高产脂肽类生物表面活性剂菌株及其驱油机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱-表面活性剂-聚合物三元复合驱(ASP flooding)是一项新型的三次采油技术,但其推广受表面活性剂研究进展的制约。生物表面活性剂具有低毒、无污染、廉价的特点,在各种生物表面活性剂中,脂肽类生物表面活性剂因为它的高表面活性尤其引人关注。本论文主要从脂肽类生物表面活性剂产生菌的筛选方法、菌种鉴定、基因工程菌株的构建、发酵条件的优化、脂肽的理化性质及其驱油机理等方面作了较全面的研究,为其工业化生产和油田现场应用奠定理论基础。主要研究结论如下:
     (1)从采自大庆油田的油土样和油水样中,经过富集培养,血平板和油平板分离,并经排油活性法和表面张力法进一步复筛,从中筛选出了8株产生物表面活性剂的优良菌株。经过薄层层析(TLC)和高效液相色谱(HPLC)分析鉴定,其中一株产生脂肽类生物表面活性剂的芽胞杆菌属的ZW-3菌株效果最好,其表面活性剂可以将培养基的表面张力降到31.0mN/m,并具有良好的乳化活性。
     (2)对筛选出的ZW-3菌株进行了系统鉴定,通过形态观察、生理生化实验和16S rRNA同源序列比对和进化树分析,发现ZW-3菌株与芽孢杆菌属的枯草芽孢杆菌有98%以上的相似性,所以鉴定该菌株为枯草芽孢杆菌(Bacillus subtilis) ZW-3。
     (3)对筛选出的产脂肽类生物表面活性剂的优良菌株ZW-3的摇瓶发酵产脂肽的特性进行了研究。通过单因素实验等方法研究了各种营养和环境因素对菌株ZW-3发酵生产脂肽表面活性剂的影响。结果表明,无机氮源比有机氮源更有利于脂肽表面活性剂的产生;提高培养基的C/N比有利于脂肽的合成和积累。优化后的ZW-3产脂肽的培养基组成(/L)为:可溶性淀粉20.0 g,NH_4NO_3 4.0g,KH_2PO_4 3.0g,Na_2HPO_4 3.0g,酵母粉0.5 g,FeSO_4 6.8μmol,ZnSO_4 0.038mmol,CaCl_2 0.5mmol,MgSO_4 0.2mmol,MnSO_4 0.02mmol,EDTA 50μmol,pH 7.4;最佳培养条件为:以2%接种量将11h种子培养物接入装有100ml发酵培养基(pH 7.4)的500ml摇瓶中,于45℃、250r/min振荡培养53 h。
     (4)将血红蛋白基因(vhb)置于RDR细菌启动子驱动下的质粒PSET中,构建PSET-RDR-vhb重组质粒,并通过电激作用转入脂肽代谢菌株-枯草芽孢杆菌株(bacillus subtilis)ZW-3中,重组菌株经酶切和PCR电泳检测鉴定,Southern-blot杂交显示部分转化菌株中外源基因插入基因组DNA,采用一氧化碳差异色谱法测定了血红蛋白的表达量。实验进一步对转化菌株的生长曲线、总蛋白量、过氧化氢酶活性、脂肽的产率进行了测定。结果显示,相比原始菌株,重组菌株数据均有明显提高。
     (5)枯草芽孢杆菌ZW-3在可溶性淀粉为碳源的培养基中培养可产生一种脂肽类生物表面活性剂,该生物表面活性剂在100℃、pH 6-10的范围内和100000.0 mg/L的Ca~(2+)/Mg~(2+)离子浓度及12%的高盐浓度下仍维持原有的表面活性。该脂肽表面活性剂在低浓度下就能显著降低水与空气的表面张力从68.92mN/m[0]降低25.19mN/m[0]、原油/水的界面张力从23.53mN/m[0]降低到4.57mN/m[0],其临界胶束浓度(CMC)为33.3mg/L(3.24×10-5mol/L),在此浓度下,当pH 6.0~8.0时表面张力降到最低。更为显著的特点是该脂肽对热相当稳定,在100℃保温2h界面张力不变。该脂肽还有很好的乳化性,稀释10倍后,乳化活性仍为1.36U,仍能达到有关文献报道的生物表面活性剂原液乳化活性水平。ZW-3菌株产生的脂肽增溶与脱附作用显著,可使油水互溶而形成水包油型乳化小滴,镜检时可观察到形成的水包油乳状液,这些特点有利于原油的增采和输送以及环境生物修复等领域的应用,并具有良好的发泡和抗生素作用。该脂肽表面活性剂(0.05%)与低浓度的烷基苯磺酸盐(0.05%)、NaOH溶液(0.6%)进行三元复配,即可达到超低界面张力(10~4mN/m),试推测脂肽类生物表面活性剂和烷基苯磺酸盐复配后,两者之间存在着明显的协同效应,可在不影响界面活性的前提下,降低烷基苯磺酸盐和碱的用量。物理模拟实验结果显示,碱(NaOH,0.6%)-表面活性剂(脂肽,0.05%+烷基苯磺酸盐,0.05%)-聚合物(1000ppm)三元复合驱可提高原油采收率19.6 OOIP。说明脂肽类生物表面活性剂在三元复合驱的研究中具有巨大的应用前景。
The EOR method socalled alkaline–surfactant–polymer (ASP) flooding has proved to be effective in laboratory experiments and field projects .At present restricts to application of this technique is surfactant development. biosurfactants has characteristic of low poisonous, no pollution, inexpensive. Therefore biosurfactants could be used as an economical alternative to chemical surfactants in ASP flooding is feasible. Among the many classes of biosurfactants, lipopeptides are particularly interesting because of their high surface activities and therapeutic potential, which is an inhibitor of fibrin clotting and cyclic AMP phosphodiesterase.
     1. Microorganisms capable of producing biosurfactants could be isolated by a series of step including enrichment culture, hemolytic activity assay on blood agar plates and hydrolyzing oil activity assay on oil agar plates etc. Then the fermentation supernatant of first-isolated strains was secondly screened by a drop-collapsing method, oil displacement activity and surface tension method. Eight strains bacteria were isolated with higher surface activity from oil-contaminated soil and water collected from Daqing Oil Field. The results of TLC and HPLC analysis showed that biosurfactants of strain ZW-3 was lipopeptide and it was the best one among them..
     The experimental results of the morphological structure, physiological characteristics and the 16S rDNA whole sequence comparison of strain ZW-3 with the strains in Genebank showed that I6S rDNA of stain ZW-3 has more than 98 percent of homogenous with Bacillus subtilis. Therefore strain ZW-3 was identified as Bacillus subtilis ZW-3.
     2. The conditions for shaking flask fermentation of strain ZW-3 which has the high productivity of lipopeptide biosurfcant were studied. The influences of the nutrient and environmental factors on the fermentation production are investigated through the complex of orthogonal experiments and one-factor experiments.The optimized composition medium(/L):soluble starch 20.0g, NH_4NO_3 4.0g, Na_2HPO_4·12H2O 3.0g, KH_2PO_4 3.0g, FeSO_4 6.8μmol,ZnSO_4 0.038mmol,CaCl_2 0.5mmol,MgSO_4 0.2mmol,MnSO_4 0.02mmol,EDTA 50μmol, yeast extract 0.5g, initial pH 7.4.The optimal culture condition: 500 mL flask containing 100 mL medium,2.0% seed culture is used, temperature is 40-45℃.On such a condition.
     3. Hemoglobin of the gram-negative bacterium Vitreoscilla can bind oxygen strongly and reduce the oxygen requirement of the bacterium. A recombinant plasmid PEST-RDR-vhb was constructed and transferred into strain ZW-3(bacillus subtilis),The results showed that the expression of vhb gene could improve cell growth and enhance the production of surfactin with 31.8% higher than that of control under different dissolved oxygen concentrations. Besides, vhb gene also increased the expression of total protein quantity and CAT.
     4. In this study, We investigated changes in surfactin activity under a range of conditions. Experimental variables included NaCl(0-20%), pH(3.0-10.0), Ca~(2+)/Mg~(2+)(0.0-1.0×105mg/L), and temperature (50~120℃). And this surfactin could reduce surface tension of bacterial fermentation culture medium and water/oil-IFT from 68.82 mN/m to 24.88 mN/m and from 23.53 mN/m to 4.57 mN/m , Its critical micelle concentration was tested to be 33.3 mg/L, and it had excellent emulsifying(2.89U) and foaming property.surfactin (concentration 0.066%) and aklyl benzenes sulfonate (concentration 50.0%) were mixed to solution of effective concentration 0.025%~0.4% by allocated proportion 1: 1 in ASP flooding experiment. The result showed the joint of surfactin would reduced the IFT of ASP-system to 10-3mN/m in lower effective concentration (0.025%~0.2%) and lower NaOH concentration(0.4%~0.7%). When NaOH concentration about 0.6% and effective concentration of ASP-system about 0.1% , the IFT reduced to 10-4mN/m. Meanwhile the independent employment of aklyl benzenes sulfonate and NaOH concentration needs 0.1% and 1.0% respectively, only then would gain 10-4mN/m, this indicated surfactin and aklyl benzenes sulfonate has the obvious coordination effect after duplicate match. the results of physical simulation experiment indicated that alkaline–surfactant(surfactin+aklyl benzenes sulfonate)–polymer flooding could enhance oil recovery to 19.6 OOIP.
引文
[1] Banat I M. Biosurfactants,more in demand than ever[J]. Biofutur, 2000, 2000(198):44~47.
    [2] Arima K, Kakinuma A,Tamura G Surfactain a crystalline peptide lipid surfactant produced by Bacillus sublilis isolation, characterization and its inhibition of fibrin clot action[J]. Biochem Biophys Res Commun. 1968, 31:488~494.
    [3] Banat I M,Makker R S, Cameotra S S. Potential commercial application of microbial surfactants[J]. Appl Microbiol Biotechnol, 2000, 53(5):495~508.
    [4] Cooper D.G., Zajic J.E.. Surface-active compounds from microorgnism[J]. Adv.Appl. Microbiol. 1980, 26:229~253.
    [5] Georgiou G., Lin S.C., Sharma M.M.. Surface-active compounds from microorganisms[J]. BioTechno,. 1992, 10:60~65.
    [6] Jarvis F. G., and Johnson M. J. A glycolipid produced by Pseudomonas aeruginosa[J]. J. Am. Chem. Soc., 1949, 71:4124~4126.
    [7] Parra J. L., Guinea J., et al. Chemical characterization and physicochemical behaviour of biosurfactants[J]. J. Am. Oil Chem. Soc., 1989, 37:141~145.
    [8] Riatau E., and Wanger F., Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions[J]. Biotechnol. Lett., 1993, 5:95~100.
    [9] Lang S., and Wanger F., Structure and properties of biosurfactants. Biosurfactants and biotechnology, Marcel Dekker, Inc., New York. N. Y. 1987:21~47.
    [10] Rau U., Hammens, Heckmann R., et al. Sophorolipids: a source for novel compounds[J]. Ind. Crops. Prod., 2001, 13:85~92.
    [11] Robert M., Mercade M. E., et al. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1[J]. Biotechnol. Lett., 1989, 11:871~874.
    [12] Kretschmer A., Bock H., and Wanger F., Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane[J]. Appl. Environ. Microbiol., 1982, 44:864~870.
    [13] Navonvenezia S., Zosim Z., et al. A new bioemulsifer from Acinetobacter radioresistens[J]. Appl. Environ. Microbiol., 1995, 61:3240~3244.
    [14] Cameron, D. R., D. G. Cooper and R. J. Neufeld. The mannoprotein of sacchacerewsiae is an effective bioemulsifier. Appl.Environ.Microbio1,1988, 54:1420~1425.
    [15] Kappeli.0.,P.Walther,M.Mueller et al.Structure of cell surface of the yeast and its relation to hydrocarbon transpost.Arch Microbiol.1984,l38:279~282.
    [16] Desai A. J., Patel K. M., and Desai J. D., Emulsifier production by Pseudomonas aeruginosa during the growth on hydrocarbons[J]. Curr. Sci., 1988, 57:500~501.
    [17]徐志伟,尤勤,孙丙寅.生物表面活性剂的工业应用[J].生物技术.1995 5 (3): 6~8.
    [18]丁立孝,何国庆,孔青等,微生物产生的生物表面活性剂及其应用研究[J].生物技术.2003.l3 (5): 52~54.
    [19] Ivanovwm and Belyaevss, Microbial Enhancement of Oil Recover-Recent Advances[J],1991,421~432.
    [20]胡浩,沈红,王浩.一株原油降粘细菌的筛选[J],山东大学学报,2002, 37:276~280.
    [21] Javaheri M., Jenneman G.E., McInerney M.J., Knapp R.M.. Amaerobic production of a biosurfactant by Bacillus licheniformis JF-2[J]. Appl. Environ. Microbiol. 1985, 50:698~700.
    [22]李虞庚,冯世功.石油微生物学[M].上海:上海交通大学出版社,1991.
    [23]汪卫东.我国微生物采油技术现状及发展前景[J].石油勘探与开发.2002. 29 (6): 87~90.
    [24]柳文国,赵责,张浩等.噬蜡菌种筛选、性能评价及在低渗油藏中的现场应用[J].特种油气藏.2001, 8 (3):85~89.
    [25] Ghosh, M. M., I. T. Yeom, Z. Shi, C. D. Cox, and K.G Robinson. Surfactant-enhanced bioremediation of and PCB-contaminated soils. Third International In Situ and On-site Bioreclamation Symposium[J]. Battele Press, Columbus, Ohio.1995:15~23.
    [26] Mulligan C. N,R. N. Yong, B. F. Gibbs.Surfactant-enhanced remedation of contaminated soil:a review[J].Engineeering Geology .2001, 60: 371~380.
    [27] Scheibenbogen K.. Zytner R. G., Lee H, et al. Enhanced removal of selected hydrocarbons from soil by Peudomonas aeruginous UG2 biosurfactants and some chemical surfactants[J]. J Chem Technol Biotechnol, 1994, 59:53~59.
    [28] Dave, H., C. Ramakrishna, B. D. Bhatt. and J. D. Desai. Biodegradation of slop oil from a petrochemical industry and bioremediation of slop oil contaminated soil[J]. World J. Microbiol, 1994(10):653~656.
    [29] Mulligan C.N.,Yong R.N.,Gibbs B.F. Heavy metal removal from sediments by biosurfactants[J]. Journal of hazardous Materials 2001,85(1): 111~125.
    [30] Man Bock Gu, Suk Tai Chang. Soil biosensor for the detection of PHA toxicity using an immobilized recombinant bacterium and a biosurfactant[J]. Biosensor&Bioelectronics,2001, 16:667~674.
    [31] Awashti N.. Kumar A., Makkar it.S. et al. Enchanced Biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. [J].J Environ Sci Health ,1999, B34:234~239.
    [32] A.Yateem,M.Tbaiba,Yaishayli,etal.Isolation and characterization of bio-surfactant-producing bacteria from oil-contaminated soil[J].Soil and Sediment Contamination.2002,11(1):41~55.
    [33] Van der Vegt,W.H.C. Vander Mei, J.Noordmans et aLAssessment of bacterial biaosurfactant production through axisymmetric drop shape analysis by profile[J]. Appl Microbial Biotechnol. 1991,30:6503~6508.
    [34] Shuiga, A.N.,E.V Karpenko, S.A.Eliseev,et al. The method for determination of anionogenic bacterial surface-active peptidolipids[J]. Microbiol. J. 1993, 55:85~88.
    [35] Jain D K, Collins-Thompson D L, Lee H, et al. A drop-collapsing test for screening surfactant-producing microorganisms[J]. J Microbiol Methods,1991,13:271~229.
    [36] Matsuyama,T,M. Sogawo .and LYano. Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants detective in in production wetting agents[J].Appl. Envion. Microbial. 1991, 53:1186~1187.
    [37] Siegmund, 1., F. Wanger. New method for detecting rhamnolipids exerted by Pseudomonas species grown on mineral agar[J]. Biotechtol. Tech. 1991, 5:265~268.
    [38] Hansen, K.Q,J.D.Desai, A.J. Desai.A rapid and simple screening technique for potential crude oil degrading microorganisms[J]. Biotechnol. Tech. 1993,7: 745~748.
    [39] Cooper,D.Q,B.G Goldenberg. Surface active agents from two Bacillus species[J] .Appl. Environ. Microbol.1987, 53:224~229.
    [40] Sung-Chyr Lin,Kuo-Ging Lin,Chih-Chen Lo, et al. Enhanced biosurfactant production by Bacillus licheniformis mutant[J]. Enzyme Microbiol Techno1,2005,23:267~273.
    [41] Mulligan C N,Cooper D q Neufeld R J. Selection of microbes producing biosurfactants in media without hyrocarbons[J]. J Ferment Technol, 1984,62:311~314.
    [42] Adria A. Bodour, Raina M.Miller-Maier.Application of modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms[J].J Microbial Methods.1998,32:273~280.
    [43]张翠竹,张心平,粱风来等.一株地衣芽饱杆菌产生的生物表面活性剂[J].南开大学学报(自然科学).2000,33 (4): 41~44.
    [44] Calbo C Toledo F L, Gonalez-Lopez J. Surfactant activity of a naphthalene degrading bacillus pjmilus strain isolated from oil sludge[J] .2004, (1):255~262.
    [45] Mikkola R, Andersson M. A, Pavel G. , et al. Bacillus strains isolated from moisturedamaged buildings produced surfactin and a substance toxic to manunalian cells.Ardt Mictobiol,2004,181:314~323.
    [46] Syldatk, C., S. Lang, U. Matulovic, and F. Z. Wagner. Production of four interfacial-active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas sp[J]. DSM 2874. Z. Naturforsch. 1985, 40C:61~67.
    [47] Persson, A., E. Oesterberg, and M. Dostalek. Biosurfactant production by Pseudomonas Jluorescens 378:Growth and product characteristics[J]. Appl. Microbiol Biotechnol. 1988, 29:1~4.
    [48] GoldmanS.,Y Shabtai, C. Rubinovitz,E. Rosenberg, and D.L.Gutnick. Emulsan in Acinetobacter calcoaceticus. RAG-I[J]. Appl. Environ. Microbiol. 1982, 44:165~170.
    [49] Shabtai,Y,and D. L. Gutnick. Tolerance of Acinetobacter calcoaceticus RAG-1 to the cationic surfactant cetyltrimethylammonium bromide: role ofthe bioemulsifier emulsan[J]. Appl. Environ. Microbiol. 1985, 49:192~197.
    [50] Mulligan, C. N., and B. F. Gibbs. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonsa[J]. Appl. Environ. Microbiol. 1989 ,55:3016~3019.
    [51] Ramana. K.V., and N. G. Karanth. Factors at;:'ecting biosurfactants production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J. Chem.Technol[J].Biotechnol. 1989, 45:249~257.
    [52] Suzuki, T., H. Tanaka. and S. Itoh. Sucrose lipids of Arthrobacteria, Corynebacteria and Nocardia grown on sucrose[J]. Agric. Biol. Chem. 1974., 38:557~563.
    [53] Singh, M., V. Saina, D. K. Adhikari, J. D. Desai, and V. R. Sista. Production of bioemulsifier by SCP producing strain of Cattdida tropicalis during hydrocarbon fermentation[J]. Biotechnol. Lett. 1990. 12:743~746.
    [54] Kosaric, N., H.Y. Choi, and R.Bhaszczyk. Biosurfactant production from Nocardia SFC-D[J]. Tenside Surf. Det.1990, 27:294~297.
    [55] Hommel. R. K.,O. Stuwer, W. Stuber, D.Haferburg, and H.P.Kleber. Production of water-soluble surfacte-active exolipids by Torulopsis apicola[J]. Appl. Microbiol. Biotechnol. 1987. 26:199~205
    [56] Palejwala, S., and J. D. Desai. Production of extraceilular emusifier by a Gram negative bacterium[J].Biotechnol. Lett. 1989, 11:115~118.
    [57] Abu-Ruwaida. A. S., I. M. Banat, S. Haditirto, and A. Khamis. Nutritional requirements and growth characteristic of a biosurfactant-producing Rhodococcus Bacterium. World 3[J]. Microbiol. Biotechnol. 1991,7:53~61.
    [58] Guerra-Santos, L. H., O.Kappeli, and A. Fiechter. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source[J]. Appl. Environ. Microbiol. 1984. 48;301~305.
    [59] Riling, H. E,U. T. Wyass, L. H. Guerra-Santos, R.Hirt. O. Kappeli, and A. Fiechter. Pilot plant production of fismnolipid biosurfactant by Pseudomonas aerugirrsa[J]. Appl. Environ. Microbiol. 1986, 51:985~989
    [60] Sytdatk, C., and F. Wagnec Production of biosurfactants. 1987. 89-120. In N. Kosaric. W. L. Cairns. And N. C. C. Gray(ed.). Biosurfactants and biotechnology[J]. Marcel Dekker. Inc., New York.
    [61] Ramana. K.V., and N. G. Karanth. Production of biosurfactants by the resting cells of Pseudomonas aeruginosa CFTR-6[J]. Biotechnol. Lett. 1989. 11:437~442.
    [62] Inoue. S., and S. Itoh. Sorphorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentation[J]. Biotechnol. Lett. 1982, 4:3~8.
    [63] Hommel. R. K., and K. Huse. Regulation of sophorose lipid prodution by Candida (Torulopsis) apicola[J].Biotechnol. Lett. 1993, 15:853~858.
    [64] Margatitis, A., K. Kennedy, and J. E. Zajic. Application of an air lift fermenter in the production of biosurfactants[J]. Dev. Ind. Microbiol. 1980, 21:285~294.
    [65] Kitamoto, D.T. Fuzishiro. H.Yanagishita, T Nakane. and T. Nakahara. Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida Antarctica[J]. Biotechnol. Lett. 1992 14:305~310.
    [66] Cooper, D. Q, and D. A. Paddock. Production of a biosurfactant from Torulopsis bomblcola[J]. Appl. Environ.Microbiol. 1984. 47:173~176.
    [67] Stuwer, O., R. Hommel, D. Haferburg, and H. P Kieber. Production ofcrystalline surface-active glycolipids by a strain of Torulopsis apicola[J]. Biotechnol. 1987.6:259~269.
    [68] Lee. L.H. and J.H. Kim. Distribution of substrate carbon in sophorose lipid production by Toralopsis hombicola[J]. Biotechnol. Lett. 1993. 15:263~266.
    [69] Itoh. S., and T. Suzukj. Fructose lipids ofArthrobacter Corvnehacteria, Nocardia and Mycobacteria grown on fructose Agric[J]. Biol. Chem. 1974. 38:1443~1449.
    [70] Robert, M., M. E. Mercade, M. P. Bosch, J. L. Parra, M. J. Espuny, M. A. Manresa, and J. Guinea. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T[J]. Biotechnol. Lett. 1989,11:871~874.
    [71] Syldatk, C., S. Lang, U. Matulovic, and F. Z. Wagner. Production of four interfacial-active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas sp. DSM 2874. Z[J]. Naturforsch. 1985, 40C:61~67.
    [72] Kretschmer. A., H. Bock, and F. Wagner. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane[J].Appl. Environ. Microbiol,1982, 44:864~870.
    [73] Edmonds. P., and J. J. Cooney. Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soybean broth[J]. J. Bacteriol. 1969, 98:16~22.
    [74] Finnerty, W. R., and M. E. Singer. A microbial biosurfactant-physiology, biochemistry and applications[J]. Dev. lnd. Microbiol. 1985, 25:31~46.
    [75] Neidleman, S. L., and J. Geigert. Biotechnology and oleochemicals: changing patterns[J]. J. Am. Oil Chem.Soc.1984, 61:290~297.
    [76] Duvnjak, Z., and N. Kosaric. Production and release of surfactant by Corynebacterium !epos in hydrocarbon and glucose media[J]. Biotechnol. Lett. 1985, 7:793~796.
    [77] Banat, I. M. Characterization of biosurfactants and their use in pollution removal-state of the art[J]. Acta Biotevhno1.1995, 15:251~267.
    [78] Davila. A., F. Marchal, and J. Vandecasteele. Kinetics and balance of a fermentation frea from product inhibition.sophorose lipid production by Candida bombicoJa. Appl. Microbiol[J]. Biotechnol. 1992, 38:6~l1.
    [79] Stuwer, O.R. Hommel, D. Haferburg, and H. P Kiebec Production of crystalline surface-active glycolipids by a strain of Torulopsis apicola[J]. J. Biotechnol. 1987 6:259-269.
    [80] Lee.L.H. and J.H. Kim. Distribution of substrate carbon in sophorose lipid production by Toralopsis bombicola[J].Biotechnol. Lett. 1993. 15:263~266.
    [81] Duvnjak, Z., D.G. Cooper. and N.Kosaric. Effect of nitrogen source on surfactant production by Arrhrobacter paraffines ATCC 19558. 1983 66~72. In J.E.Zajic. D.CxCooper.T.R.Jack.. and N. Kosaric(ed.). Micobial enhanced oil recovery[J]. Pennwell Books. T ulsa. Okla.
    [82] Abu-Ruwaida. A. S., I. M. Banat, S. Haditirto, and A. Khamis. Nutritional requirements and growth characteristic of a biosurfactant-producing Rhodococcus Bacterium. World 3[J]. Microbiol. Biotechnol. 1991,7:53~61.
    [83] Peypoux, F., and G Michel. Control biosynthesis of Val-7 and Leu-7 surfactins[J]. Appl. Microbiol. Biotechnol.1992,36:515~517.
    [84] Mulligan, C, N., and B. F. Gibbs, Correlation of nitrogen metabolism with biosurfactant production by Pseudomonsa[J]. Appl. Environ. Microbiol1989,55:3016~3019.
    [85] Powalla, M., S. Lank and V .Wray. Penta-and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes[J]. Appi. Microbiol. Biotechnol .I 989,31:473~479.
    [86] Banat, I. M. The isolation of a thermophilic biosurfactant producing Bacillus sp[J]. Biotechnol. Lett.1993.15:591~594.
    [87] Abu-Ruwaida, A. S., I. M. Banat, S. Haditirto, S. Haditirto, S. Salem. and M. Kadri. fsolation of biosurfactant producing bacteria-product characterization and evaluation[J].ACta Biotechnol. 1991. 11:315~324.
    [88] Wang, S. D., and D. L. C. Wang. Mechanisms for biopoly accumulation in immobili2ed Acinetobacter calcoaceticus system. Biotechnol[J]. Bioeng. 1990, 36:402~410.
    [89] Sheppard,1. D., and D, G. Cooper. The effect of biosurfactant on oxygen transfer in a cyclone column reactor.J. Chem. Technol[J]. Biotechnol. 1990, 48:325~336.
    [90] Rubinowitz,C.,D.L.Gutnick,and E.Rosenberg. Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol[J].J. Bacteriol.1982, 152:126~132.
    [91] Siegmund Land. Biological amphiphiles (microbial biosurfactants).Current Opinion in Colloid and Interface[J].Science. 2002, 7:12~20.
    [92] Kosaric, N., H.丫Choi, R. Bhaszczyk. Biosurfactant production from Nocardia SFC-D[J]. Tenside. Surf. Det.1990, 27: 294~297.
    [93] Fiechter,A.lntergrated systems for biosurfactant synthesis[J].PureAppl Chem.1992,64:1739~1743.
    [94] Sandra L. Fox .Greg A, Bala.Production of surfactant from Bacillus ATCC21332 using potato substrates[J].Biosource Techno1.2000,75:235~240.
    [95] Sung-Chyr Lin,Kuo-Ging Lin,Chih-Chen Lo, et al. Enhanced biosurfactant production by Bacillus licheniformis mutant[J]. Enzyme Microbiol Techno1,1998,23:267~273.
    [96] Mutligan,C.N.,T.Y.K.Chow.andB.F.Gibbs.Enhanced biosurfactant production by a mutant Bacillus sublitis strain[J].AppL MicrobioL Biotechnol.l989, 31:486~489.
    [97] Nakano,M.M.,and P.Zuber.Mutational analysis of regulatory region of the srfA operon in Bacillus subtilis[J] .J.Bacteriol. 1993.175;3188~3191.
    [98] Nakano,M.M.,M.A.Marahiel.and P.Zuber.ldentification of a genetic locus required for biosynthesis of lipopeptide antibiotic surfactin in Bacillus subtilis[J]. J.Bacteriai.1988,170:5662~5668.
    [99] Nakano, M. M.,R. Magnuson. A. Myers.et aLsrfA is an operon required for surfactin production. compentence development,and efficient sporufation in Bacillus subtilis[J].J.Bacterol.1991,173:1770~1778.
    [100] Nakano,M.M.,and P.Zuber. Transcription initiation region of the srfA operon ,which is controlled by the comp-comA signal transduction system in Bacillus subtilis[J].J.Bacterol.1991,173:5487~5492.
    [101] Fiechter, A. Intergrated systems for biosurfactant synthesis[J]. Pare Appl Chem. 1992, 64:1739~1743.
    [102] Nakano, M. M., N.Corbell, J. Besson, and P.Zuber.Isolation and characterization of sfa:a gene required for production of the lipopeptide biosurfactant, in Bacillus subtilis[J]. Mol. Gen. Genet. 1992, 232: 313~321.
    [103] Rusansky,S.,R.Avigad,S.michaeli.et al.Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57[J].Appl Environ.microbiai.1987,53:1918~1923.
    [104]张景存.三次采油[M]。北京:石油工业出版社,1995 :90~116.
    [105] Bock M ,Bosecker K. Occurrence of Biosurfactant– Producing Bacteria In Oil Reservoirs ,Contaminated Soils ,And Surface Waters In Northern Germany. Geol Jahrbuch ,Ser D No 103 , 1997:147~157 ,( ISSN 03416429 ;Color) .
    [106] Hua ZZ ,Chen J ,Zhu WC . Study on the Production of Biosurfactant and Biodegradation of N -Alkanes by Candida A antarctic[J]. Journal of Nanjing University . 1998 ,34 (2) :149~154.
    [107] Sim ,L. production and characterzation of a biosurfactant isolated Pseudomonas aeruginose UW - 1[J]. J . Ind. microbialbiotechnol(J ) ,1997 ,19 (4) ,232 ~ 238.
    [108] Rocha ,C. enhanced oily sludge biodegradation by a tensio– active agent isolated from Pseudomonas aeruginose USB - CS1[J]. application. microbiol. biotechnol. 1991 ,47 (5) .
    [109] Pruthi. V. Rapid identification of biosurfactant - producing bacterial using strains a cell surface hydrophobicity technique[J]. biotechnol. tech,1997 ,11 (9) ,671~674.
    [110] Lin S. C , Goursaud J C , Kramer P J , Georgiou G. Production of Biosurfactant By Bacillus L ichenif ormis Strain J F - 2 [A] . Eksevier Develop Petrol SCI SER No 31,1991:219~ 226 , ( ISBN 0- 444 - 88633 - 8 ;7Refs) .
    [111] Marsh T. L. Mechanisms of Microbial Oil Recovery Bu Clostridium Acetobutylicum and Bacillus Strain J F - 2 [C] . 5th Us DoeEt Al ,Microbial Enhanced Oil Recovery &Relat Biotechnol For Solving Environ PROBL INT CONF (Dallas , 9/ 11 - 14/ 95) PROC (Us DOEREP No Conf - 9509173 (De 96001220) 1995:593~610 .
    [112] Josefsen. K,Sveum. P ,Ramsted. S ,Markussen S ,Folkvord K. In Situ Production of Bio-Surfactants :An Alternative Method For Dispersing And Bioremedating Marine Oil Spills[A] . 18th Environ Can Arctic &Mar Oil spill Program Tech Seminar ( Edmonton Can 6/ 14 - 16/ 95) PROC V 2 ,1995:1243 ~1262.
    [113] H Atkinson. C. S. Patent, No.1651311, 1927.
    [114]程杰成,廖广志,等.大庆油田三元复合驱矿场试验综述[J].大庆石油地质与开发,2001, 20(2):46~49.
    [115] K C Taylor and L L Schramm. Colloids Surfaces:A, 1990, 47:245.
    [116]王德民.发展三次采油新技术,确保大庆油田持续稳定发展[J].大庆石油地质与开发,2001, 20(4):1~5.
    [117] D.B.Evans. Amproved crude oil recovery by alkaline fooding enhanced with microbial hydrocarbon oxidation .SPE39661,Tu1sa,Oklahoma,U.S.A.,19-22 April 1998.
    [118]廖广志,杨林,伍晓林,等.大庆油田复配碱化学驱配方研究[J].大庆石油地质与开发,1999, 18(4):21~24.
    [119]潘冰峰,徐国粱,李组义等.生物表面活性剂产生的筛选[J],微生物学报,1999,39(3):264~268.
    [120] A.Yateem,M.T Balba,Y.Alshayli,et al.Isolation and characterization of biosurfactant Producing bacteria from oil-contaminated soil[J]. soil and Sediment Contamination.2002,11(1):41~55.
    [121]张科,杜宗良,李瑞霞,吴大诚.滴体积法测液一液界面张力[J],四川大学学报(工程科学版),2004,36(2):58~61.
    [122]萨姆布鲁克.J .分子克隆实验指南[M] .北京:科学出版社,1998.
    [123] Feng-Chia Hsieh, Mei-Chen Li. Rapid Detection and Characterization of Surfactin-Producing Bacillus subtilis and Closely Related Species Based on PCR[J]. Current Microbiology.2004,49: 186~191.
    [124] Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganism[J]. J Mol Biol,1969,3:208~218.
    [125] Marmur J.Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature[J]. J Mol Biol,1962,5:109~118.
    [126] Roseiro, J.C. Medium development for xanthan production[J]. Process Biochem.1992, 27: 167~175.
    [127] de o Souza, M.C., Roberto, I.C. Solid-state fermentation for xylanase production by Thecmoascus aurantiacus using response surface methodology[J]. Appl Microbiol Biotechnol. 1999,52: 768~772.
    [128] Cockshott, A.R. and Sullivan,GR. Improving the fermentation medium for Echinocandin B production. Part I:sequential statistical experimental design[J]. Process Biochem. 2001,36: 647~660.
    [129] Savah S., Pablos, L. and Cochran, W.G, Optimization of a culture medium for streptomycin production using response surface methodology[J]. Bioresour Techno1.1993, 43:19~25.
    [130] Ma, A.Y.M. and Oraikal, B. Optimization of enrymatic hydrolysis of canola meal with response surface methodology[J]. Journal of Food Processing and Preservation.1986, 10: 99~113.
    [131] Kapat, A., Rakshit, S.K. and Panda, T. Parameter optimization of chitin hydrolysis by Trichoderma harzianum chitinase under assay condition[J]. Bioprocess Engineering.1996a. l4: 275~279.
    [132] Amezcuar Vega C, Poggi-Varaldo H M, Esparza-Garaia F, et al. Effect of culture conditions on fatty raids composition of a biosurfactant produced by Candida ingens and changes of surface tention of culture media. Bioresource Technology[J], 2007, 98( 1):237~240.
    [133]曹小红,李凡,蔡萍. Bacillus natto TK-1产脂肽发酵条件的优化.食品工业科技[J].2004,27(4):91-93.
    [134] R Sen, T Swam inathan. Application of response- surface methodology to evaluate the optimum enviromn ental conditions for the enhanced production of surfactin[J].J Appl Microhiol B iotechnol.2005,47:358~363.
    [135] Wu J Y, Yeh K L, Lu W B, et al. Rhamnolipid production with indigenous pseudomonas aeruginosa EM 1 isolate from oil-contaminated site. Bioresource Technology. 2008, 99( 5):1157~1164.
    [136] Kalil, S.J., Maugeri, F., Rodrigues, M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization[J]. Process Biochem. 2000, 35: 539~550.
    [137] Cooper D Q Macdorald C R. Enhanced production of surfactin from B. subtilis by continuous product removal and metal cation additions[J]. Appl Environ Microbiol, 1981,42(3):408~412.
    [138] Peypoux F, Bonmatin JM, Wallach J Recent trends in the biochemistry of surfactin[J]. Appl Microbiol Biotechnol 1999, 51:553~563.
    [139] Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332[J]. FEBS Lett 231: 107~110.
    [140] Sinderen D.V., Withoff S., Boels H., venema G..Isolation and Charact erization of comL,a transcription unit involved in competence development of Bacillus subtilis[J]. Mol. Gen. Genet. 1990, 224:396~404.
    [141] Cosmina P, Rodriguez F, Ferra F de, Grandi G, Perego M, Ven- ema G, Sinderen D van. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis[J]. Mol Microbiol 1993,8: 821~831.
    [142] Fuma S, Fujishima Y, Corbell N, D'Souza C, Nakano MM, Zuber P, Yamane K. Nucleotide sequence of 5¢portions of srfA that contains the region required for competence establishment in Bacillus subtilis[J]. Nucleic Acids Res 1993,21: 93~97.
    [143] Nakano MM, Magnusson R, Myers A, Curry J, Grossamn AD,Zuber P. SrfA is an operon required for surfactin pro-duction, competence development and effcient sporulation in Bacillus subtilis[J]. J Bacteriol 1991a ,173: 1770~1778.
    [144] Hamoen LW, Eshuis H, Venema G, van Sinderen D. A small gene, designated comS, located within the coding region of the fourth amino acid activation domain of srfA, is required for competence development in Bacillus subtilis[J]. Mol Microbiol 1994,15:55~63.
    [145] Nakano MM, Marahiel MA, Zuber P. Identification of agenetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis[J]. J Bacteriol ,170:5662~5668.
    [146] Nakano MM, Corbell N, Besson J, Zuber P . Isolation and characterization of sfp: A gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis[J]. Mol Gen Genet 199,2232:313~321.
    [147] Walsh CT, Gehring AM, Weinreb pH, Quadri LE, Flugel RS. Post- translational modification of polyketide and nonribosomal peptide synthetase[J]. Curr Opin Chem Biol1997,1:309~315.
    [148]刘静,王军,姚建铭,等.枯草芽抱杆菌J9抗菌物特性的研究及抗菌肽的分离纯化[J].微生物学报,2004, 44( 4) : 511~514.
    [149]曹佐武.有效分离1 kDa小肽的Tricine-SDS- PAGE方法[J]。中国生物工程杂志2004,24(1):74~76.
    [150]吕应年,杨世忠,牟伯中.脂肽的分离纯化与结构研究[J].微生物学通报(Acta Microbiologica Sinica) 2005,32(1):67~73.
    [151] Schneider A, Stachelhaus T, Marahiel MA (1998) Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping[J]. Mol Gen Genet 257:308~318.
    [152] Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production[J]. Antimicrob Agents Chemother 43:2183~2192
    [153]蔡在龙,陈达敏,冯伟华,等.一种改良的分离小分子蛋白质的电泳方法Tricine-SDS-PAGE[J].第二军医大学学报,1999,(9):696~697.
    [154]章银梅,李心治.血红蛋白基因在枯草芽孢杆菌中的表达及其作用的研究[J].遗传学报,2000,27 (2): 183~188.
    [155]于慧敏,沈忠耀.透明颤菌血红蛋白及其基因的研究进展.微生物学报,1999,39(5): 478~482.
    [156] Pringsheim, E,G.The Vitreoscillaceae:A family of colourless,gliding,filamentous organisms.J Gen Microbiol[J],1951,5:124~149.
    [157] Webster DA, Eichhorn GC, Marzilli LG. Elsevier Science Publ, 1987,245~265.
    [158] Dikshit KL, Dikshit RP, Webster DA. Nucleic Acids Res.1990, 18:4149~4155.
    [159] Wakabayashi S, Matsubara H, Webster DA. Nature 1986, 322:481~483.
    [160] Dikshit KL, Webster DA. Cloning, Characterization and Expression of the Bacterial [2] Globin Gene from Vitreoscilla in Escherichia coli[J].Gene,1988,(70):377~386.
    [161] Khosravi M, Webster DA, Stark BC. Plasmid,1990,24:190~94.
    [162]郭宏秋,杨胜利.透明颤菌血红蛋白在发酵工业中的应用概述[J].微生物学通报,1996,23(4):227~230.
    [163] Xue GP, Johnson SJ, Dalrymple PB. Journal of Microbiological Method [J].1999,34:183~191.
    [164] B.斯德尔乌赫著.钱嘉渊译.酶的测定方法[M].国轻工业出版社,1992.8.
    [165] Cooper DG, Macdorald CR. Appl Environ. Microbiol,1981, 42(3):408~412.
    [166]Joshi M, Dikshit KL, Dikshit KL.Applied and Environment Microbiology,1998,6:2220~2228.
    [167] Dikshit KL, Dikshit RP, Webster DA. Nucleic Acids Res, 1990, 18:4149~4155.
    [168] Siegmund Land. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science. 2002, 7:12~20.
    [169] Jitendra D Desai, Ibrahim M Banat. Microbial production of surfactants and their commercial potential[J].Microbiol Mole Biol Revi. 1992. 6l(1):47~64.
    [170]李祖义,李云江.微生物发酵制备鼠李糖最佳条件的研究.生物工程学报[J],1999, 15(1): 116~119.
    [171]薛燕芬,王修垣.石蜡酪杆菌B126产生的糖脂的理化性质[J].微生物学报1996, 36 (2): 121~125.
    [172] MacDonald CR, Cooper DQ Zajic LE. Surface-active lipids from Nocardia ertheropolis grown on hydrocarbons[J]. Appl Environ Microbiol.1981, 41:117~123.
    [173]朱友益,沈平平.三次采油复合驱用表面活性剂合成、性能及应用[M].北京:石油工业出版社,2002.
    [174]侯兆伟,石梅,伍晓林,等.微生物与三元复合驱结合提高原油采收率探索性研究[J].大庆地质与开发.2004,24(4):56~59.
    [175]李道山,廖广志,杨林.生物表面活性剂作为牺牲剂在三元复合驱中的应用研究[J].石油勘探与开发.2004,29(2):106~109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700