基于计算机立体视觉的双目立体成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双目立体成像(Binocular Stereo Imaging)是指根据双目立体视觉(Binocular Stereo Vision)的基本原理,获取、产生和传输一个场景,并将这个场景展现出具有立体感的景象。基于计算机立体视觉(Computer Stereo Vision)的双目立体成像不仅是实现虚拟植物可视化立体展现的关键技术,而且在虚拟现实、机器视觉、多媒体教学、数字娱乐、产品外观设计、雕刻与建筑等领域都有着广泛的应用。本文研究的目的,就是通过对基于计算机立体视觉的双目立体成像进行研究,为它的应用提供理论和技术支持。
     论文首先对基于计算机立体视觉的双目立体成像相关技术及理论进行了研究,然后在此基础上给出了一个基于监视器的双目立体成像模型,详细讨论了这个模型所具有的成像性质。最后针对该模型结合实验深入研究了三种立体图像对(stereo pair)获取的方法:基于Hou方法的立体图像对的生成方法、已有三维模型的情况下立体图像对的生成方法和基于单目视频图像序列的立体图像对的生成方法。
     论文的主要研究成果包括以下几点:
     针对遮挡问题,本文提出,可以利用空间关系的定性表示与推理来表示物体之间的位置关系以及让计算机理解这种位置关系。在空间关系的定性表示方面,我们给出了一个SR表示模型,并提出了距离关系的定性表示模型和方向关系的定性表示模型。在空间关系的定性推理方面,我们定义了基于SR表示模型的组合运算,给出了相应组合运算表;此外,还构造了定性三角推理所需要的QTR组合运算表、距离定性减法表和角度定性减法表。与定量的方法相比,采用定性的方法大大降低了时间复杂度和空间复杂度。
     在成像模型方面,本文给出了一个基于监视器的双目立体成像模型,详细研究了这个模型所具有的成像性质。我们给出了立体图像对坐标的计算公式、讨论视差及其性质、像点立体成像规律以及直线段立体成像规律,并设计实验验证了相关的结论。理论的分析和实验表明,当观察者保持双眼平行地远离或靠近监视器屏幕,他看到的各点深度都相同的图像虽然也会移动,但不会产生变形;但是,各点深度不同的图像则会产生形变,并且遵循一定的成像规律;所成的虚像在负视差的情况下是可测量的。
     针对Hou方法,本文给出了评价转换后的立体效果的定量指标(交叉熵和均方根误差),以及产生符合要求的随机数算法ProduceKmn,构造了平移像素法、均匀分布、三角分布、分段均匀分布、拟合灰度值分布、正态分布等六种分布,通过实验详细讨论了各种分布对立体效果的影响。最后,研究了图像子块个数对立体效果的影响。实验和分析表明,使用Hou方法时,平滑与立体感是互相矛盾的;随机变量服从正态分布时立体效果较好;相对于其他方法,Hou方法简单且效果明显,但适用范围有限。
     论文介绍了已有三维模型的情况下立体图像对的生成的方法,详细讨论了影响立体效果的几个重要因素,包括目标摄像机与三维模型的位置关系、基线长度、成像位置、成像变形等等,给出了相应的成像规律。
     此外,论文还研究了视差对深度感知的影响、对象的提取、时序与帧间隔等关键问题。在此基础上,提出了一种单目视频图像序列立体化的方法,并通过实验对该方法进行了检验。实验显示,当摄像机或场景中的物体做水平或者近似水平方向的运动时,由该方法生成的立体视频具有较好的立体效果。
Binocular stereo imaging means capturing, producing and transmitting a scene, and then displaying it with stereoscopic perception based on the basic principles of binocular stereo vision. Binocular stereo imaging based on computer stereo vision is not only the key technique to realize the stereoscopic display of the virtual plant, but also widely used in many fields such as virtual reality, machine vision, multimedia education, digital entertainment, appearance design of industrial products, sculpture and architecture etc. The purpose of this dissertation is to probe into binocular stereo imaging based on computer stereo vision, which will provide the theories and techniques support for its applications.
     In this dissertation, the theories and techniques related to binocular stereo imaging based on computer stereo vision are firstly studied. Based on this foundational work, a binocular stereo imaging model based on monitor is proposed and the properties of this model are thoroughly discussed. Finally, with the help of the model and subsequent experiments, three kinds of methods for acquiring stereo pair for the model combined with experiments are elaborated: stereo pair creation based on Hou method, stereo pair creation when 3D models are given, and stereo pair creation based on monocular video frequency image sequence.
     The main research results of this dissertation are summarized as follows.
     With respect to occlusion, the dissertation argued that, the theory of qualitative representation and reasoning of spatial relations can be used for the representation of the positional relations among objects in computer and the comprehension of this kind of relations by computer. As for qualitative representation of spatial relations, a SR representation model is presented and further provided is the qualitative representation models of distance and directional relations. As for qualitative reasoning of spatial relations, the composition operation is defined based on SR representation model and the corresponding composition operation table is also presented. Furthermore, we create qualitative subtraction table of distance, qualitative subtraction table of angle and the QTR composition operation table which is needed for qualitative trigonometry reasoning. Compared with the quantitative method, the qualitative method can considerably reduce the time complexity and space complexity.
     As for imaging model, the dissertation introduces a binocular stereo imaging model based on monitor. Then it focuses on the imaging properties of the model. The formula for computing the coordinates of stereo pairs is given; the parallax and its properties are discussed; we also present the rules of stereo imaging of point and line segment, and experiments have been carried out to prove the conclusions. Theoretical analysis and the experimental results show that, the observer can see the image still move when his eyes move away from or towards the screen when the depth of each point of the image is the same, and the image won’t be distorted; on the other hand, if the depth of each point of the image is different, the image will be distorted by following certain imaging rules. The stereo images are measurable in the case of negative disparity.
     The dissertation presents two quantitative criterions, cross-entropy and root-mean-square error, to evaluate the stereo effect for Hou method. Besides, an algorithm named ProduceKmn, which is used to produce random numbers that accord with the requirement, is also presented. Moreover, we constructed six kinds of distributions for Hou method, such as Moving Pixels without Stretch, Uniform Distribution, Triangular distribution, Piecewise Uniform Distribution, Fitting Gray Value Distribution, and Normal Distribution. Meanwhile, on the basis of experiments, the impacts that the above-mentioned six distributions may have upon stereo effect have been discussed. In addition, the interrelation between the stereo effect and the number of sub-blocks has been also studied. The experimental results and the analysis show that, a) smoothness is incompatible with stereoscopic perception; b) Generally, the stereo effect is preferable when random variables have normal distribution; c) In contrast with other methods, Hou method is simple, and the stereoscopic perception is distinct, but its application scope is limited.
     The dissertation introduces a stereo pair creation method when 3D models are given. Meanwhile detailed discussion is focused on the important factors that exert great influence on stereo effect, such as positional relations between the target cameras and the 3D Model, length of the baseline, position of the virtual image and imaging distortion, etc. Moreover, corresponding rules of imaging are also presented.
     Last but not least, the dissertation also touches on the influence that parallax has upon depth perception, object extraction, time sequence & frame interval, etc. Accordingly, we presented a method to convert a monocular video frequency image sequence to a stereo one. Experiments have been carried out to test it. The results reveal that, better stereo effect will be perceived from the stereo video converted by this method when the camera or the objects in the scene make horizontal movements or approximately horizontal movements.
引文
[1] Tim Thwaites. Down on the virtual farm. 1995.
    [2] Xilin He, Jun Wang. Introduction to virtual reality and its applications in agriculture. Chinese Agricultural Mechanization 2004;(1):22-4. 何喜玲,王俊.虚拟现实技术及其在农业中的应用.中国农机化,2004,(1):22-24.
    [3] Bedrich Benes. Virtual climbing plants competing for space. Geneva, Switzerland 2002.
    [4] Renzhao Jin, Zhaoyi Wang. Introduction to Virtual Reality and Applications in Agriculture. Journal of Tianjin Agricultural College 2001;8(2):27-32. 靳润昭,王兆毅.虚拟现实及其在农业上的应用.天津农学院学报,2001,8(2):27-32.
    [5] Xiaoqing Li, Xinyuan Huang. Realization of tree creating software based on 3DS MAX. Agriculture Network Information 2005;(7):14-7. 李晓青,黄心渊.基于 3DS MAX 脚本的树木生成软件的实现.农业网络信息,2005,(7):14-17.
    [6] Yan Guo, Baoguo Li. New advances in virtual plant research. Chinese Science Bulletin 2001;46(4):273-80. 郭焱,李保国.虚拟植物的研究进展.科学通报,2001,46(4):273-280.
    [7] Yunfeng Li. The research on extraction from leaf image and visual realization of virtual plant. Chongqing: Chongqing University; 2005. 李云峰.叶图像提取研究及虚拟植物可视化实现[博士学位论文].重庆:重庆大学,2005.
    [8] Yunfeng Li, Qingsheng Zhu, Yukun Cao, Xiping He. A fast visual modeling plant based on images. Application Research of Computers 2005;22(11):253-4. 李云峰,朱庆生,曹渝昆,何希平.一种基于图像的快速虚拟植物可视化重建.计算机应用研究,2005,22(11):253-254,257.
    [9] Cyril S, Francois S, Frederic B, Philippe de. A physiological plant growth simulation engine based on accurate radiant energy transfer. Technical report. 2001. Report No.: 4116.
    [10] Weilong Ding. Research of the agricultural expert system based on artificial plant growth model. Journal of Zhejang University of Technology 2005;33(5):525-33. 丁维龙.基于虚拟植物生长模型的农业专家系统研究.浙江工业大学学报,2005,33(5):525-533.
    [11] Yujin Zhang. Image understanding and computer vision. Beijing: Tsinghua University Press; 2000.章毓晋.图像理解与计算机视觉.北京:清华大学出版社,2000.
    [12] Hui Sun. Rebuild 3D image of the contact surface of electrical apparatus using binocular 3D vision technique Hebei University of Technology; 2002. 孙慧.用双目立体视觉技术重建电器触头立体图像[硕士学位论文].河北:河北工业大学,2002.
    [13] Xiaobo Yang. Computer three-dimensional vision technique and its application in textile industry. Shanghai Textile Science & Technology 2001;29(2):61-2. 杨小波.计算机立体视觉技术及其在纺织业中的应用.上海纺织科技,2001,29(2):61-62.
    [14] Qi Li, Huajun Feng, Zhihai Xu, Yishi Han, Hongqiang Huang. Review of computer stereo vision technique. Optical Technique 1999;(5):71-3. 李奇,冯华君,徐之海,韩一石,黄红强.计算机立体视觉技术综述.光学技术,1999,(5):71-73.
    [15] Chunping Hou, Sile Yu. A novel method of picture conversion from 2D to 3D. Acta Electronica Sinica 2002;30(12):1861-4.
    [16] Liping Zhou. Study on stereoscopic technique for virtual reality. Computer Applications 1999;19(4):24-6. 周丽萍.虚拟现实中立体视觉的研究.计算机应用,1999,19(4): 24-26.
    [17] Qingsheng Zhu, Ran Liu, Xiaoyan Xu. Properties of a binocular stereo vision model.: World Scientific Press; 2005 p. 831-4.
    [18] Mingyue Ding, Lixia Yang. 3D stereoscopic imaging and its application. Acta Electronica Sinica 1995;23(10):124-8.
    [19] Somani R, Tennant M, Rudnisky C, Weis E, Ting A, Eppler J, et al. Comparison of stereoscopic digital imaging and slide film photography in the identification of macular degeneration. Can J Ophthalmol 2005 Jun;40(3):293-302.
    [20] Sun H, Roberts DW, Farid H, Wu Z, Hartov A, Paulsen KD. Cortical surface tracking using a stereoscopic operating microscope. Neurosurgery 2005 Jan;56(1 Suppl):86-97.
    [21] Jiang H, Chen WR, Wang G, Liu H. Localization error analysis for stereo X-ray image guidance with probability method. Med Eng Phys 2001 Oct;23(8):573-81.
    [22] Ross MD. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks. Acta Astronaut 2001 Aug;49(3-10):441-5.
    [23] Erlandsen SL, Greet BA, White J, Leith A, Marko M. High-resolution CryoFESEM of individual cell adhesion molecules (CAMs) in the glycocalyx of human platelets: detection of P-selectin (CD62P), GPI-IX complex (CD42A/CD42B alpha,B beta), and integrin GPIIbIIIa(CD41/CD61) by immunogold labeling and stereo imaging. J Histochem Cytochem 2001 Jul;49(7):809-19.
    [24] Fitzke FW. Imaging the optic nerve and ganglion cell layer. Eye 2000 Jun;14 ( Pt 3B):450-3.
    [25] Richards RG, Wieland M, Textor M. Advantages of stereo imaging of metallic surfaces with low voltage backscattered electrons in a field emission scanning electron microscope. J Microsc 2000 Aug;199 (Pt 2):115-23.
    [26] Galbraith W. Novel method for stereo imaging in light microscopy at high magnifications. Neuroimage 1995 Mar;2(1):85-7.
    [27] Goh P, Tekant Y, Krishnan SM. Future developments in high-technology abdominal surgery: ultrasound, stereo imaging, robotics. Baillieres Clin Gastroenterol 1993 Dec;7(4):961-87.
    [28] Mitchell TN, Robertson J, Nagy AG, Lomax A. Three-dimensional endoscopic imaging for minimal access surgery. J R Coll Surg Edinb 1993 Oct;38(5):285-92.
    [29] Woodhouse JB, Eades JA. Comment on "Stereo-imaging made easy". J Electron Microsc Tech 1990 Jan;14(1):85-6.
    [30] Zurek AK. Stereo-imaging made easy. J Electron Microsc Tech 1989 Feb;11(2):174-7.
    [31] Turner JN. Introduction to stereo imaging. Methods Cell Biol 1981;22:1-11.
    [32] William R.Sherman, AlanB.Craig. Understanding Virtual Reality Interface, Application, and Design. 1 edn. Beijing: Publishing House of Electronics Industry; 2004.
    [33] William R.Sherman, Alan B.Craig. Understanding virtual reality: interface, application, and design. 1 edn. San Francisco, CA: Morgan Kaufmann Publishers; 2004.
    [34] David A.Forsyth, Jean Ponce. Computer vision: a modern approach. 1 edn. Pearson Education, Inc.; 2004.
    [35] Chang Li, Zhengxing Zuo, Xinyuan Huang. Stereoscopy animation actualizing under practical virtual reality. Computer Simulation 2002;19(6):84-6, 83.
    [36] Yang Liu, Xiaolin Zheng, Bing Li. An implementation of endoscope stereo vision. Beijing Biomedical Engineering 2003;22(3):187-90. 刘洋,郑小林,李冰.内窥镜立体视觉的实现.北京生物医学工程,2003,22(3):187-190.
    [37] Ran Liu, Qingsheng Zhu, Xiaoyan Xu, Jun Yang. Stereo effect of binocular stereo vision based on monitor.: Watam Press; 2006 p. 1456-60.
    [38] NVIDIA Corporation. NVIDIA 3D Stereo User's Guide. 2 ed. 2001.
    [39] Bo Yu, Liding Wang. Development of a binocular field sequential stereo microscopic imaging system. Optics and Precision Engineering 1997;5(4):49-52.
    [40] Toni Emerson, Jerry Prothero, Suzanne Weghorst. Medicine and Virtual Reality: A Guide to theLiterature (MedVR). 2006.
    [41] Frank L.Kooi, Alexander Toet. Visual comfort of binocular and 3D displays. Displays 2004;25:99-108.
    [42] Yulian Gu, Xuanping Cai. The implementing techniques of stereoscopic computer graphics. Reference Periodical of National Defense Technology 1998;19(1):63-70. 顾郁莲,蔡宣平.计算机立体视图绘制技术.国防科技参考,1998,19(1):63-70.
    [43] Xiaoge Yang. Microcomputer time-separating stereo animation implementation and stereo error analysis. 1996. p. 31-9.
    [44] Eaglesham BS, Lion LW, Ghiorse WC. An aufwuchs chamber slide for high-resolution confocal laser scanning microscopy and stereo imaging of microbial communities in natural biofilms. Microb Ecol 2004 Apr;47(3):266-70.
    [45] Erlandsen SL, Greet BA, White J, Leith A, Marko M. High-resolution CryoFESEM of individual cell adhesion molecules (CAMs) in the glycocalyx of human platelets: detection of P-selectin (CD62P), GPI-IX complex (CD42A/CD42B alpha,B beta), and integrin GPIIbIIIa (CD41/CD61) by immunogold labeling and stereo imaging. J Histochem Cytochem 2001 Jul;49(7):809-19.
    [46] Habbware. XIdMary Stereo Camera. http://www habware at/duck6 htm 2003
    [47] Xinyuan Huang, Shihong Chen. Implementation of stereodisplay animation generating module. Computer Engineering 2002;28(4):178-9, 257.
    [48] Debevec P E, Taylor C J, Malik J. Modeling and Rendering Architecture from Photographs:A Hybrid Geometry and Image-based Approach. 1996.
    [49] Yu Y, Malik J. Recovering Photometric Properties of Architecture Scenes from Photograph. 1996.
    [50] Shum H Y, Szeliski R. Stereo Reconstruction from Multiperspective Panaramas. 1999.
    [51] Chris B, Michael B, Leonard Mc. Non-Metric Image-Based Rendering for Video Stabilization. 2001.
    [52] Chen S, Williams L. View Interpolation for Image Synthesis. 1993.
    [53] Chen S E. Quicktime VR: An Image-based Ap-proach to Virtual Environment Navigation. 1995.
    [54] Jianjun Wang, Qing Li. Image-based rendering technology. Fire Control & Command Control 2003;28(5):328-31.
    [55] Ruiyuan Yang, Jianxiong Qiu. A survey of image-based modeling and rendering. Journal of Computer-Aided Design & Computer Graphics 2002;14(2):185-8.
    [56] Bjaalie JG, Leergaard TB, Pettersen C. Micro3D: computer program for three-dimensional reconstruction visualization, and analysis of neuronal populations and barin regions. Int J Neurosci 2006 Apr;116(4):515-40.
    [57] Daul C, Graebling P, Tiedeu A, Wolf D. 3-D reconstruction of microcalcification clusters using stereo imaging: algorithm and mammographic unit calibration. IEEE Trans Biomed Eng 2005 Dec;52(12):2058-73.
    [58] Xin Zheng, Wencheng Wang, Enhua Wu. Image-based rendering through layered texture mapping. Journal of Software 2001;12(11):1647-53.
    [59] Seitz S M, Dyer C R. View Morphing. NY, USA 1996 p. 21-42.
    [60] Yingkai Guo. Image generation and object recognition on geometry and illumination changing Shanghai Jiao Tong University; 2001.
    [61] Zengbo Qian, Zhenge Qiu, Yongqiang Zhang. Reviewing the difficult problems facing the researchers of stereoscopic vision. Journal of Institute of Surveying and Mapping 2001;18(4):267-72.
    [62] Zhu YM. A Java program for stereo retinal image visualization. Comput Methods Programs Biomed 2007 Mar;85(3):214-9.
    [63] Huaizhou Yang, Yunbo Hua, Lusheng Xu, Zhiqian Yie. A new methodology research about realizing a stereoscopic system with RDS and liquid-crystal swithes. CHINESE J MED PHYS 1997;14(1):49-54.
    [64] Yuanqing Wang. Auto-stereoscopic Display Based on LCD. Chinese Journal of Liquid Crystals and Displays 2003;18(2):116-20.
    [65] Guoying Zhao, Shihong Chen. Introduction of Autostereoscopic Display Technology. J NORTH CHINA UNIV OF TECH 2002;14(1):51-6.
    [66] Fayun Liang, Shanxi Deng, Yongyue Yang. Optical Structure and Designing of Nakedness-eye Stereoscopic LCD Panel. Chinese Journal of Liquid Crystals and Displays 2005;20(6):544-8.
    [67] Nick Holliman. Stereo3D Displays. http://www dur ac uk/n s holliman/Presentations htm 2006Available from: URL: http://www.dur.ac.uk/n.s.holliman/Presentations.htm
    [68] Peimin Hu, Huibiao Chen. The double colour method for the stereoscopic display of three-dimensional curves. Computer Engineering and Applications 1999;30-2.
    [69] Bing Li. Development of The Dual-eye Imaging Techniques for The Stereo Display of Virtual Endoscopes Chongqing University; 2002.
    [70] Song CG, Park SK. Performance evaluation of stereo endoscopic imaging system incorporating TFT-LCD. J Med Eng Technol 2005 Sep;29(5):244-50.
    [71] Kebin Li, Shiqi Li. The Newest Research of 3D Display. Computer Engineering 2003;29(12):3-4.
    [72] Jungong Han, Zhaoyang LU. Methods for stereo video image compression. Journal of China Institute of Communications 2003;24(6):113-23.
    [73] Yongdong Zhang, Guiling Li. Stereo Video Coding Based on Disparity Compensated Prediction. Signal Processing 2001;17(4):335-9, 370.
    [74] Dimitrios Tzovaras, Nikos Grammalidis, Michael G.Strintzis. Joint three-dimensional motion/disparity segmentation for object-based stereo image. Optical Engineering Bellingham 1996;35(1):137-44.
    [75] John E W Mayhew, John P Frisby. The MIT Press Cambridge; 1991.
    [76] John E W Mayhew, John P Frisby. The MIT Press Cambridge; 1991.
    [77] Victor S Grinberg, Gregg Podnar, Siegel M W. Geometry of binocular imaging. 1994 p. 56-65.
    [78] Alex Paul Pentland. A new sense for depth of field. IEEE Transactions on Pattern Analysis and Machine Intelligence 1987;9(4):523-31.
    [79] Skerjanc Robert. Combined motion and depth estimation based on multiocular image sequences for 3D TV. 1994 p. 35-44.
    [80] Chunping Hou, Azimov Nurlan, Sile Yu. Mathematical Models of Stereoscopic Imagery System and Methods of Controlling Stereo Parallax. Journal of Tianjin University 2005;38(5):455-60. 侯春萍,阿陆南,俞斯乐.立体成像系统数学模型和视差控制方法.天津大学学报,2005,38(5):455-460.
    [81] Chunping Hou. A Research on Vision Stereoscopy of Planar Image School of Electronic Information Engineering, Tianjin University; 1998.
    [82] Marr D, Poggio T. Cooperative Computation of Stereo Disparity. Science 1976.
    [83] Marr D, Poggio T. A Computational Theory of Human Stereo Vision. Proc Royal Soc London B 1979;204.
    [84] Fua P. A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image Features. Machine Vision and Applications 1993;(6):35-49.
    [85] Kanade T, Okutomi M. A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment. Proc IEEE Trans Pattern Analysis and Machine Intelligence 1994;61(9).
    [86] Ohta Y, Kanade T. Stereo by Intra- and Inter-Scanline Search using Dynamic Programming. IEEE Trans Pattern Analysis and Machine Intelligence 1985;(7).
    [87] Okutomi M, Kanade T. A Multiple Baseline Stereo. IEEE Trans Pattern Analysis and Machine Intelligence 1993;15(4):353-63.
    [88] Scharstein D, Szeliski R. Stereo Matching with Nonlinear Diffusion. Int'l J Computer Vision 1998;28(2).
    [89] Belhumeur P N, Mumford D A. A Bayesian Treatment of the Stereo Correspondence Problem using Half-Occluded Regions. Proc IEEE Conf Computer Vision and Pattern Recognition 1992.
    [90] Intille S, Bobick A. Disparity-Space Images and Large Occlusion Stereo. Proc European Conf Computer Vision 1994.
    [91] Geiger D, Ladendorf B, Yuille A. Occlusions and Binocular Stereo. Int'l J Computer Vision 1995;14.
    [92] Beveridge J R, Riseman E. Optimal geometric model matching under full 3D perspective. CVGIP: Image Understanding 1995;61(3).
    [93] Fisher A, Kolbe T, Lang F. Integration of 2D and 3D reasoning for building reconstruction.Bonn, Germany: 1997.
    [94] Collins Robert T. The Ascender System: Automated Site Modeling fromMultiple Aerial Image. Computer Vision And Image Understanding 1998;72.
    [95] Jun Chen, Renliang Zhao. Spatial relations in GIS:a survey on its key issues and research progres. ACTA GEODAETICA et CARTOGRAPHICA SINICA 1999;28(2):95-102.
    [96] Yabin Liu, Dayou Liu. A Review on Spatial Reasoning and Geographic Information System. Journal of Software 2000;11(12):1598-606.
    [97] Anthony G.Cohn, Brandon Bennett, John Gooday, Nicholas Mark Gotts. Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. Geoinformatica 1997;(1):1-44.
    [98] Wei Guo, Jun Chen. the Formal Description of Topological Spatial Relationship in 3d Based on Point Set Topology. ACTA GEODAETICA et CARTOGRAPHICA SINICA 1997;26(2):122-7.
    [99] Han Cao, Jun Chen. Qualitative Description and Reasoning of Spatial Distance and Direction. Journal of Xi'an Petroleum Institute(Natural Science Edition) 2001;16(1):68-72.
    [100] F.Wolter, M.Zakharyaschev. Spatial reasoning in RCC-8 with Boolean region terms. Berlin: IOS Press; 2000 p. 244-8.
    [101] Longin Latecki, Ralf Rohrig. Orientation and qualitative angle for spatial reasoning. 1993 p. 1544-9.
    [102] J.Liu. A Method of Spatial Reasoning based on Qualitative Trigonometry. Artificial Intelligence 1998;98:137-68.
    [103] Ping Guo, Li Fan, Lian Ye. Obtain topological Relations from GIS spatial Database. Soft Computing as Transdisciplinary Science and Technology 2005;1109-18.
    [104] Frank A.U. Qualitative spatial reasoning with cardinal directions. Journal of Visual Languages and Computing 1992;(3):343-71.
    [105] Nerode A. Some letcures on intuitionistic logic. Logic and Computer Science 1990; 1429:12-59.
    [106] H.Wang, S.McCloskey. A relation - algebraic approach to the region connection calculus. Theor Comput Sci 2001;255(1-2):63-83.
    [107] S.Skiadopoulos, M.Koubarakis. Consistency Checking for Qualitative Spatial Reasoning with Cardinal Directions. London, UK: Springer-Verlag; 2002 p. 341-55.
    [108] Ghosh SK. Quantitative methods applied to stereo imaging. Application to single specimens. Methods Cell Biol 1981;22:193-8.
    [109] Lehmann S, Bradley AP, Clarkson IV, Williams J, Kootsookos PJ. Correspondence-free determination of the affine fundamental matrix. IEEE Trans Pattern Anal Mach Intell 2007 Jan;29(1):82-97.
    [110] Jiang H, Chen WR, Wang G, Liu H. Localization error analysis for stereo X-ray image guidance with probability method. Med Eng Phys 2001 Oct;23(8):573-81.
    [111] Jiang H, Liu H, Wang G, Chen W, Fajardo LL. A localization algorithm and error analysis for stereo x-ray image guidance. Med Phys 2000 May;27(5):885-93.
    [112] Kearfott KJ, Juang RJ, Marzke MW. Implementation of digital stereo imaging for analysis of metaphyses and joints in skeletal collections. Med Biol Eng Comput 1993 Mar;31(2):149-56.
    [113] Ghosh SK. Quantitative methods applied to stereo imaging. Hardware and methods. Methods Cell Biol 1981;22:177-92.
    [114] Ghosh SK. Quantitative methods applied to stereo imaging. Theory. Methods Cell Biol 1981;22:155-76.
    [115] Jiang H, Chen WR, Wang G, Liu H. Localization error analysis for stereo X-ray image guidance with probability method. Med Eng Phys 2001 Oct;23(8):573-81.
    [116] Huanming Wu, Yi Fang. A Measuring Technology Based on Image Processing and Computer Stereo Vision. Journal of Engineering Graphics 2002;(4):60-7. 吴焕明,方漪.基于计算机立体视觉的图像测量技术.工程图学学报,2002,(4):60-67.
    [117] Ruihe Zhang. Study on acquiring coordinates of objects in 3D world based on Computer Vision Nanjing Agricultural University; 2000. 张瑞合.基于计算机视觉的空间目标定位系统研究[硕士学位论文].南京:南京农业大学,2000.
    [118] Lehmann S, Bradley AP, Clarkson IV, Williams J, Kootsookos PJ. Correspondence-freedetermination of the affine fundamental matrix. IEEE Trans Pattern Anal Mach Intell 2007 Jan;29(1):82-97.
    [119] Bo Wang, Shensheng Zhang, Yue Huang. A Stereo Display Platform Based on VRML. Computer Engineering and Applications 2003;(12):136-227. 王波,张申生,黄越.基于 VRML 文件的立体显示平台及相关技术研究.计算机工程与应用,2003,(12):136-227.
    [120] Indri A, Anna C, Anna C. Reconstructing Antique Stereo Pairs. http://www cs washington edu/homes/cjayant/finalproject/0-paper html 2006Available from: URL:http://www.cs. Washin gton.edu/homes/cjayant/finalproject/0-paper.html
    [121] Xinyuan Huang. Virtual Reality: Technology of and Applications. 1 edn. Beijing: Science Press; 1999.
    [122] Xinyuan Huang, Liangrui Tang. The generating method of parallax animation. Journal of Computer-Aided Design & Computer Graphics 1999;11(5):409-11.
    [123] Xinyuan Huang, Chang Li. Image generation and image composition in parallax dynamic simulation. Computer Simulation 1999;16(3):26-8.
    [124] Shejiao Xu. The coordinate transformation between the two coordinate systems of 3D graphic systems. Journal of Xidian University 1996 Sep;23(3):429-32.
    [125] Shejiao Xu. Coordinate Transformation Based on Direction Cosine Parametersbetween the Object Coordinate System and the Word Coordinate System. Journal of Engineering Graphics 2004;(1):123-7.
    [126] Ping An, Zhaoyang Zhang. A fast algorithm for disparity correspondence based on geometric properties of stereo camera system. Journal of Shanghai University (Natural Science) 2000;6(5):399-402.
    [127] Yicheng Jin, Yong Yin, Yi Wei, Zhenning Dong, Changwen Chen. Study on developing 3D view in marine simulatro by using OpenGL. Journal of Dalian Maritime University 1999;25(2):22-7.
    [128] Chios PS, Tan AC. Implementation of a dedicated optical fibre network for real time stereo imaging. Stud Health Technol Inform 2000;77:1151-5.
    [129] Cassandra T.Swain. Integration of Monocular Cues to Create Depth Effect. IEEE 1997;2745-8.
    [130] K Yamada, K Suehiro, H Nakamura. Pseudo 3D Image Generation with Simple Depth Models. 2005 p. 277-8.
    [131] S.Curti, D.Sirtori, F.Vella. 3D Effect Generation from Monocular View. 2002 p. 550-3.
    [132] Yue Feng, Jianmin Jiang, Ipson SS. A Shape-Match Based Algorithm for Pseudo-3DConversion of 2D Videos. 2005 p. 808-11.
    [133] T.Okino. New Television with 2D/3D Image Conversion Technologies. SPIE Photonic West 1995;2653:96-103.
    [134] Jianping Fan. Automatic Image Segmentation by Integrating Colot-Edge Extraction and Seeded Region Growing. IEEE Transactions on Image Processing 2001;10(10):1454-66.
    [135] Erik C.Sobel, Thomas S.Collett. Does Vertical Disparity Scale the Perception of Stereoscopic Depth? Proceeding: Biological Sciences 1991;244(1310):87-90.
    [136] Hartley R. In Defense of the Eight-point Algorithm. IEEE Transaction on and Manchine Intelligence 1997;19(6):580-93.
    [137] Seitz SM, DyerC R. Physically-valid View Synthesis by Image Interpolation. Cambridge MA, USA 1995 p. 18-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700