究。
Objective: Symmetry is essential for a normal, healthy person. Asymmetry anisotropy is typical in craniomaxillofacial deformities, which seriously distorts patients' figure and psychology. Classical plastic and reconstructive surgery has not been very effective in correcting serious asymmetrical deformity in the past due to lack of precision. This study aims to improve this precision by using digital craniomaxillofacial plastic and reconstructive surgery based on principals of reversed engineering. The study used fresh pigs' heads as samples. Experimental processes included collecting CT data, CAD/CAM, rapid prototyping (RP), and computer-aided milling. This produced skull molds of the pigs' heads and individual implant pieces. Then, measurements were taken from the skull entities, CT images, 3-D reconstruction images and the RP resin model, and the measurements were compared to find the error generated within each stage, as well as the overall difference between the final skull molds and the skull entities. Finally the technique was applied in clinic to repair craniofacial defects and clinical effects were observed.
     Methods: Part 1 was animal experiments. Experimental objects were 4 fresh pigs' heads. Three groups of symmetry markers were chosen for measurements on the pigs' heads, and were identified by inserting titanium screws into the marking points. Then, the pigs' heads were scanned with CT. The CT data were written on a disc in DICOM format. After this step, skull specimen of the pigs' heads were made. Experiment 1: CT data were imported into 3-D MSR software to perform a visible 3-D surface reconstruction. The 3-D reconstruction images were exported to rapidform in .stl format for RP resin model manufacture. The distance between the symmetry markers were measured and results were compared among the skull entities, CT data, 3-D reconstruction images and the resin model. Experiment 2: A designed region from one side of zygomatic arch was cutoff from the pig's skull specimen. A CT scan was made to the remaining part of the skull specimen, and CT data were imported into 3-D MSR for a 3-D surface reconstruction. Export the reconstruction image into Surfacer9.0 software to perform a virtual osteotomy of the same region. The digital piece was then sent for rapid prototyping and computer-aided milling respectively for manufacture of resin model and titanium implant. At last, the piece of zygomatic arch and both resin model and titanium implant were measured and compared statistically to find the differences between manufacture methods and entity.
     Part 2 was clinical practice. Seven patients suffered craniomaxillofacial defects were successfully repaired with customized digital implants using above mentioned techniques through proper surgical approach.
     Results: The results of animal experiments and clinical application showed that the resin model of skull made by digital engineering technique duplicated its entity very well in structure. The customized digital implants made with mirror technique adapted to the surface of the defect very well. The results of symmetrical repair and reconstruction for asymmetrical deformity of craniomaxillofacial region were satisfactory.
     1 Through measuring the distances between the symmetry markers on skull entities, CT images, 3-D reconstruction images and the RP resin model, the result of analysis of variance did not show significant differences among four groups (F=0.021, P=0.996>0.05).
     2 Compared to the skull entity, the errors in distance between symmetrical markers were as follows: 1.54±1.31mm for CT images, 2.62±1.64mm for 3-D reconstruction images, 1.89±0.79mm for RP resin models.
     3 For RP resin models compared to the entity, average error in distance between symmetrical markers was 1.89±0.79mm (0.09~3.03mm), and average error in distance between symmetrical marker and the middle line was 0.94±0.40mm (0.05~1.52mm).
     4 In comparison of the measurements among the zygomatic arch, the RP resin model and the titanium implant, analysis of variance among the three groups did not show significant differences (F=0.497,P=0.615>0.05).
     5 The error between titanium implant and skull entity was 1.16±0.39mm, the error between RP model and skull entity was 1.17±0.47mm, the error between titanium implant and the RP resin model was 0.00±0.26mm.
     6 In clinical application, the surgical approach must be firstly taken into account because of irregular shape of customized implant. Then the digital implant will be fixed to the defect very easily. The implant adapts the surface of the defect very well. The operative time is significantly shortened, the surgical procedure simplified, the trauma of operation decreased, the symmetry of patient’s appearance satisfied. During 2 years follow-up, no obvious side effects and dysfunctions were found.
     Conclusion
     1 The RP skull model can reflect three-dimensional anatomy of the skeleton intuitively and in detail. Customized implant made by digital engineering adapts the surface of defect and the result of surgery was satisfied.
     2 The errors between RP skull model and titanium implant to the skull entity arise mainly from treatment process of the image. In these processes, CT data extraction and the surface treatment after visible three-dimensional reconstruction are the main reason for the errors.
     3 During 2 years follow-up, the results of digital craniomaxillofacial plastic and reconstructive surgery were satisfactory, which has simplified the operation, shortened the operative time, and decreased the operative trauma.
     4 Although the error between digital titanium implant and skull entity can be visibly neglected in clinic, there is discordance of augmentative quantity between hard and soft tissues. It needs further investigation whether or not to compensate the customized implant in the process of design and manufacture.
引文
1 Gateno J, Xia J, Teichgraeber JF, et al. A new technique for the creation of a computerized composite skull model [J]. J Oral Maxillofac Surg, 2003,61(2):222-227
    2 Choi JY, Choi JH, Kim NK, et al. Analysis of errors in medical rapid prototyping models [J]. Int J Oral Maxillofac Surg, 2002, 31(1): 23-32
    3 Taub PJ, Rudkin GH, Clearihue WJ, et a1. Prefabricated allplastic implants for cranial defects [J]. Plast Reconstr Surg, 2003,111(3):1233-1240
    4 Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector [J]. J Med Eng Technol, 2000,24(4):149-153
    5 Fan H, Lu Y, Stump A, et al. Rapid prototyping of patterned functional nano-structures [J]. Nature, 2000,405(6782): 56-60
    6 Arvier JF, Barker TM, Yau YY, et al. Maxillofacial biomodelling [J]. Br Journal Maxillofac Surg, 1994,32(5): 276-283
    7 Bianchi SD, Ramieri G, De-Gioanni PP, et al. Convalida delle repliche anatomiche stereolitografiche: esperienza personale e revisione della letteratura [J]. Radio1 Med (Torino), 1997, 94(5): 503-510
    8林李嵩,王炜,王志红,等.建立个性化眶三维模型的研究[J].中华整形外科, 2006,22(2):95-98
    9朱赴东,赵士芳,谢志坚,等.快速成型技术在正颌外科中的应用[J].解剖学报, 2006,37(5):563-567
    10米那瓦尔·阿不都热依木,买买提吐逊·吐尔地.激光快速成型技术制作头颅模型的仿真分析.中华老年口腔医学, 2008,6(2):112-115
    11刘俊松,吕文昌. CT(X线)球管的原理、使用养护[J].中国医疗器械信息, 2005,11(5):48-50
    12 D’urso PS, Thompson RG, Atkinson RL, et al. Cerebrovascular biomodelling: a technical note [J]. Surg-Neurol, 1999, 52(5): 490-500
    1 Lemperle SM, Calhoun CJ, Curran RW, et al. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs. Plast Reconstr Surg, 1998, 101(3): 660-672.
    2 Segal DH, Oppenheim JS, Murovic JA. Neurological recovery after cranioplasty. Neurosurgery, 1994, 34: 729-731.
    3刘亚雄,李涤尘,卢秉恒,等.快速原型在口腔颌面修复中的应用(1)—下颌骨替代物的原位设计.实用口腔医学杂志, 2002,18(5):395
    4刘亚雄,李涤尘,卢秉恒,等.快速原型在口腔颌面修复中的应用(2)—下颌骨替代物的个体化制造.实用口腔医学杂志, 2003,19(5):408.
    5刘亚雄,李涤尘,卢秉恒.基于快速原型的个体匹配骨骼造型方法.西安交通大学学报, 2002,36(3):265
    6 D’Urso PS, Barker TM, Earwaker WJ, et al. Sterolithographic biomodelling in cranio-maxillofacial surgery: A prospective trial. J Craniomaxillofac Surg, 1999, 27(1): 30-37.
    7 Blake GB, Farlane M, Hinton JW. Titanium in reconstructive of the skull and face. Br J Plast Surg, 1990, 43: 528-535.
    8 Blair GA, Fannin TF, Gordon DS. Titanium-strip cranioplasty. Br Med J. 1976, 2(6041): 907-908.
    9 Heissler E, Ficher FS, Bolouri S. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg, 1998, 27(5): 334-338.
    10 MeCarthy JG. Plastic Surgey, Volune 2, The Fce Part 1[M]. Philadelphia U.S.A.: W.B. Saunders Company, 1990: 1655-1667
    11 Andrea MG, Jackson IT, Takeshi Mi, et al. Clinical Outcome in Cranioplasty: Critical review in long-term follow-up. J Craniofac Surg, 2003, 14: 144-153.
    12 Taub PJ, Rudkin GH, Clearihue WJ, et a1. Prefabricated allplastic implants for cranial defects [J]. Plast Reconstr Surg, 2003,111(3):1233-1240.
    13 Joffe JM, Nicoll SR, Richards R, et al. Validation of computer-assisted manufacture of titanium plates for cranioplasty. Int J Oral Maxillofacial Surg, 1999, 28(4), 309-313.
    14 Arcuri MR. Titanium implants in maxillofacial reconstruction. Otolaryngol Clin North Am, 1995, 28(2): 351-363.
    15 Ono T, Kohda H, Hori K, et al. Masticatory performance in postmaxillectomy patients with edentulous maxillae fitted with obturator prostheses [J]. Int J Prosthodont, 2007, 20(2): 145-150.
    16 Robb GL, Marunick MT, Martin JW, et al. Midface reconstruction: surgical reconstruction versus prosthesis [J]. Head Neck, 2001, 23 (1): 48-58.
    17 Chepeha DB, Moyer JS, Bradford CR, et al. Osseoutaneous radial forearm free tissue transfer for repair of complex midfacial defects [J]. Arch Otolaryngol Head Neck Surg , 2005, 131(6): 513-517.
    18 Barnouti L, Caminer D. Maxillary tumours and bilateral reconstruction of the maxilla [J]. ANZ J Surg, 2006, 76(4): 267-269.
    19孙坚,李军,张志愿,等.钛网与前臂游离皮瓣闭合式三维重建上颌骨缺损[J].实用口腔医学杂志, 2002,18(4): 291-293
    20 Marsh JL, Vannier MW. Surface imaging from computerized tomographic scans. Surgery, 1983, 94(2): 159-165.
    21 Gellrich NC, Schramm A, Hammer B, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg, 2002, 110:1417-1429.
    22刘筱菩,归来,张智勇,等.基于CT三维头颅重建技术的模型在颅颌面畸形治疗中的应用.中华整形外科杂志,2006,22(3):169-171.
    23 Toth BA, Ellis DS, Stewart WB. Computer-designed prostheses for orbitalcranial reconstruction. Plast Reconstr Surg, 1988, 81: 315.
    24 Joffe JM, McDermott PJ, Linney AD, et al. Computer-generated titanium cranioplasty: report of a new technique for repairing skull defects. Br J Neurosurg, 1992,6(4): 343-350.
    25郑卫国,颜永年,周赫赫,等.快速成形技术在临床外科手术中的潜在应用.清华大学学报(自然科学版),2002,42:1037-1041.
    26 Eufinger H, Wehmoller M, Handers A, et al. Prefabricated prostheses for the reconstruction of skull defects. Int J Oral Maxillofac Surg, 1995, 24(1 Pt 2): 104-110.
    27 Tideman H, Samman N, Cheung LK. Immediate reconstruction following maxillectomy: a new method [J]. Int J Oral Maxillofac Surg, 1993, 22(4): 221-225.
    28 Joffe J, Harris M, Kahugu F, et al. A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br J Neurosurg, 1999, 13(6): 576-580.
    29 Chang SC, Liao Yu-Fang, Hung Li-Man, et al. Prefabricated implants or grafts with reverse models of three-dimensional mirror-image templates for reconstruction of craniofacial abnormalities. Plast Reconstr Surg, 1999, 104(5): 1413-1418.
    1毛天球.组织工程研究概况.实用口腔医学杂志, 2000,16(1): 74
    2 Hollinger JO, Kleishmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg, 1990, 1(1): 60-68
    3 Abu-Serriah M, Ayoub A, Boyd J, et al. The role of ultrasound in monitoring reconstruction of mandibular continuity defects using osteogenic protein-1 (rhOP-1). Int J Oral Maxillofac Surg, 2003, 32 (6): 619-627
    4 Cheng W, Fuh JYH, Nee AYC, et a1. Multi-objective optimization of part-building orientation in stereolithography. Rapid Prototying J, 1995, 1(4): 212-234
    5 Ashly S. Rapid prototyping is coming of age. Mechanical Engineering, 1995,117(7): 63-68
    6 Yan YN, Zhang W, Liu QP, et al. Principle and developing of RPM based on the discrete/deposit forming concept. J China Mech Eng, 1994, 5: 64-66
    7 Peters DM. Rapid prototyping update. J Foundry Manag & Tech, 1996, 25: 39-46
    8 Kai CC, Fai LK. Rapid prototyping: Principle & Application in Manufacturing. Singapore: John Wiley & Sons Ltd, 1997
    9 Rosochowski A, Matuszak A. Rapid tooling: the state of the art. J Mater Proces Tech, 2000, 106: 191-198
    10朱宏远.快速成形技术及其在模具制造领域的应用.煤矿机械, 2003,3:46-47
    11 Chua CK, Tch SI-I, Gay KL. Rapid prototyping versus virtual prototyping in product design and manufacturing.Int J Adv Manuf Technol, 1999, 15: 597-603
    12 Park H, Kim K. An adaptive method for smooth surface approximation to scattered 3D points. Computer-Aided Design, 1995, 27: 929-939
    13 Potamianos P, Amis AA, Forester AJ, et al. Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng, 1998, 212(5): 383-393
    14范光照等.逆向工程技术及应用.台北:高立图书有限公司,1998:107-108
    15赵强主编.医学影像设备.第二军医大学出版社.上海.2000,3(11):47-50
    16韩平,熊茵. CT扫描分册.曾祥阶主编.医学影像技术丛书.武汉:湖北科学技术出版社, 2000,3(34):189-204
    17 Vannier WM, Marsh JL, Warren JO. Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology, 1984, 150(1): 179-184
    18高勃.快速成型和激光近形制造技术在口腔医学中应用的基础研究.西北工业大学博士后研究报告, 1999,P3-9
    19 D'urso PS, Barker TM, Earwaker WJ, et a1. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial [J]. J Craniomaxillofac Surg, 1999, 27(1): 30-37
    20 Stoker NG, Mankovich NJ, Valentino D. Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg, 1992, 50(5): 466-471
    21 McGurk M, Amis AA, Potamianos P, et al. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl, 1997, 79(3): 169-174
    22 James WJ, Slabbekoorn MA, Edgin WA, et al. Correction of congenital malar hypoplasia using sterolithography for presurgical planning. J Oral Maxillofac Surg, 1998, 56(4): 512-517
    23潘瑾,张益,毛驰,等.三维仿真头模在下颌骨缺损重建中的应用:1例报道.中国口腔颌面外科,2003,1(2):124-126
    24李益敏,郑永生,戴利.三维模型在颅颌面外科的临床应用.中华医学美学美容, 2007,13(3):166-168
    25刘亚雄,李涤尘,卢秉恒,等.快速原型在口腔颌面修复中的应用(1)—下颌骨替代物的原位设计.实用口腔医学, 2002,18(5):395
    26刘亚雄,李涤尘,卢秉恒,等.快速原型在口腔颌面修复中的应用(2)—下颌骨替代物的原位设计.实用口腔医学, 2003,19(5):408
    27刘亚雄,李涤尘,卢秉恒.基于快速原型的个体匹配骨骼造型方法.西安交通大学学报, 2002,36)(3):265
    28 Tideman H, Samman N, Cheung LK. Immediate recon- struction following maxillectomy: a new method [J]. Int J Oral Maxillofac Surg, 1993, 22(4): 221-225
    29 Eufinger H, Wehmoller M. Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases [J]. Plast Reconstr Surg, 1998, 102(2): 300-308
    30刘彦普,龚振宇,何黎升,等.大块下颌骨缺损的个体化数字设计及外形与功能重建[J].中国修复重建外科, 2005,19(10): 803-806
    31龚振宇,邱蔚六,刘彦普,等.反求工程与快速成型技术在小颏畸形整复设计中的应用.中华医学美学美容, 2006,12(6):339-342
    32杨连平,李彦生,张练平,等.应用CAD/CAM技术进行个体化下颌骨重建[J].中国口腔颌面外科, 2004,2(1): 65-68
    33 Winder J, Cooke RS, Gray J, et al. Medical rapid proto- typing and 3D CT in the manufacture of custom made cranial titanium plates [J]. J Med Eng Technol, 1999, 23(1):26-28
    34 D'Urso PS, Earwaker WJ, Barker TM. Custom cranioplasty using stereolithography and acrylic [J]. Br J Plast Surg, 2000, 53(3): 200-204
    35归来,左锋,张智勇,等.颅骨缺损的个性化修复[J].中华整形外科杂志, 2004,20(2):98-100
    36徐建军,丁华山,瞿鸿义,等.计算机三维重建EH复合型颅骨预制体修复额颞顶大面积颅骨缺损[J].中国临床神经外科杂志, 2006,11 (12):748-749
    37夏德林.基于CT数据、快速成型技术个体化钛合金颅骨缺损修复术的实验与临床应用研究[D].北京:中国协和医科大学整形外科, 2004
    38藤勇,王臻,李涤尘.快速成型技术在医学中的应用.国外医学生物医学工程分册, 2001, 24(6):257-261
    39 Barker TM, Earwaker WJ, Lisle DA. Accuracy of stereo- lithographic models of human anatomy [J]. Austral Radiol, 1994, 38(2): 106-111
    40 Masters TE, Christensen AM, Perez RR. Effects of computerized axial tomography: technical factors and scanning techniques on the accuracy of anatomical biomodels [J]. Critical Reviews in Biomed Eng, 2000, 28(3-4): 349-354
    41 Haers PE, Warnke T, Carls FR, et al. Praoperative Diagn- ostik komplexer kraniofazialer Syndrome [J]. Mund Kiefer Gesichtschir, 1998, 2 (Suppl 1): S13-15
    42 Arvier JF, Barker TM, Yau YY, et al. Maxillofacialbiomodelling [J]. Br J Oral Maxillofac Surg, 1994, 32 (5): 276-283
    43 Bianchi SD, Ramieri G, De Gioanni PP, et al. Convalida delle repliche anatomiche stereolitografiche: esperienza personale e revisione della letteratura [J]. Radio1 Med(Torino), 1997, 94(5): 503-510
    44林李嵩,王炜,王志红,等.建立个性化眶三维模型的研究[J].中华整形外科, 2006,22(2):95-98
    45朱赴东,赵士芳,谢志坚,等.快速成型技术在正颌外科中的应用[J].解剖学报, 2006,37(5):563-567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700