西安地铁地裂缝区间隧道运行期衬砌结构和围岩的力学响应数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西安地铁建造在黄土地裂区,如何保证地裂缝区间隧道运行期衬砌结构的整体稳定性是建设者们亟待解决的问题。以西安地铁隧道2号线工程为背景,结合地裂缝地层的地质条件和隧道施工方法,应用大型有限元软件FLAC,模拟施加开挖、地裂缝接触面、衬砌结构及上下盘地层相对竖向错动位移,对变形缝间距分别为5m、10m、15m的衬砌结构骑缝、跨缝方案,进行了三维有限元数值计算并进行比较分析;重点分析了变形缝间距10m衬砌结构骑缝时围岩与衬砌的力学响应变化特征;同时,考虑黄土流变特性,分析了地铁运行100年内流变对地裂缝区间隧道衬砌围岩力学性状的影响。
     地裂缝地层上下盘错动位移由下向上发展过程中,地裂缝接触面传递剪应力作用使得上部错动位移随埋深减小而减小,分析确定了计算模型地裂缝活动的位移边界条件。隧道开挖施工时,随着地裂缝接触面剪应力释放,地裂缝两侧围岩错动位移增长,从而削弱了衬砌结构运行期地裂缝活动引起围岩错动位移的发展。
     地裂缝错动位移作用下,衬砌结构骑缝穿越地裂缝时衬砌结构内力较小,上盘内衬砌结构腰部出现拉应力集中区域;上盘内拱顶、仰拱底围岩压力较下盘明显减小;下盘内衬砌结构变形缝间隙基本保持不变,上盘内衬砌结构变形缝间隙均增大,地裂缝处变形缝间隙增长最大;地裂缝两侧衬砌结构的相对沉降差较大,不利于变形缝防渗。衬砌结构跨越地裂缝时能有效地控制各变形缝沉降差的发展,有利变形缝防渗,但衬砌结构内力增大;地裂缝两侧变形缝间隙增长较大。
     变形缝间距10m衬砌结构骑缝穿越地裂缝时,随着地裂缝错动位移增大,围岩应力、衬砌结构内力及变形缝两端相对位移逐渐增大,变形缝处围岩和衬砌结构出现应力集中;下盘拱底围岩压力显著增大,上盘拱底围岩压力显著减小;衬砌结构最大拉主应力和最大压主应力分别为2.238MPa和5.510MPa;下盘内衬砌结构沉降明显,地裂缝两侧衬砌结构相对沉降差较大,但只有无衬砌结构时地裂缝错动位移的一半。建立了衬砌结构内力与地裂缝两侧沉降差的相关关系,给出了上盘仰拱底围岩加固处理的沉降差控制条件。
     初步分析了黄土的流变效应对隧道衬砌结构的影响。
Xi'an Subway is built in the ground crack site. How to guarantee the whole stability of the lining structure under the impact of the ground crack is an extremely urgent problem for builders to be solved. For the background of Xi'an metro tunnel engineering and the geological conditions and tunnel construction method, the mechnics response of linning structure and surrounding soil was analyzed by the three-dimensions finite element software FLAC simulating the original stress field, excavation of tunnel, different structure measures with different length of lining structure of 5m,10m and 15m, and ground cracks interface with the relative displacement between upper and lower soil mass. It is important to emphatically analyze the mechanical responses of lining structure with 10m length under ground crack action. At the same time, considering the loess rheological effect in 100 years, the stress and displacement of lining structure was also calculated under the ground crack on subway.
     In the process of relatively vertical displacement development of strata at two sides of ground crack, the relatively vertical displacement of trata reduce gradually from lower to upper stratum due to the shear stress tranfered by the interface of ground crack..The displacement boundary condition on the bottom of finite model was determined by the relationbetween vertical displacement of strata and depth. When the tunnel excavated by new Austria menthod, the relative displacement between strata at two sides of ground crack increase further with the shear stress on the interface decreasing. So the relatively vertical diaplacement among lining structure at deformation sew reduce due to the ground crack movmation.
     Comparing with two kinds of scheme of lining structure with deformation sew, the internal force of lining structure is smaller for the scheme of lining strucrue with deformation sew at ground carack, and the zone of pulling stress lies at middle on lateral wall. The top and bottom earth pressures of lining structure in upper tratum are smaller than the earth pressure of ling structure under the lower stratum. The clearance of sew in upper stratum increases, and the clearance at ground crack increase significantly. The relatively vertical displacement between lining structure at ground crack is large. For the another scheme of lining structure through the ground crack, The relative settlement of all sew change small, it is good to ensure prevent seepage. But the internal force of lining structure is large. The clearance of sew at two sides of ground crack change large.
     For the scheme of setting deformation sew at ground crack and the length 10m lining structure between deformation sew, it is important that the pressure of wall rock and stress of lining structure, the the relative settlement at twe sides of deformation sew are analyzed respectively. With the relatively vertical displacement of ground crack increasing, the pressure of wall rock, internal force of lining structure and settlement at deformation sews change. When the relatively vertical displacement of ground crack equals 50cm, the stress centralization of wall rock and lining structure at ground crack appears. At the inverted arch of tunnel, the stress of wall rock on the lower stratum significantly increased, but the stress of wall rock on upper stratum significantly reduced. Maximum pull main stress and pressive main stress equals respectively to 2.238MPa and 5.510MPa.The settlement difference of lining structure ta deformation sews in the upper stratum distributes unevenly, and the relative settlement between lining structures at ground crack develop remarkably. In course of the operation of Xi'an subway, if the relative displacement between twe sides of deformation sew at ground crack reachs 15.54cm, or the difference of wall rock stress at the inverted arch of tunnel between twe sides of deformation joint at ground crack reaches 0.17 MPa, the lining structure and wall rock should be reinforced.
     When the relative displacement between upper and lower soil is small, the rheological effects of loess can be able to weaken the ground cracks on the impact of subway tunnels. With the relative displacement increasing, the ground cracks on the impact of subway tunnels have played an increasingly important role.
引文
[1]张家明等.西安地裂缝研究[M].西安:西北大学出版社.1990,68~88.
    [2]《岩土工程基本术语标准(GB/T50279-98)》.
    [3]王景明等著.地裂缝及其灾害的理论与应用[M].西安:陕西省科技出版社,2000.
    [4]段永侯等著.中国地质灾害[M],中国建筑工业出版社,1993.
    [5]姜振泉,武强,隋旺华.临汾地裂缝的成因及发育环境研究[M].中国矿业大学出版社,1999.
    [6]Lippincott D K, Bredehoeft John D, Moyle Jr W R, et al. Recent movement on the carlock fault as suggested By water level fluctuation in a well in Fremont valley, California[J]. Journal of Geophysical Research 1985,90(B2):1911-1924.
    [7]Neal J T, Langer A M.Kerr P F, et al. Giant desiccation polygons of great basin plays[J]. Geological Society of American Bulletin 1968.79:69-90.
    [8]Halter T L.Ground fissures caused by ground-water with draw from consolidated sedimments[A]. In: International Symposium on Land Subsidence[C].3th Venice, Italy,1984, IANS Publication 151.1986.817-829.
    [9]武强,陈佩佩.地裂缝灾害研究现状与展望[J].中国地质灾害与防治学报,2003,vol.14.
    [10]Zhuping Sheng, Donald C.Helm, Jiang Li.Mechanisms of Earth Fissuring Caused by Groundwater Withdrawal[J]. Environmental and Engineering Geoscience.2003, Vol.9 No.4.
    [11]张义.黄土地区城市地裂缝灾害研究及其工程对策[D].西安:西安建筑科技大学,2006.6.
    [12]李永善等编著.西安地裂缝[M].北京:地震出版社,1986.
    [13]王景明,常丕兴.汾渭地裂缝与地震活动[J].地震学报,1989,11(1):57-67.
    [14]朱淑莲,张家明.试论西安地裂缝的属性[J]地震地质,1986,(03).
    [15]李永善,耿大玉,林继华,编著.西安地裂及渭河盆地活断层研究[M].北京:地震出版社,1992.
    [16]冯希杰.西安地裂缝活动成灾评估[J].西安地质学院学报,1990,(04).
    [17]李新生.对西安地裂缝成因机制的几点新看法[J].西安地质学院学报,1994,16(2).
    [18]陕西省标准.西安地裂缝场地勘查与工程设计规程(DBJ61-6-2006)[M].2005.12.
    [19]李新生.西安地面沉裂环境问题研究[D].西安:西安地质学院,1994.
    [20]耿大玉.西安地裂成因力学问题初探[J].内陆地震,1991,(04),19-30.
    [21]西安市城市规划管理局西安市勘查测绘院.西安城市工程地质图集[M].西安地图出版社.1998.
    [22]吴富春等.西安市地热水开采与地面、沉降地裂缝关系的分析[J].地震地质.2002,vol.24.No.2.
    [23]武强等.我国的城市地裂灾害问题与对策[J].中国地质灾害与防治学报.2002,vol.13.No.2
    [24]李新生,闫文生等.西安地裂缝活动趋势分析[J].工程地质学报.2001.9(1).
    [25]黄庆.地裂缝对西安市地铁洞室围岩稳定性影响研究[D].长春:吉林大学,2007.6.
    [26]程新星.地裂缝错动条件下地铁隧道三维有限元计算分析研究[D].西安:西安理工大学,2007.6.
    [27]黄强兵,彭建兵,范文,门玉明,张家明.西安地铁二号线沿线地裂缝未来位错量估算及工程分级[J].工程地质学报.2007.15(04).
    [28]李新生,王静,王万平,王朋朋,宋彦辉,李忠生,张福忠,彭建兵,李喜安.西安地铁二号线沿线地裂缝特征、危害及对策[J].工程地质学报.2007.15(04).
    [29]李新生,王静,王万平,李忠生,张福忠,彭建兵.西安地铁二号线沿线地裂缝成因分析[J].水文地质工程地质,2008年05期.
    [30]丁先立,季同月.西安地铁地裂缝处理[J].山西建筑.2007,Vol.33 No.13.
    [31]刘雪梅,陈奎,邵明成.西安市地裂缝对地铁洞室围岩稳定性影响的研究[J].城市勘测.2005,第3期.
    [32]索传郿等.西安地裂缝地面沉降与防治对策[J].第四纪研究.2005(01).
    [33]李忠生.西安地裂缝勘察中的地震勘探[J].工程勘察.2004年05期.67-70.
    [34]李忠生.构造地裂缝的成因和地质勘探[J].煤田地质与勘探,2004年04期.
    [35]李忠生.论西安次级地裂缝[J].自然灾害学报,2005年03期.
    [36]耿大玉,李忠生.中美两国的地裂缝灾害[J].地震学报,2000年04期.
    [37]许田柱.黄土地区城市地裂灾害研究[D].西安:长安大学,2006.6.
    [38]刘登新,许田柱.原位测试方法在地铁地裂缝勘察中的应用[J].山西建筑,2008年07期.
    [39]侯晓亮.西安地裂缝与黄土湿陷性的关系[D].西安:长安大学,2004.
    [40]冯慧霞.水环境下地裂缝对西安地铁的影响[D].西安:西安建筑科技大学.2006.
    [41]李希元,闰静雅,孙艳萍.盾构隧道施工工程事故的原因与对策[J].地下空间与工程学报,2005.12,6(1).
    [42]宗长龙.城市地铁隧道盾构施工对邻近建筑影响研究[D].广州:广州大学.2007.
    [43]马建.粘性土坡破坏机制及FLAC数值模拟[D].上海:同济大学.2006.
    [44]艾志雄,罗先启,刘波,牛恩宽.FLAC基本原理及其在边坡稳定性分析中的应用[J].灾害与防治工程.2006年第1期(总第60期).
    [45]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社.2006.
    [46]彭文斌.FLAC 3D实用教程[M].北京:机械工业出版社.2007.
    [47]西安市城市快速轨道交通二号线一期工程初步设计说明书.西安:铁道部第一勘察设计研究院.2007.
    [48]《岩土工程勘察规范》(GB50021—2001).北京:中国建筑工业出版社
    [49]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995.
    [50]关宝树.隧道工程设计要点集[M].北京:人民交通出版社.2003.
    [51]吴德兴,汪波,杜飞天.弁山隧道加固方案的三维数值分析研究[J].现代隧道技术.2008年4月.
    [52]杨育僧,杨骏.西安地铁区间隧道通过地裂缝带的方案探讨[J].都市快轨交通.第19卷第3期.2006年6月.
    [53]乔平定,李增均.黄土地区工程地质[M].水利电力出版社,1990.
    [54]谢定义,姚仰平,党发宁.高等土力学[M].北京:高等教育出版社.2008.
    [55]张朝鹏.黄土的非线性流变本构模型及其在逆作法工程中的应用[D].西安:西安理工大学.2000.
    [56]吴燕开,陈红伟,张志征.饱和黄土的性质与非饱和黄土流变模型[J].岩土力学.第25卷第7期,2004年7月.
    [57]王艳婷.黄土流变特性试验分析及本构模型的研究[D].西安:长安大学.2006.
    [58]林斌.考虑损伤效应的黄土流变模型研究[D].西安:长安大学.2005.
    [59]张峰林.考虑黄土流变特性的边坡稳定性研究[D].西安:西安建筑科技大学.2005.
    [60]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学.第19卷第2期2004年6月
    [61]刘祖殿.黄土力学与工程[M].西安:陕西科学技术出版社.1997.
    [62]王炳军.地铁隧道盾构法施工对邻近桩基变形与内力的影响[D].西安:西安理工大学.2006.2.
    [63]白海波.徐州矿区地裂缝成因机制的探讨[J].煤田地质与勘探.2002,第30卷,第2期
    [64]李树德,袁仁茂.大同地裂缝灾害形成机理[J].北京大学学报.2002,第38卷,第1期
    [65]韩景卫,屈康庆,张掌权.宝鸡千河流域大海子地裂缝成因及减灾措施[J].水土保持通报.2004.06,第24卷,第3期.
    [66]董东林,武强,姜振泉等.析临汾地裂缝之地质成因[J].中国矿业大学学报.2002.01,第31卷,第1期.
    [67]刘国昌.西安地裂缝[J].西安地质学院学报.1986,4:9~22.
    [68]谢广林.地裂缝[M].北京:地震出版社.1988.
    [69]杨建成.靖远矿区地裂缝与地质灾害[J].煤.2003年,第12卷,第6期.
    [70]来弘鹏,杨晓华,林永贵,黄土公路隧道病害分析与处治措施建议[J].公路.2006年6月,第6期.
    [71]闫娜.降温对岩石裂隙扩展影响机理的数值试验研究[D].西安:西安理工大学.2007.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700