基于多传感器的移动机器人行为控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人应用范围的不断拓宽,机器人的工作环境也越来越复杂,而且往往是未知的、动态的、非结构化的。在这种环境下实时地完成各种任务,对机器人的行为控制提出了新的挑战。通过全面了解和分析国内外移动机器人的控制体系结构和导航技术的研究现状,针对基于车载视觉导航技术中存在的从固定视角获得丰富环境视觉信息能力与获取和维护大范围动态环境模型能力差等问题,提出了基于分布式全局视觉和主动视觉(局部视觉)与超声、红外等多传感器相结合的移动机器人行为控制方法。以固定区域非结构化动态环境为基础,构建了一个移动机器人自主导航控制实验系统。以其为平台研究基于目标任务的移动机器人行为控制中的环境感知、行为决策、运动控制、分布式视觉智能体的任务分解与协调控制等方面的相关策略和实现方法。本文从事的主要研究工作内容如下:
     设计并实现了一套基于多传感器的移动机器人自主导航控制实验系统ANCES。该系统主要由移动机器人(RIRA-II ROBOT)、分布式视觉系统和无线通信系统组成。可应用于移动机器人行为控制、主动视觉(局部视觉)导航和分布式全局视觉导航等其它相关技术的研究。
     对移动机器人的体系结构进行了研究,提出一种基于模块化并行通信的多微处理器分布式控制体系结构并应用于RIRA-II ROBOT硬件系统设计。各模块采用独立微处理器完成控制及信息处理功能,实现了多模块并行运行;模块之间采用的并行通信方式提高了信息传输速度,同时简化了系统的软件设计。RIRA-II ROBOT软件采用慎思/反应混合式分层控制体系结构,自上而下分为人机交互层、任务规划层和行为控制层三个层次。
     研制了一种基于多微处理器的分布式超声探测系统。该探测系统由传感器工作模式控制模块和智能超声测距模块阵列组成。超声测距模块由独立的微处理器控制一个超声传感器,完成测距信息预处理,并可根据不同的控制策略实现分组并行工作,提高了探测系统的实时性;智能测距模块采用“阈值比较法”和“改进型递推平均滤波法”处理测距数据,有效地抑制了探测系统中超声波随机干扰信号及串扰信号,提高了探测系统的准确性。
     对基于多传感器(视觉、超声、红外)信息的移动机器人行为控制策略进行了研究,采用基于优先级行为决策控制策略,并利用视觉信息使机器人能够完成面向目标的任务。RIRA-II ROBOT包含了三个行为模块:“趋向目标行为”、“模糊控制行为”和“解死锁行为”,每一行为都具有特定的优先级。行为仲裁器根据并发行为的优先级确定竞争获胜行为,由获胜行为控制移动机器人动作。
     对分布式视觉系统的组成及工作原理进行了研究。利用图像拼接技术获取移动机器人工作环境的全局场景图像;利用四叉树对环境建模,根据路径最短约束条件完成路径搜索,运用三次样条曲线拟合法对搜索路径进行处理,生成从起点到终点的无碰撞全局路径;对全局路径进行任务分解,将分解后的路径分配到各相关视觉智能体,为视觉智能体对移动机器人进行控制提供任务依据。视觉智能体通过任务协调机制完成对移动机器人全局导航控制。
     对移动机器人全局导航控制中动态避障策略进行了研究。将出现在由分布式视觉系统规划完成的路径上的障碍定义为动态障碍,并将其分成行人、运动障碍物和静止障碍物三类。机器人利用超声探测信息、人体红外感应检测信息和主动视觉信息识别障碍类型;并分别采用行人警示避让策略、运动障碍物等待避让策略和静止障碍物组合避障策略,实现移动机器人全局导航中的动态避障控制。
     对基于分布式视觉的移动机器人路径跟踪控制进行了研究。采用一种基于定步长预瞄点的路径跟踪模糊控制方法。将机器人的运动控制简化为对其绕瞬心的转动控制,以移动机器人当前位置和期望位置的差值,当前位置移动机器人航向角和下一个控制周期期望路径上预瞄点的航向角差值作为模糊控制器的输入,以移动机器人的转动角速度作为模糊控制器的输出,实现了路径跟踪的模糊控制。
     ANCES中的基于并行通信的多微处理器分布式控制体系结构,分布式视觉系统的设计与实现方法具有实用性和可扩展性,对开展智能领域相关技术的研究具有理论意义和实用价值。
As the robot application range extends constantly, its working condition is getting more and more complex, which is always unknown, dynamic and unstructured. So, it is a new challenge for robot to fulfill a mission in real time under these environments. The idea of mobile robot behavior control based on multi-sensor is put forward according to a survey of the research on mobile robot control architectures and navigation technology, and a summary of the shortage in local vision-based navigation: it is difficult to acquire adequate visual information from proper view point; it is difficult to acquire and maintain a consistent model of a wide dynamic environment. A mobile robot navigation control experiment system under a fixed area in the unstructured and dynamic environment is built for the main purpose of this dissertation to study on environment perception, behavior decision, motion control, mission distribution and corresponding control among the distributed vision agents, and so on, in the objective-oriented mission mobile robot behavior control. The main contents of this dissertation are as follows:
     An autonomous navigation control experiment system (ANCES) is well developed which can applied to mobile robot behavior control, active vision-based (local vision-based) navigation, distributed vision-based navigation and other correlative research domains. The system consists of a mobile robot (RIRA-II ROBOT), a distributed vision system and a set of communication system.
     The study on the architecture of mobile robots is carried out. A modularized distributed control system architecture based on multi-processor with parallel communication is put forward and employed in the hardware system design for RIRA-II ROBOT. Each module is controlled by an individual processor and the data processing is tackled by the same one processor. All modules run and communicate with each other in a parallel method, which improves the speed of data transmission and simplifies the software programming. Deliberated/reactive hierarchical hybrid architecture is used in the software of RIRA-II ROBOT, which consists of a human-machine interface layer, a mission planning layer and a behavior control layer.
     A distributed ultrasonic detecting system based on multi-processor is developed. The detecting system adopts upper-lower two layers distributed control architecture. It is composed of an upper working method control module and a lower intelligent ultrasonic ranging module array. Each intelligent ultrasonic ranging sensor is controlled by an individual micro-processor which achieves ranging data processing, and the intelligent ultrasonic ranging modules can be grouped to work in parallel mode, which enhances the real-time performance. The threshold comparison method and an advanced data shift average filtering method are employed in the ranging data processing, which can restrain the ultrasonic crosstalk and random interference and improve the accuracy of the detecting system.
     This dissertation investigates deeply behavior control strategy for mobile robot based on multi-sensor (vision, sonar and infrared) information. Priority-based behavior decision is adopted to control the robot. The RIRA-II ROBOT can also accomplish the objective-oriented mission utilizing visual perception. RIRA-II ROBOT has 3 behavior modules: goal approaching behavior, fuzzy control behavior and escape behavior, each module has a given priority. The behavior arbiter decides which behavior module can control the robot by their given priority when the behaviors are valid.
     The study on configuration and work principle of distributed vision system(DVS) is carried out. The global image of robot’s working environment is obtained by mosaicing the images acquired by the vision agents; The search for global path is achieved according as the given restriction after quadtree environment mode building; A global path from the start point to end point is obtained by utilizing cubic spline curve to math the searched path line; The DVS decompounds the planned path and distributes them to correlative vision agents. The vision agents can control a mobile robot to fulfill the given mission by corresponding mechanism.
     The study on mobile robot dynamic obstacles avoiding strategy in global navigation is carried out. Something that appeared on the path planned by DVS is regarded as dynamic obstacles which are classified into 3 kinds: passengers, motorial obstacles and static obstacles. The robot can distinguish the above dynamic obstacles by using the information of ultrasonic detecting system, human detecting module and active vision system. The robot can avoid the dynamic obstacles appeared in global navigation using different obstacle avoiding strategy.
     The research on DVS-based mobile robot path tracking is carried out. A fuzzy path tracking control method based on fixed-step preview point is adopted. In this method, controlling the motion of mobile robot is simplified to control rotation about its instant center. The fuzzy controller has two input parameters: one is the distance error between the current robot’s position and the desired current position on the path; the other is angle error between the bearing of robot’s current position and the bearing of robot’s predictive position on the desired path in next control cycle. The output of the fuzzy controller is the rotation angular velocity of the robot.
     The modularized distributed control system architecture based on multi-processor with parallel communication and the design and manufacture methods of DVS in ANCES show the characteristics of practicability and expansibility in intelligent robot research.
引文
1 欧青立, 何克忠. 室外智能移动机器人的发展及其关键技术研究. 机器人. 2000, 22(6): 519-526
    2 蔡自兴, 贺汉根, 陈虹. 未知环境中移动机器人导航控制研究的若干问题. 控制与决策. 2002, 17(4): 385-390
    3 R. C. Arkin. Behavior-Based Robotics. Cambridge, MA: MIT Press, 1998: 124-125
    4 M. Mataric. Behavior-Based Control: Main Properties and Implications. Proceedings of Workshop on Intelligent Control Systems, IEEE International Conference on Robotics and Automation. Nice, France, May, 1992: 46-54
    5 T. Dean, M. Wellman. Planning and Control, Morgan Kaufmann Publishers, San Mateo, CA, 1991: 462
    6 王天然, 朱枫. 一个开放式移动机器人体系结构. 机器人. 1995, 17(4): 193-199
    7 李佳宁, 易建强, 赵冬斌, 等. 移动机器人体系结构研究进展. 机器人. 2003, 25(7): 756-760
    8 A. Meystel. Knowledge Based Nested Hierarchical Control. Advances in Automation and Robotics. Vol.2, Ed. G. Saridis. JAI Press, Greenwich, CT, 1990: 63-152
    9 J. Albus, F. G. Proctor. A Reference Model Architecture for Intelligent Hybrid Control System. Proceedings of the International Federation of Automatic Control. San Francisco, CA, June 30 - July 5, 1996: 1-7
    10 J. S. Albus, R. Lumia, J. Fiala, et al. Overview of NASREM: The NASA/NBS Standard Reference Model for Telerobot Control System Architecture. Proceedings of the 20th International Symposium on Industrial Robots. Tokyo, Japan, October 4-6, 1989: 1-10
    11 R. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Transaction on Robotics and Automation. 1986, 2(1): 14-23
    12 J. Connell. A Colony Architecture for an Artificial Creature. MIT AI Laboratory, 1989: 18-33
    13 L. Laelbeling. Goals as Parallel Program Specifications. Proceedings of the 7th National Conference on Artificial Intelligence. Minnesota, 1988: 560-567
    14 R. Simmons. An Architecture for Coordinating Planning, Sensing and Action. Proceedings of Workshop on Innovative Approaches to Planning, Scheduling and Control. San Diego, 1990: 346-358
    15 M. Kasper, G. Fricke, K. Steuernagel, et al. A Behavior-Based Mobile Robot Architecture for Learning from Demonstration. Robotics and Autonomous System, 2001(34): 153-164
    16 J. Rosenblatt, S. Willams and H. Durrant-Whyte. Behavior-Based for Autonomous Underwater Exploration. Information Sciences. 2002, 145(1-2): 69-87
    17 R. C. Arkin, T. Balch. AuRA: Principles and Practice in Review, 1997: 1-14 http://www.cc.gatech.edu/ai/robot-lab/publications.html
    18 R. R. Murphy. Biological and Cognitive Foundations of Intelligent Sensor Fusion. IEEE Transactions on System, Man and Cybernetics. 1996, 26(1): 42-51
    19 R. R. Murphy. Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile Robots. IEEE Transactions on Robotics and Automation. 1998, 24(2): 1-38
    20 M. Slack. Navigation Templates: Mediating Qualitative Guidance and Quantitative Control in Mobile Robots. IEEE Transactions on System, Man and Cybernetics. 1993, 23(2): 452-466
    21 E. Gat. Reliable Goal-Directed Reactive Control for Real-World Autonomous Mobile Robots. Ph.D. Dissertation. Dept. of Computer Science, Virginia Polytechnic Institute and State University, 1991: 115-127
    22 R. J. Firby, R. E. Kahn, P. N. Prokopwiz, et al. An Architecture for Vision and Action. Proceedings of 1995 International Joint Conference on Artificial Intelligence. Morgan Kaufmann Pub., San Mateo, CA, 1995, 1: 72-79
    23 K. Konolige, K. Myers and E. Ruspini. The Saphira Architecture: A Design for Autonomy. Journal of Experimental and Theoretical Artificial Intelligence(JETAI). 1997, 9: 215-235
    24 R. Simmons, J. Fernandez, R. Goodwin, et al. Xavier: An AutonomousMobile Robot on the Web. Robotics and Automation Society Magazine. 1999, 6: 1-7
    25 R. Simmons, R. Goodwin, K. Haigh, et al. A Layered Architecture for Office Delivery Robots. First International Conference on Autonomous Agents, 1997, 2: 235-242
    26 张友军, 朱淼良, 吴春明, 等. 自主式移动机器人系统的结构. 机器人. 1997, 19(5): 378-383
    27 M. Piaggio, A. Sgorbissa, and R. Zaccaria. A Distributed Architecture for Autonomous Robots. Proceedings of 2nd IEEE International Conference on Engineering of Complex Computer Systems. Montreal, Que, 1996: 21-25
    28 J. L. Lázaro, J. C. García, A. Gardel, et al. Distributed Architecture for Control and Path Planning of Autonomous Vehicles. Microprocessors and Microsystems. 2001, 25(3): 159-166
    29 P. Doherty, P. Haslum, F. Heintz, et al. A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation. The 7th International Symposium on Distributed Robotic Autonomous Systems (DARS2004). Toulouse, France, 2004: 1-10
    30 蔡京平, 贾云得. 一种用于星球探测机器人的计算系统体系结构. 小型微型计算机系统. 2006, 27(6): 1102-1107
    31 蔡自兴, 周翔, 李枚毅, 等. 基于功能/行为集成的自主式移动机器人进化控制体系结构. 机器人. 2000, 22(3): 170-175
    32 蔡自兴, 郭军华. 基于多 Agent 的移动机器人导航进化控制的体系结构. 控制理论与应用. 2001, 18(Supp l): 111-114
    33 C. F. B. Rooney, R. P. S. Odonoghue, B. R. Duffy, et al. The Social Robot Architecture: Towards Sociality in a Real World Domain. Proceedings of Towards Intelligent Mobile Robots 99. Bristol, UK: University of Manchester, 1999: 77-84
    34 M. A. Salichs, L. Moreno. Navigation of Mobile Robots: Open Questions. Robotica. 2000, 18(3): 227-234
    35 J. J. Leonard, H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot Navigation. Kluwer Academic Publishers, 1992: 1-2
    36 王荣本, 储江伟, 冯炎, 等. 一种视觉导航的实用型 AGV 设计. 机械工程学报. 2002, 38(11): 135-138
    37 R. Araújo, A. T. D. Almeida. Learning Sensor-Based Navigation of a Real Mobile Robot in Unknown Worlds. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics. 1999, 29(2): 164-178
    38 T. Luca, N. Daniele. Hough Localization for Mobile Robots in Polygonal Environments. Robotics and Autonomous Systems. 2002, 40(l): 43-58
    39 A. D. L. Escalera, L. Moreno, M. A. Salichs, et al. Continuous Mobile Robot Localization by Using Structured Light and a Geometric Map. International Journal of Systems Science. 1996, 27(8): 771-782
    40 J. Borenstein, H. R. Everett, L. Feng, et al. Mobile Robot Positioning: Sensors and Techniques. Journal of Robotic Systems. 1997, 14(4): 231-249
    41 K. S. Chong, L. Kleemam. Sonar Based Map Building for a Mobile Robot. Proceedings of IEEE International Conference on Robotics and Automation. 1997, 2: 1700-1705
    42 S. Kim, Y. Kim. Robot Localization Using Ultrasonic Sensors. Proceedings of IEEE/SRJ International Conference on Intelligent Robots and Systems. Sendai, Japan, 2004, 4: 3762-3766
    43 S. Thrun, M. Beetz, M. Bennewitz, et al. Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva. International Journal of Robotics Research. 2000, 19(11): 972-999
    44 S. Thrun. Finding Landmarks for Mobile Robot Navigation. Proceedings of IEEE Inter. Conf. Robotics and Automation. 1988, 2: 958-963
    45 O. Wijk, H. I. Christensen. Localization and Navigation of a Mobile Robot Using Natural Point Landmarks Extracted from Sonar Data. Robotics and Automations Systems. 2000, 31(1-2): 31-42
    46 贺鑫元, 马书根, 李斌, 等. 基于 GPS 的蛇形机器人导航方法. 高技术通讯. 2004, (9): 67-70
    47 蔡皓昌, 余成融, 潘志浩. 消防机器人 GPS 导航系统的精度提供方案. 微计算机信息. 2004, 20(10): 128-129
    48 丁毅, 邱白晶, 周宁. 割草机器人 GPS/DR 组合导航系统的研究. 农机化研究. 2006, 4: 68-71
    49 K. Demirli, í. B. Turksen. Sonar Based Mobile Robot Localization by Using Fuzzy Triangulation. Robotics and Autonomous Systems. 2000, 33(2-3): 109-123
    50 R. Carelli, E. O. Freire. Corridor Navigation and Wall-Following Stable Control for Sonar-Based Mobile Robots. Robotics and Autonomous Systems. 2003, 45(3-4): 235-247
    51 E. Delgado, A. Barreiro. Sonar-Based Robot Navigation Using Nonlinear Robust Observers. Automatica. 2003, 39(7): 1195-1203
    52 王栋耀, 马旭东, 戴先中. 基于声纳的移动机器人沿墙导航控制. 机器人. 2004, 26(4): 347-350
    53 F. Tong, S. K. Tso and T. Z. Xu. A High Precision Ultrasonic Docking System Used for Automatic Guided Vehicle. Sensors and Actuators A: Physical. 2005, 118(2): 183-189
    54 Y. J. Beliveau, J. E. Fithian and M. P. Deisenroth. Autonomous Vehicle Navigation with Real-time 3D Laser Based Positioning for Construction. Automation in Construction. 1996, 5(4): 261-272
    55 F. R. Dalgleish, S. Tetlow and R. L. Allwood. Experiments in Laser-Assisted Visual Sensing for AUV Navigation. Control Engineering Practice. 2004, 12(12): 1561-1573
    56 V. Subramanian, T. F. Burks and A. A. Arroyo. Development of Machine Vision and Laser Radar Based Autonomous Vehicle Guidance Systems for Citrus Grove Navigation. Computers and Electronics in Agriculture. 2006, 53(2): 130-143
    57 A. Diosi, L. Kleeman. Advanced Sonar and Laser Ranger Finder for Simultaneous Localization and Mapping. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendar, Japan, September 28 – October 2, 2004: 1854-1859
    58 L. Marques, D. Almeida and A. Thom. Application of Odor Sensors in Mobile Robotics. Robotics and Automations Systems, Lecture Notes in Control and Information Sciences. 1998, 236: 264-275
    59 R. A. Russell. Survey of Robotic Applications for Odor-Sensing Technology. The International Journal of Robotics Research. 2001, 20(2): 144-162
    60 R. X. Li, K. CH. Di, H. Larry, et al. Rover Localization and Landing Site Mapping Technology for the 2003 Mars Exploration Rover Mission. Photogrammetric Engineering and Remote Sensing. 2004, 70(1): 77-90
    61 R. F. Vassallo, H. J. Schneebeli and J. Santos-Victor. Visual Servoing andAppearance for Navigation. Robotics and Autonomous Systems. 2000, 31(1-2): 87-97
    62 J. J. Guerrero, C. Sagüés. Uncalibrated Vision Based on Lines for Robot Navigation. Mechatronics. 2001, 11(6): 759-777
    63 E. Menegatti, T. Maedab and H. Ishiguro. Image-Based Memory for Robot Navigation Using Properties of Omnidirectional Images. Robotics and Autonomous Systems. 2004, 47(4): 251-267
    64 M. Fiala, A. Basu. Robot Navigation Using Panoramic Tracking. Pattern Recognition. 2004, 37(11): 2195-2215
    65 K. Kidono, J. Miura and Y. Shirai. Autonomous Visual Navigation of a Mobile Robot Using a Human-Guided Experience. Robotics and Autonomous Systems. 2002, 40(2-3): 121-130
    66 吴东晖. 智能移动机器人的视觉导航技术. 浙江大学博士论文. 2001: 56-58
    67 M.Y. Kim, H. Cho. An Active Trinocular Vision System of Sensing Indoor Navigation Environment for Mobile Robots. Sensors and Actuators A: Physical. 2006, 125(2): 192-209
    68 H. Ishiguro. Distributed Vision System: A Perceptual Information Infrastructure for Robot Navigation. Proc. of TJCAI. 1997: 36-41
    69 T. Sogo, H. Ishiguro and T. Ishida. Mobile Robot Navigation by Distributed Vision Agents. Approaches to Intelligent Agents, Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin. 1999: 96-110
    70 T. Matsuyama, N. Ukita. Real-time Multi-Target Tracking by a Cooperative Distributed Vision System. Proc. of IEEE. 2002, 90(7): 1136-1150
    71 N. Ukita, T. Matsuyama. Real-time Cooperative Multi-Target Tracking by Communicating Active Vision Agents. Computer Vision and Image Understanding. 2005, 97(2): 137-179
    72 E. Menegatti, E. Pagello. Cooperative Distributed Vision for Mobile Robots. Artificial Intelligence, Vision and Pattern Recognition 7th Conference of the Italian Association for Artificial Intelligence, 2001: 1-8
    73 E. Menegatti, A. Scarpa, D. Massarin, et al. Omnidirectional Distributed Vision System for a Team of Heterogeneous Robots. Proceedings of IEEE Workshop on Omnidirectional Vision (Omnivis’03) in Conjunction withComputer Vision and Pattern Recognition (CVPR2003). Madiso Wisconsin, USA. 2003, 7: 1-8
    74 E. Megegatti, E. Pagello, T. Minatio, et al. Distributed Vision System for Robot Localization in Indoor Environment. Proceedings of 2nd European Conference on Mobile Robot ECMR’05, Ancona, Ital. 2005: 194-199
    75 E. Menegatti, G. Cicirelli, C. Simionato, et al. Explicit Knowledge Distribution in an Omnidirectional Distributed Vision System. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and System. Sendai, Japan. 2004: 2743-2749
    76 周庆瑞, 原愧, 邹伟, 等. 一种拟全方位多尺度分布式视觉系统. 系统工程与电子技术. 2005, 27(8): 1443-1447
    77 段勇, 徐心和. 自主机器人视觉系统结构及关键技术. 东北大学学报(自然科学版). 2006, 27(1): 9-12
    78 卢韶芳. 自主式移动机器人分布视觉组合导航基础研究. 吉林大学博士论文. 2002: 20-22
    79 C. Alexopoulos, P. M. Griffin. Path Planning for a Mobile Robot. IEEE Transaction on System Man and Cybernetics. 1992, 22(2): 318-322
    80 H. Weber. A Motion Planning and Execution System for Mobile Robots Driven by Stepping Motors. Robotics and Autonomous Systems. 2000, 33(4): 207-221
    81 艾海舟, 张钹. 基于拓扑的路径规划问题的图形算法. 机器人. 1990, 12(5): 20-24
    82 R. Volpe. J. Balaram, T. Ohm, et al. Rocky 7: A Next Generation Mars Rover Prototype. Journal of Advanced Robotics. 1997, 11(4): 341-358
    83 I. Karl, R. Adam, D. Steven, et al. Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain. Autonomous Robots. 2003, 14(1): 5-16
    84 T. Estier, Y. Crausaz, B. Merminod, et al. An Innovative Space Rover with Extended Climbing Abilities. Proceedings of Space and Robotics. Albuquerque, New Mexico, 2000: 201-206
    85 范永, 谭民. 机器人控制器的现状和展望. 机器人. 1999, 21(1): 75-80
    86 R. Bajcsy. Active Perception. Proceedings of the IEEE. 1988, 76(8): 966-1005
    87 P. A. Beardsley, I. D. Reid, A. Zisserman, et al. Active Visual Navigation Using Non-Metric Structure. Proceedings of 5th International Conference on Computer Vision. Boston, IEEE Computer Society Press, 1995: 5845
    88 M. Tistarelli, G. Sandini. Dynamic Aspects in Active Vision. CVGIP: Image Understanding. 1992, 56(1): 108-129
    89 A. J. Davison. Mobile Robot Navigation Using Active Vision. Ph.D. Dissertation. Department of Engineering Science, University of Oxford, 1998: 12-15
    90 N. J. Nilsson. Shakey the Robot. Technical Note 323. SRI International, Menlo Park, CA, 1984: 3-50
    91 R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. The International Journal of Robotics Research. 1989, 8(4): 92 -112
    92 杨淮清. 移动机器人人机互助行走监控方法研究及其应用. 机器人. 1997, 19(2): 116-121
    93 L. Kleeman. Real Time Mobile Robot Sonar with Interference Rejection. Sensor Review. 1999, l19(3): 214-221
    94 J. Borenstein, D. Wehe, L. Q. Feng, et al. Mobile Robot Navigation in Narrow Aisles with Ultrasonic Sensors. ANS 6th Topical Meeting on Robotics and Remotes Systems. Monterey, California, 5-10, February, 1995: 1-9
    95 S. Fazli, L. Kleeman. A Low Sample Real Time Advanced Sonar Ring. Proceedings of the Australasian Conference on Robotics and Automation. Canberra, Australia, 2004:1-9
    96 罗本成, 原魁, 刘晋东, 等. 机器人多路超声波环境探测器的研制. 中国科学院研究生院学报. 2002, 19(2): 172-176
    97 张飞, 陈卫东. 具有声纳环的移动机器人及其自主行为研究. 测控技术. 2003, 22(6): 46-50
    98 黄庆成, 洪炳镕, J. Khurshid, 等. 全自主足球机器人的超声波定位避障系统. 哈尔滨工业大学学报. 2003, 35(9): 1077-1079
    99 栗桂凤, 周东辉, 王光昕. 基于超声波传感器的机器人环境探测系统. 传感器技术. 2005, 24(4): 59-61
    100 李保国, 王巍, 张阳天. 利用可编程超声阵列准确定位目标点位置. 北京航空航天大学学报. 2005, 31(7): 819-822
    101 J. Borenstein, Y. Koren. Error Eliminating Rapid Ultrasonic Firing for Mobile Robot Obstacle Avoidance. IEEE Transactions on Robotics and Automation. 1995, 11(1): 132-138
    102 V. Ma?ek, M. Kajitani, A. Ming, et al. Rapid Obstacle Sensing Using Mobile Robot. Mechatronics. 2000, (10): 191-213
    103 J. M. Carmena, J. C. T. Hallam. The Use of Doppler in Sonar-Based Mobile Robot Navigation: Inspirations from Biology. Information Sciences. 2004, 161(1-2): 71-94
    104 L. Kleeman. Advance Sonar with Velocity Compensation. Internat. Journal Robotics Research. 2004, 23(2): 111-126
    105 沈进棋, 诸静, 阮锋. 移动机器人多路超声波采集系统的研究与实现. 电子技术. 2003, (11): 6-9
    106 刘年庆, 周光明, 陈宗海. 一种基于多超声波信息精确建立环境模型的新方法. 机器人. 2005, 27(3): 261-266
    107 纪良文. 机器人测距数据的采集与处理. 农业机械学报. 2001, 32(4):118-121
    108 R. A. Brooks. Intelligent Without Representation. Artificial Intelligent. 1991, 47: 139-159
    109 A. Seraji, A. Howard. Behavior-Based Robot Navigation on Challenging Terrain: A Fussy Logic Approach. IEEE Transaction on Robotics and Automation. 2002, 18(3): 308-321
    110 S. Lenser, J. Bruce and M. Veloso. A Modular Hierarchical Behavior-Based Architecture. The 5th Robocup Competitions and Conference, Berlin: Springer Verlag, 2002: 423-428
    111 A. Stoytchev, R. C. Arkin. Combining Deliberation, Reactivity, and Motivation in the Context of Behavior-Based Robot Architecture. Proceedings of 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation. 2001: 290-295
    112 R. T. Collins, A. J. Lipton, et al. System for Video Surveillance and Monitoring. CMU-RI-TR-00-12, 2000: 11-13
    113 S. Alessandro. The Uses of Fuzzy Logic in Autonomous Robot Navigation: A Reissue. Technical Report TR/IRIDIA/97-6. University Libre de Bruxelles, Belgium, 1997. Also, Springer-Verlag, Soft Computing. 1997, 1(4): 180-197
    114 P. Paolo. Multiple Objective Action Selection & Behavior Fusion Using Voting. Ph.D. Dissertation. Institute of Electronic Systems, Aalborg University, Denmark. 1998, 4: 38-42
    115 http://www.mobotsofot.com
    116 C. Motamed, O. Wallart. A Temporal Fusion Strategy for Cross-Camera Data Association. Pattern Recognition Letters. 2007, 28(2): 233-245
    117 姜大志, 郁倩, 王冰洋, 等. 计算机视觉成像的非线性畸变研究与综述. 计算机工程. 2001, 27(12): 108-110
    118 B. Zitová, J. Fusser. Image Registration Methods: A Survey. Image Vision Computing. 2003, 21(11): 977-1000
    119 李宏超, 黄亚楼, 阙嘉岚, 等. 基于四叉树环境模型的轮式移动机器人平滑路径生成方法. 机器人. 2001, 23(5): 426-430
    120 马兆青, 袁曾任. 基于栅格方法的移动机器人实时导航和避障. 机器人. 1996, 18(6): 344-348
    121 王金敏, 崔奇, 初楠. 运用三次样条拟合机器人运动路径. 机械设计. 2005, 22(7): 44-46
    122 吴卫国, 陈辉堂, 王月娟. 移动机器人的全局轨迹跟踪控制. 自动化学报. 2001, 27(3): 326-331
    123 K. D. Do, J. Pan. Global Output-Feedback Path Tracking of Unicycle Mobile Robots. Robotics and Computer-Integrated Manufacturing. 2006, 22(2): 167-179
    124 L. Caracciolo, A. D. Luca and S. Iannitti. Trajectory Tracking Control of a Four-Wheel Differentially Driven Mobile robot. Proceedings of IEEE International Conference on Robotics and Automation. 1999, 4: 2632-2638
    125 李岩, 杨向东, 陈恳. 履带式移动机器人的动力学模型及其反馈控制. 清华大学学报(自然科学版). 2006, 46(8): 1377-1380
    126 崔荣鑫, 徐德民, 沈猛. 基于行为的机器人编队控制研究. 计算机仿真. 2006, 23(2): 137-139
    127 晁红敏, 胡跃明. 动态滑模控制及其在移动机器人输出控制中的应用. 控制与决策. 2001, 16(5): 565-568
    128 闫茂德, 贺昱曜, 吴青云. 移动机器人全局轨迹跟踪的自适应滑模控制. 微电子学与计算机. 2006, 23(4): 97-100
    129 吴忻生, 任华瑛. 非完整移动机器人轨迹跟踪的最优模糊控制. 华南理工大学(自然科学版). 2004, 32(3): 44-49
    130 E. Q. Zhang, Z. X. Wang. Recent Researches and Developments on Fuzzy Control System. Control Theory and Applications. 2001,18(1): 7-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700