枯草芽胞杆菌B6-1产脂肽和聚-γ-谷氨酸及抗几种植物病原菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次从作物根际土壤中分离、筛选出对几种作物病原菌具有稳定拮抗作用并产聚-γ-谷氨酸的芽胞杆菌B6-1,对菌种进行鉴定,确定其拮抗谱,分离、纯化并鉴定抗菌物质,用红薯渣和豆渣作为固态发酵的主要基质,获得同时高产拮抗物质和聚-γ-谷氨酸,并对该固态发酵产物的生防和肥料增效作用进行了评价。结果如下:
     1.运用先富集再加热的方法,从作物根际土壤中分离得到313株芽胞杆菌。平板共培养筛选到37株对至少一种指示病原真菌表现出稳定的拮抗效果。其中菌株B6-1表现拮抗谱最广、拮抗能力最强。根据其生理生化特征和16S rDNA序列分析,被确定为枯草芽胞杆菌(Bacillus subtilis)。
     2.菌株B6-1产抗真菌活性物质。其发酵液具有油取代、液滴坍塌、红细胞溶血、水溶液中分子之间发生凝聚等典型的表面活性剂特性。所产拮抗物质能被酸沉淀,并能抵抗一定的高温、较宽的pH范围和紫外等条件。以上特性说明枯草芽胞杆菌菌株B6-1所产的拮抗物质应该属于脂肽类抗生素。
     3.采用超滤、酸沉淀、固相萃取相结合的方法来分离纯化菌株B6-1所产的抗生素。经过高效液相色谱(HPLC)分部收集并检测各峰拮抗活性,再经过LC-MS分析,主要活性物质的分子量分别为1450、1464、1478、1506,它们之间分子量差异为14的整数倍,即(CH_2)_n。部分分子量与已经报道的C15、C16、C17、C19脂肽类表面活性剂抗生素fengycins相吻合,但其拮抗谱不同,而且fengycins不具备溶血活性,所以可能还存在其它具溶血活性的脂肽。该fengycins具体的结构还有待进一步工作确定。
     4.在NB液体培养基发酵中,B6-1产生脂肽抗生素却不产γ-PGA,而在经过优化的高产γ-PGA的液体培养基中,γ-PGA的产量达到34.7 g/L,却不能检测到脂肽抗生素。采用红薯渣、豆渣作主要基质的固态发酵,γ-PGA的产量达到36.3g/(kg干物质)。同时脂肽抗生素的相对产量达到70个单位,而NB液体发酵中为20个单位。同时证实γ-PGA无抗菌活性。
     5.当施用B6-1采用红薯渣、豆渣作主要基质的固态发酵产物后,黄瓜枯萎病发病率降低至17%。在全营养水平下,添加B6-1的高产γ-PGA的固态发酵产物时,地下、地上部分干重和根冠比分别为0.447 g、2.448 g、0.183,而对照组分别为0.334 g、2.183g、0.153,地下、地上部分干重和根冠比各自分别比对照增加33.8%、12.2%、18.3%。在1/2营养水平下,添加B6-1的高产γ-PGA的固态发酵产物时,地下、地上部分干重和根冠比分别为0.339 g、1.405 g、0.242,而对照组分别为0.230 g、1.111 g、0.201,地下、地上部分干重和根冠比各自分别比对照增加47.4%、26.4%、20.4%。在1/3营养水平下,添加B6-1的高产γ-PGA的固态发酵产物时,地下、地上部分干重和根冠比分别为0.344 g、0.956 g、0.351,而对照组分别为0.203 g、0.814 g、0.251。结果说明,在各肥料水平下,根部、地上部干重和根冠比都较对照增加,随着肥料水平的下降,根部、地上部干重和根冠比较对照的增加幅度提高,特别是在低肥料浓度下,对根冠比的影响尤为明显。这一方面说明B6-1固态发酵产物中的γ-PGA可以促进作物的生长,另一方面由于在肥料较缺乏的时候,γ-PGA的增产效果尤为明显,也说明B6-1固态发酵产物中的γ-PGA具有肥料增效剂的作用,特别是更加有利于作物根对营养的吸收。
     6.在低温下γ-PGA具有提高菌体存活率的作用,特别是随着冻藏时间的延长,保护作用越显著。γ-PGA添加浓度以1.5%为适宜。经过冷冻干燥和冻藏一定时期后,添加γ-PGA的乳酸菌产酸活力下降较少,且基本没有迟滞期,都能在更短时间内产酸。
For the first time,the Bacillus strain B6-1,isolated from the rhizosphere of crops, co-produced the antifungal substances and poly-γ-glutamic acid,and was identified as Bacillus subtilis.The co-productions of antagonistic substances and poly-γ-glutamic acid were obtained when using soybean and sweet potato residues with perlites cultivated with B6-1 in solid-state fermentation.The antifungal compounds were purified and identified as lipopeptides fengycins.Suppression effect of residues cultivated with B6-1 on cucumber wilts and fertilizer synergistic effect were studied.The results were followed as:
     1.313 distinct presumptive Bacillus isolates were obtained from the rhizosphere of crops.37 of them displayed distinct and stable antagonism against at least one of indicators tested through dual culture assays.B6-1 showed the broadest antifungal spectrum,strongest antagonistic activity.Based on the physiological,biochemical charactcristics and 16S rDNA data,the strain B6-1 can be designated as Bacillus subtilis.
     2.The results from antagonistic mechanism demonstrated the production of antifungal metabolites.The culture filtrate of Bacillus subtilis B6-1 displayed oil displacement,droplet collapsc,hemolytic activity and aggregational behavior.The antifungal compounds could bc precipitated by acid and remain its activities against heat, pH,UV.All the results above implied the antifungal compounds belong to lipopeptides.
     3.Using a procedure including ultrafiltration,acid precipitation and solid-phase extraction,the antifungal compounds were purified.The major antifungal compounds showed samc UV spectra in methanol and a homologous[M+H]~+ ion peak at m/z 1450, 1464,1478,1506,respectively.These mass data correspond well to those determined by other authors,indicating the presence of C15,C16,C17,C19 fengycins,corroborating the deduction above.But there are no reports about hemolytic activity of fengycins.So other lipopeptides with hemolytic activity may be present.Further studies would be done in future.
     4.In the nutrient broth fermentation,B6-1 produced the lipopeptides but noγ-PGA. And in the optimized medium for production ofγ-PGA,the yield ofγ-PGA reached 3.47%but the lipopeptides could not be detected.The averageγ-PGA yield in SSF was 36.3 g/(kg dry substrate) in 250 ml flask.At the same time,the production of lipopeptides was verified.The maximum dilution in SSF that can be detected was 70 folds,remarkably higher compared with 20 folds in NB.
     5.When the residue mixtures cultivated with B6-1were introduced,the disease occurrence was effectively reduced to 17%.At full nutrition solution,when residue cultures were introduced,the dry weight of shoots and roots and the roots to shoots ratio increased by 33.8%,12.2%,18.3%,respectively.At 1/2 nutrition solution,they increased by 47.4%,26.4%,20.4%respectively,and at 1/3 nutrition solution,increased 69.5%, 17.4%,43.8%,respectively.The addition of residue cultures significantly increased the dry weight of both roots and shoots and the roots to shoots ratio(R/S),at all levels of nutrients.The increases were more significant at lower nutrient levels.
     6.The survival ratio of lactic acid bacteria was improved by adding more than 1.5% PGA during freezing and frozen-storage and the effect was better as the frozen-storage was prolonged.The acidification activity remained strong and the lag phase of lactic acid bacteria was shorter.
引文
1.陈雄.生物降解型肥料养分吸收促进剂聚-γ-谷氨酸的研究 聚-γ-谷氨酸生产与应用技术的基础研究.[博士学位论文].武汉:华中农业大学,2005
    2.陈志谊.拮抗细菌B-916防治水稻纹枯病作用机制的研究.[博士学位论文].南京:南京农业大学,1998
    3.陈中义,张杰,黄大昉.植物病害生防芽胞杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):97-103
    4.丁立孝,何国庆,刘晔,李海军,林建强.脂肽生物表面活性剂产生菌的筛选.农业生物技术学报,2004,12(3):330-333
    5.高学文,姚仕义,Huong Pham,Joachim Vater,王金生.基因工程菌枯草芽胞杆菌GEB3产生的脂肽类抗生素及其生物活性研究.中国农业科学,2003,36(12):1496-1501
    6.高志环,薛勇彪,戴景瑞.玉米小斑病菌C小种毒素的致病作用位点.科学通报,2000,45(6):622-626
    7.郭本恒.有益乳酸菌的研究趋势和动态.中国乳业,2001,6:21-24
    8.顾宝根,姜辉.我国生物农药的现状和问题.见:喻子牛主编,微生物农药产业化.北京:科学出版社,2000:13-20
    9.顾真荣,马承铸,韩长安.产几丁质酶芽胞杆菌对病原真菌的抑菌作用.上海农业学报,2001,17(4):88-92
    10.顾真荣,吴畏,高新华.枯草芽胞杆菌G3菌株的抗菌物质及其特性.植物病理学报,2004,34(2):166-172
    11.侯红漫,靳艳,金美芳,虞星炬,张卫.环脂肽类生物表面活性剂结构、功能及生物合成.微生物学通报,2006,33(5):122-128
    12.黄海婵,裘娟萍.枯草芽胞杆菌防治植物病害的研究进展.浙江农业科,2005(3):213-219
    13.胡燕梅,杨龙.利用微生物防治植物病害的研究进展.中国生物防治,2006,22(增刊):190-193
    14.赖菁茹,郑用琏.玉米C-CMS育性不稳定遗传与S类质粒相关性的研究.遗传学报,1992,19(1):87-92
    15.林福呈,李德葆.枯草芽胞杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,2003,33(2):174-177
    16.刘伊强,王雅平,潘乃隧,陈章良.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植物学报,1994,36(3):197-203
    17.刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析.微生物学报,1999,39(5):441-447
    18.刘中信,陈守文,何进,喻子牛.Zwittermicin A的分离纯化及其稳定性的初步研究.微生物学通报,2007,34(2):212-215
    19.凌代文,东秀珠.乳酸细菌分类及实验方法.北京:中国轻工业出社,1998
    20.马春红,李九云,翟彩霞,郝桂琴,郑积德,陈霞,李广敏.玉米细胞质雄性不育(CMS)的研究进展及分析.玉米科学,2006,14(1):46-49
    21.明镇寰,潘建伟,朱睦元.非核糖体多肽合成酶研究进展.生物化学与生物物理进展2002,29(5):667-669
    22.裴炎,李先碧,彭红卫,陈详贵,刘建国.抗真菌多肽APS-1的分离纯化与特性.微生物学报,1999,39(4):344-349
    23.乔奇,张振臣,靳秀兰,王永江,陈龙华.河南省玉米主要病害及防治对策.河南农业科学,2005,1:35-37
    24.任争光,张志勇,魏艳敏.芽胞杆菌防治园艺植物病害的研究进展.中国生物防治,2006,22(增刊):194-198
    25.石晶盈,陈维信,刘爱媛.植物内生菌及其防治植物病害的研究进展.生态学报,2006,26(7):2395-2401
    26.孙庆泉,荣廷昭.玉米胞质雄性不育材料的研究利用.四川农业大学学报,2003,21(1):49-53
    27.田黎,顾振芳,陈杰,黄乐平,田玲.海洋细菌B-9987菌株产生的抑菌物质及对几种植物病原真菌的作用.植物病理学报,2003,33(1):77-80
    28.王占武,李晓芝,刘彦利,田洪涛.枯草芽胞杆菌B501在草莓根际的定殖及其动态变化.植物病理学报,2003,33(2):188-189
    29.王智文,刘训理.芽胞杆菌非核糖体肽的研究进展.蚕业科学,2006,32(3):392-398
    30.吴永平,周景文,陈守文,喻子牛.枯草芽胞杆菌ME714产聚-γ-谷氨酸固态发酵培养基的优化.应用与环境生物学报,2007,13(5):713-716
    31.谢栋,彭憬,王津红,胡剑,王岳五.枯草芽胞杆菌抗菌蛋白X98Ⅲ的纯化与性质.微生物学报,1998,38(1):13-19
    32.徐艳萍,王树英,李华钟.聚-γ-谷氨酸高产突变株的选育及摇瓶发酵条件.无锡轻工大学学报,2004,5(23):6-10
    33.杨佐忠.枯草芽胞杆菌PRS5抗生作用的初步研究.西南林学院学报,1992,12(2):167-173
    34.游庆红,张新民,陈国广,徐虹,欧阳平凯.γ-聚谷氨酸的生物合成及应用.现代化工,2002,22(12):65-68
    35.张欣城,周佩.非核糖体含硫多肽类抗生素生物合成基因的研究进展.上海医药,2005,26(8):354-358
    36.张学成,张惠,杨官品.多肽类生物活性物质的非核糖体合成机理.青岛大学学报,2001,1(3):389-394
    37.赵达,刘伟成,裘季燕,刘霆,傅俊范.枯草芽胞杆菌B03对植物病原真菌的抑制作用.安徽农业科学,2007,35(15):4554-4555
    38.周燚,刘小锦,朱晨光,孙明,喻子牛.细菌中群体感应调节系统.微生物学报,2003,44(1):122-126
    39.Adams T T,Eiteman M A,Hanel B M.Solid state fermentation of broiler litter for production of biocontrol agents.Bioresour Technol,2002,82:33-41
    40.Adinarayana K,Prabhakar T,Srinivasulu V,Anitha Rao M,Jhansi Lakshmi P,Ellaiah P.Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum.Proc Biochem,2003,39:171-177
    41.Andrew J H.Biological control in the phyllosphere.Ann Rev Phytopathol,1992,30:603-635
    42.Akpa E,Jacques P,Wathelet B,Paquot M,Fuchs R,Budzikiewicz H,Thonart P.Influence of culture conditions on lipopeptide production by Bacillus subtilis.Appl Biochem Biotechnol,2001,91:551-561
    43.Asaka O,Shoda M.Biocontrol of Rhizoctonia solani damping off of tomato with Bacillus subtilis RB14.Appl Environ Microbiol,1996,62:4081-4085
    44.Ashiuchi M,Misono,H.Biochemistry and molecular genetics of poly-γ-glutamate synthesis.Appl Microbiol Biotechnol,2002,59:91-94
    45.Ashiuchi M,Nakamura H,Yamamotoa T,Kameia T,Soda K,Park C,Sung M,Yagi T,Misono T.Poly-γ-glutamate depolymerase of Bacillus subtilis:production,simple purification and substrate selectivity.J Mol Catal B:Enzym,2003,23:249-255
    46.Aziz N H and Mohsen G I.Bioconversion of acid-and gamma-ray-treated sweet potato residue to microbial protein by mixed cultures.J Ind Microbiol Biotechnol,2002,29:264-267
    47.Babu K R,Satynarayana T.α-amylase production by thermophilic Bacillus coagulans in solid-state fermentation.Process Biochem,1996,30:305-309
    48.Bacon C W,Yates I E,Hinton D M.Biological control of Fusarium moniliforme in Maize.Environ Health Perspect,2001,109(2):325-332
    49.Bais H P,Fall R,and Vivanco J M.Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.J Plant Physiol,2004,134:307-319
    50.Banat I M.The isolation of a thermophilic biosurfactant-producing Bacillus species.Biotechnol Lett,1993,15(6):591-594
    51.Banat I M.Characteristics of biosurfactants and their use in pollution removal-state of art.Acta Biotechnol,1995,15:251-267
    52.Banat I M,Makkar R S,Cameotra S S.Potential commercial application of microbial surfactants.Appl Microbiol Biotechnol,2002,53:495-508
    53.Benhamou N,Kloeppe J W,Quadt-Hallman A.Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacterial.Plant physiol.1996,112:919-929
    54.Bodour A A,Miller-Maier R M.Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms.J Microbiol Methods,1998,32:273-280
    55. Bodour A A, Drees K P, Maier R M. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol, 2003, 69(6): 3280-3287
    56. Bonmatin J M, Laprevote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen, 2003, 6(6): 541-556
    57. Branda S S, Gonzalez-Pastor J E, Dervyn E, Ehrlich S D, Losick R, and Kolter R. Genes involved in formation of structured multicellular communities by Bacillus subtilis.J Bacteriol, 2004,186: 3970-3979
    58. Braun C J, Siedow J N, Williams ME, Levings III C S. Mutation in the maize mitochondrial T-urfl3 gene eliminate sensitivity to a fungal pathotoxin. Proc Natl Acad Sci, 1989, 86: 4435-4439
    59. Cai H, Gao Z, Yuyama N, Ogawa N. Identification of AFLP markers closely linked to the rhm gene for resistance to Southern Corn Leaf Blight in maize by using bulked segregant analysis. Mol Gen Genomics, 2003, 269: 299-303
    60. Carrillo P G, Mardaraz C, Pitta-Alvarez S J, Giulietti A M. Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol, 1996,12: 82- 84
    61. Chen X, Chen S W, Sun M, Yu Z N. High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate. Bioresour Technol, 2005, 96: 1872-1879
    62. Cho S J, Lee S K, Cha B J Kim Y H, Shin K S. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin from Bacillus subtilis strain KS03. FEMS Microbiol Lett, 2003, 223: 47-51
    63. Cook R J, Bruckart W L, Coulson J R, Goettel M S, Humber R A, Lumsden R D, Maddox J V, McManus M L, Moore L, Meyer S F, Quimby P C J, Stack J P and Vaughn J L. Safety of microorganisms intended for pest and plant disease control: a framework for scientic evaluation. Biol Control, 1996, 7: 333-351
    64. De Lucca A J, Bland J M, Grimm C, Jacks T J, Cary J W, Jaynes J M, Cleveland T E, Walsh T J. Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Can J Microbiol, 1998,44: 514-520
    65.De Lucca A J,Walsh,T J.Antifungal peptides:Origin,activity,and therapeutic potential.Rev Iberoam Micol,2000,17(4):116-120
    66.Desai J D and Banat I M.Microbial production of surfactants and their commercial potential.Microbiol Mol BiolRev,1997,61:47-64
    67.de Vrije T,Antoine N,Buitelaar R M,Bruckner S,Dissevelt M,Durand A,Gerlagh M,Jones E E,Liith P,Oostra J,Ravensberg W J,Renaud R,Rinzema A,Weber F J,Whipps J M.The fungal biocontrol agent Coniothyrium minitans:production by solid-state fermentation,application and marketing.Appl Microbiol Biotechnol,2001,56:58-68
    68.Duitman E H,Hamoen L W,Rembold M,Venema G,Seitz H,Saenger W,Bernhard F,Reinhardt R,Schmidt M,Ullrich C,Stein T,Leenders F,Vater J.The mycosubtilin synthetase of Bacillus subtilis ATCC6633:A multifunctional hybrid between a peptide synthetase,an amino transferase,and a fatty acid synthase.Proc Natl Acad Sci,1999,96(23):13294-13299
    69.Durrant W E,Dong X.Systemic acquired resistance.Annu Rev Phytopathol,2004,42:185-209
    70.During K,Porsch P,Mahn A,Brinkmann O,Gieffers W.The non-enzymatic microbicidal activity of lysozymes.FEBS letters,1999,449:93-100
    71.Embley T M,Stachebrandt E.The phylogeny and systematic of the actinomycetes.Annu Rev Microbiol,1994,48:257-289
    72.Emmert E A B,Handelsman J.Biocontrol of plant disease:a(Gram-) positive perspective.FEMS Microbiol Lett,1999,171:1-9
    73.Ellaiah P,Srinivasulu B,Adinarayana K.Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation.Process Biochem,2004,39:529-534
    74.Evers S A.Influence of AmiSorb on coastal Bermuda grass growth and nutrient uptake.J Prod Agric,1999,12:440-444
    75.Feingnier C,Besson F,Michel G.Studies on lipopeptide biosynthesis by Bacillus subtilis:isolation and characterization of iturin~-,surfactin~+ mutants.FEMS Microbiol lett,1995,127:11-15
    76. Fiddaman P J, Rossall S. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol, 1994, 76: 395-495
    77. Foldes T, Banhegyi I, Herpai Z, Varga L, Szigeti J. Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. J Appl Microbiol, 2000, 89: 840-846
    78. Gao Z, Cai H, Liang G. Field assay of seedling and adult-plant resistance to southern leaf blight in maize. Plant Breed, 2005,124: 356-360
    79. Ghaouth A E. Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases. J Ind Microbiol Biotechnol, 1997,19: 160-162
    80. Ghannoum M A, Rice L B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev, 1999,12(4): 501-517
    81. Gilbert G S, Parke J L, Clayton M K, Handelsman J. Effects of an introduced bacterium on bacterial communities on roots. Ecology, 1993, 74: 40-54
    82. Gilbert G S, Handelsman J, Parke J L. Root camouflage and disease control. Phytopathology, 1994, 84: 222-225
    83. Gonzales D, Fan K, Sevoian M. Synthesis and swelling characterizations of a poly(γ-glutamic acid) hydrogel. J Polym Sci A: Polym Chem, 1996, 34: 2019-2027
    84. Goodfellow M, O' Donnell A G. Handbook of new bacterial systematics. Academic Press, London, 1993
    85. Grau A, Gomez-Fernandez J C, Peypoux F, Ortiz A. Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin. Peptides, 2001,22: 1-5
    86. Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser, 1999, 41: 95-98
    87. Hammerschmidt R. Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol, 1999,55: 77-84
    88. Handelsman J, Stabb E V. Biocontrol of soilborne plant pathogens. Plant Cell, 1996, 8: 1855-1869.
    89.Hathout Y,Ho Y P,Ryzho V,Demirev P,Fenselau C.Kurstakins:a new class of lopopeptides isolated from Bacillus thuringiensis.J Nat Prod,2000,63(11):1492-1496
    90.Hofemeister J,Conrad B,Adler B,Hofemeister B,Feesche J,Kucheryava N.Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics,iron uptake and biofilm formation by Bacillus subtilis A1/3.Mol Genet Genomics,2004,272:363-378
    91.Holker U.Lenz J.Solid-state fermentation-are there any biotechnological advantages? Curr Opin Microbiol,2005,8:301-306
    92.Honamc H.Wand J.Process for preparing gamma polyglutamic acid from high viscous culture broth.US Patent 0016341A1,2001
    93.Ito Y,Tannka T,Chmachi T.Glutamic acid independent production of poly(γ-glutamic) by Bacillus subtilis TAM-4.Biosci Biotechnol Biochem,1996,60(8):1239-1242
    94.Jack R W,Tagg J R,Ray B.Bactedocins of gram-positive bacteria.Microbiol Rev,1995,59:171-200
    95.Kim P I,Bai H,Bai D,Chae H,Chung S,Kim Y,Park R,Chi Y T.Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26.J Appl Microbiol,2004,97:942-949
    96.King E C,Blacker A J,Bugg T D H.Enzymatic breakdown of poly-γ-glutamic acid in Bacillus licheniformis:identification of a polyglutamyl γ-hydrolase enzyme.Biomacromolecules,2000,1:75-83
    97.Kinnersley A,Koskan L P,Strom D,Meah A R Y.Composition and method for enhanced fertilizer uptake by plants.USA Patent,5350735.1994-09-27
    98.Kloepper J W,Ryu C M,Zhang S.Induced systemic resistance and promotion of plant growth by Bacillus spp.Phytopathology,2004,94:1259-1265
    99.Knudsen I M B,Hockenhull J,Jensen D F,Gerhardson B,H6keberg M,Tahvonen R,Teperi E,Sundheim L,Henriksen B.Selection of biological control agents for controlling soil and seed-borne diseases in the field.Fur J Plant Pathol,1997,103:775-784
    100.Ko Y H, Gross R A. Effects of glucose and glycerol inγ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotech Bioeng, 1998, 57: 430-437
    101. Konz D, Doekel S, Marahiel M A. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol, 1999,181(1): 133-140
    102. Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cycliclipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol, 2004,186(4): 1084-1096
    103. Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T. Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem, 1993, 57:1212-1213
    104. Kuiper I, Lagendijk E L, Pickford R, Derrick J P, Lamers G E M, Thomas-Oates J E, Lugtenberg B J J, Bloemberg G V. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol, 2004, 51(1): 97-113
    105. Kumar S, Tamura K Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 2004,5:150-163
    106. Kunioka M. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol. 1997, 47:469-475
    107. Lebbadi M, Galvez A, Maqueda M, Martinez-Bueno M, Valdivia E. Fungicin M14: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J Appl Bacteriol, 1994, 77(1): 49-53
    108. Leclere V, Bechet M, Adam A, Guez J S, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P. Mycosubtilin overproduction by Bacillus subtilis BBGIOO enhances the organism's antagonistic and biocontrol activities. Appl Environ Micronbiol, 2005,71(8): 4577-4584
    109. Lin S C, Chen Y C, Lin Y M, General approach for the development of high-performance liquid chromatography methods for biosurfactant analysis and purification. J Chromatogr A, 1998,825: 149-159
    110. Lin S C, Jiang H J. Recovery and purification of the lipopeptide biosurfactant of Bacillus subtilis by ultrafiltration. Biotechnol Tech, 1997,11:413-416
    111. Madonna, A J, Voorhees K J. Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem, 2003,75:1628-1637
    112. Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 1994,87:151-174
    113. Mari M, Guizzardi M, Pratella P C. Biological control of gray mold in pears by antagonistic bacteria. Biol Control, 1996, 7: 30-37
    114. Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp R M. Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem, 1993,268(11): 7678-7684
    115. Mireles J R, Toguchi A, Harshey R M. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol, 2001,183: 5848-5854
    116. Mitsuiki M, Mizuno A, Tanimoto H, Motoki M. Relationship between the Antifreeze Antivites and the Chemical Structures of Oligo-ang Poly(glutamic acid)s. J Agric Food Chem, 1998,46: 891-895
    117. Mizumoto S, Hirai M, Shoda M. Production of lipopepide antibiotic iturin using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol, 2006,72: 869-875
    118. Moran A C, Martinez M A, Sineriz F. Quantification of surfactin in culture supernatant by hemolytic activity. Biotechnol Lett, 2002, 24:177-180
    119. Morikawa M, Hirata Y, Imanaka T. A study on the structure-function relationship of the lipopeptide biosurfactants. Biochim Biophys Acta, 2000,1488: 211-218
    120. Moyne A L, Cleveland T E, Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett, 2004, 234: 43-49
    121. Mulligan C N, Gibbs B F. Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol, 1990, 47(1): 23-29
    122. Ogawa Y, Yamaguchi F, Yuasa K, Tahara Y. Efficient production γ-polyglutamic acid by Bacillus subtilis(natto) in jar fermenters. Biosci Biotechno Biochem, 1997, 61(10): 1684-1687
    123. Ohno A, Ano T, Shoda M. Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin, by Bacillus subtilis NB22. Process Biochem, 1996, 31: 801-806
    124. Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol, 2005, 69(1): 29-38
    125. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J L, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol, 2007, 9(4): 1084-1090
    126. Oppermann-Sanio F B and Steinbuchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 2002, 89: 11-22
    127. O'Toole D K. Characteristics and use of okara, the soybean residue from soy milk production-a review. J Agric Food Chem, 1999,47: 363-371
    128. Pabel C T, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U. Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol, 2003, 5: 424-434
    129. Pandey A, Soccol C R, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem, 2000a, 35: 1153-1169
    130. Pandey A, Soccol C R, Nigam P, Soccol V T. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol, 2000b, 74: 69-80
    131. Perez-Camero G, Vazquez B, Munoz-Guerro S. Water-soluble esters of biosynthetic poly(γ-glutamic acid). J Appl Polym Sci, 2001, 82: 2027-2036
    132. Prusky D, Freeman S, Dickman M B. Collectotrichum Host specificity, pathlolgy and host-pathogen interaction. St Paul: APS Press , 20001
    133. Rahman M S, Ano T, Shoda M. Biofilm fermentation of iturin by a recombinant strain of Bacillus subtilis 168. J Biotechnol, 2007,127(3): 503-507
    134. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot, 2001, 20:1-11
    135. Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P. Purification of antifungal lipopeptides by reversed-phase high performance liquid chromatography. J Chromatogr, 1993,639: 81-85
    136. Rosenberg E, Ron E Z. High and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol, 1999,52:154-162
    137. Russell P E. Fungicide resistance: occurrence and management. J Agric Sci, 1995, 124: 317-323
    138. Schallmey M, Singh A, Ward O P. Developments in the use of Bacillus species for industrial production. Can J Microbiol, 2004, 50:1-17
    139. Schisler D A, Slininger P J. Microbial selection strategies that enhance the likelihood of developing commercial biological control products. J Ind Microbiol Biotechnol, 1997,19:172-179
    140. Schneider A, Marahiel M A. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol, 1998,169(5): 404-410
    141. Selitrennikoff C P. Antifungal Proteins. Appl Environ Microbio, 2001,67(7): 2883-2894
    142. Shih I L, Van Y T. The production of poly-(y-glutamic acid) from microorganisms and its various applications. Bioresour Technol, 2001, 79: 207-225
    143. Siedow J N, Rhoads D M, Ward G C, Levings III C S. The relationship between the mitochondrial gene T-urf13 and fungal pathotoxin sensitivity in maize. Biochim Biophys Acta, 1995,1271: 235-240
    144. Silo-Suh LA, Lethbridge B J, Raffel S J, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol, 1994, 60(6): 2023-2030
    145. Simmons C R, Grant S, Altier D J, Dowd P F, Crasta O, Folkerts O, Yalpani N. Maize rhml resistance to Bipolaris ntaydis is associated with few differences in pathogenesis-related proteins and global mRNA profiles. Mol Plant Microbe Interact, 2001,14(8): 947-954
    146. Smith K P, Goodman R M. Host variation for interactions with beneficial plant-associated mierobe. Ann Rev Phytopathol, 1999a, 37: 473-491
    147. Smith K P, Handelsman J, Goodman R M. 1999b, Genetic basis in plants for interactions with disease suppressive bacteria. Proc Natl Acad Sci, 96: 4786-4790
    148. Sneath P H A. Endospore-forming Gram-positive rods and cocci. In Bergeys Manual of Systematic Bacteriology, Vol. 2, ed. Sneath, P.H.A., Mair, N.S., Sharpe, M.E. and Holt, J.G pp.1104-1207. Baltimore: Williams & Wilkins. 1986
    149. Soriano-Martin M L, Porras-Piedra A, Porras-Soriano A. Use of microwaves in the prevention of Fusarium oxysporum f. sp. melonis infection during the commercial production of melon plantlets. Crop Prot, 2006, 25: 52-57
    150. Spadaro D, Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot, 2005, 24: 601-613
    151. Stein T. Bacillus subtilis antibiotics: structures, synthesis and specific functions. Mol Microbiol, 2005, 56: 845-857
    152. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and Al/3. Chem Biol, 1999, 6(1): 31-41
    153. Sullivan E R. Molecular genetics of biosurfactant production. Curr opin Biotechnol, 1998, 9(3): 263-269
    154. Tang W H. Advances in biological control of plant diseases: proceeding of the international workshop on biological control of plant diseases. 1996, Beijing: China Agricultural University Press.
    155. Thimon L, Peypoux F, Wallach J, Michel G. Effect of the lipopeptide antibiotic, iturin, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett, 1995,128:101-106
    156. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D C.The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
    157. Toure Y, Ongena M, Jacques P, Guiro A, Thonart P. Role of lipopeptides produced by Bacillus subtilis GAl in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol, 2004,96:151-160
    158. Tsuge K, Inoue S, Ano T, Itaya M, Shoda M. Horizontal transfer of iturin operon, itu, to Bacillus subtilis 168 and conversion into an iturin producer. Antimicrob Agents and Chemother, 2005,49(11): 4641-4648
    159. Tsuge K, Ano T, Shoda M. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch Microbiol, 1996,165: 243-251
    160. Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin operon. J Bacteriol, 2001,183(21): 6265-6273
    161. Tsuge K, Ano T, Hirai M. The Genes degQ, pps, and Ipa-S (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother, 1999,43(9): 2183-2192
    162. Tsuge K, Matsui K, Itaya M. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol, 2007,129(4): 592-603
    163. van Loon L C, Bakker P A, Pieterse C M. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol, 1998, 36: 453-483
    164. Van Wees S C, Pieterse C M, Trijssenaar A, Vant Westende Y A, Hartog F, Van Loon L C. Differental induction of systemic resistance in Arabidopsis by biocontrol bacteria . Mol Plant Microbe Interact, 1997,10: 716-724
    165. Vinderola C G, Bailo N, Reinheimer J A. Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res Intern, 2000, 33: 97-102
    166. Williams B H, Hathout Y, Fenselau C. Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. J Mass Spectrom, 2002, 37: 259-264
    167. Xu H, Jiang M, Li H, Lu D, Ouyang P. Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem, 2005, 40(2): 519-523
    168. Xu J, Chen S W, Yu Z N. Optimization of process parameters for poly γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048. Process Biochem, 2005,40: 3075-3081
    169. Yan Z N, Reddy M S, Ryu C M, Mcinroy J A, Wilson M, Kloepper J W. Induced systemic protection agaist tomoto late blight elicited by plant growth-promoting rhizobacteria. Phytopathology, 2002, 92:1329-1333
    170. Yao S, Gao X, Fuchsbauer N, Hillen W, Vater J, Wang J. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin and surfactin in Bacillus subtilis. Curr Microbiol, 2003, 47(4): 272-277
    171. Yokoi H, Maki R, Hirose J, Hayashi S. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg, 2002, 22: 389-395
    172. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 2001,91:181-187
    173. Youssef H, Duncana K E, Naglea D P, Savagea K N, Knappb R M, Mclnerneya M J. Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods, 2004,56: 339-347
    174. Yu G Y, Sinclair J B, Hartman G, Bertagnolli B L. Production of iturin by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem, 2002, 34: 955-963
    175. Zhao C, Luo Y, Song C, Liu Z, Chen S, Yu Z, Sun M. Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520.Arch Microbiol, 2007,187(4): 313-319
    
    176. Zheng G, Slavik M. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Microbiol, 1999, 28: 363-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700