用牙髓干细胞构建牙齿样结构的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙髓干细胞是牙齿组织工程中重要的种子细胞,自2000年发现以来已经取得了许多突破性的认识和发现,但在牙髓干细胞的进一步研究和实际应用中,还有许多问题有待认识和解决,例如今后怎样用它与其它一种或多种细胞构建复杂牙齿结构的问题,怎样在体外培养中提供合适的微环境来诱导牙髓干细胞向特定方向分化的问题,尤其是向成牙方向分化的问题。本研究首次尝试将人牙髓干细胞与异种牙胚上皮细胞构建异种嵌合体牙齿结构、检测异种牙胚细胞条件培养基对其有何诱导作用以及将牙髓干细胞与牙周膜干细胞进行复合来尝试构建工程化牙根样结构,以期为牙髓干细胞的进一步研究和应用奠定实验基础,为牙髓干细胞在今后牙齿组织工程的合理使用提供一些有益的提示和参考,并探索出用牙齿来源干细胞进行牙齿再生的一些新途径和新方法。所取得的主要结果如下:
     一、用牙髓干细胞制备异种嵌合体牙齿
     用酶消化法培养了牙髓干细胞,结果显示所培养的牙髓干细胞形态典型,表达间充质干细胞标志物STRO-1、CD106、CD29,有克隆形成能力,经诱导后有成骨和成脂肪细胞能力,表明我们培养的细胞是来源于间充质的干细胞。另外分离获得猪第三磨牙牙胚并培养牙胚细胞,用差速消化法纯化获得牙胚上皮细胞,免疫细胞化学鉴定显示其对CK14、AMBN阳性表达,而对Vimentin阴性表达。然后将人牙髓干细胞和猪的牙胚上皮细胞以不同方式复合植入到裸鼠皮下,6周后取材。结果发现大部分移植物没有形成任何有序的结构形态,但有一部分移植物中形成了含有类似牙本质、牙髓和牙釉质的牙齿样结构的组织,但是形成这种结构的概率较低。免疫组化结果证明我们形成的釉质样结构来源于猪牙胚上皮,而牙本质样结构源于人的牙髓干细胞。
     本部分结果表明人的牙髓干细胞和猪的牙源性上皮细胞在体内,可以模拟类似牙胚发育时期的上皮-间充质相互作用方式,相互诱导,并有可能成功形成异种嵌合体结构。因而我们推断可见只要进一步优化条件,用人的牙齿间充质干细胞与异种的牙源性上皮细胞进行异种嵌合在牙齿再生中是有一定可行性的,并将可能成为解决牙釉质再生的一条新途径。
     二、猪牙胚条件培养基诱导人牙髓干细胞牙向分化的实验研究
     以前的实验已经证实人牙胚条件培养基可以为人牙髓干细胞提供成牙微环境,诱导牙髓干细胞向成牙方向分化。但由于实际中应用人牙胚条件培养基并不可行,所以本实验中我们验证了用异种牙胚条件培养基来诱导人牙髓干细胞可行性。我们培养发育期猪的第三磨牙牙胚,并收集获得牙胚条件培养基,同时培养人的牙胚并获得人牙胚条件培养基。将猪和人的牙胚条件培养基分别诱导人的牙髓干细胞,并从体内、体外比较了猪牙胚条件培养基和人牙胚条件培养基对人牙髓干细胞的诱导作用。结果表明:人牙髓干细胞经过一定时间的猪牙胚条件培养基诱导后,能在细胞形态上和细胞周期上发生改变,能具有更高的克隆形成能力和多向分化能力,能维持更好的干细胞特性,具有更强的增殖能力,表达更高水平的碱性磷酸酶,免疫组化和RT-PCR提示诱导后的牙髓干细胞能在蛋白水平和基因水平表达出一些牙向分化的标志,如DSP、DSPP、DMP1、BSP、OCN、OPN等。此外,经猪牙胚条件培养基诱导过的人牙髓干细胞植入裸鼠体内能获得形状更为规则的牙本质-牙髓复合体样结构,而且形成这种规则结构的概率从20%提高到超过70%。这些结果与人牙胚条件培养基诱导的牙髓干细胞表现类似,但常规培养的人牙髓干细胞没有表现出特别变化。
     所得结果说明猪牙胚条件培养基拥有与人牙胚条件培养基一样的能力,诱导人牙髓干细胞向成牙方向分化。这提示我们异种牙胚条件培养基有可能作为一种牙齿再生的有用工具,我们在今后的牙组织工程领域,应用异种的牙胚条件培养基将有助于构建理想的工程化牙齿。
     三、用人牙髓干细胞和牙周膜干细胞尝试构建工程化牙根的实验研究
     牙髓干细胞和牙周膜干细胞是牙齿再生领域最有潜力的两个成体干细胞,那把这两种干细胞一起复合,能否在体内获得牙根样结构呢?本实验进行了这方面的初步尝试。我们体外培养了人牙周膜干细胞并对其性质进行了鉴定,结果显示牙周膜干细胞对Vimentin染色阳性,CK阴性,显示其为间充质来源, STRO-1呈阳性染色,说明培养的牙周膜干细胞具有间充质来源干细胞的表型特点。成脂、成骨诱导实验验证了牙周膜干细胞的多向分化能力与可塑性。本研究中将人的牙髓干细胞进行标记后,再与牙周膜干细胞以不同的方式复合并植入裸鼠体内,希望获得有一定结构的工程化牙根。结果显示:以牙根状CBB为支架的复合物取材后肉眼观呈外形良好的小牙根状,HE染色表明所有移植物中都有矿化发生,且能在一部分移植物中发现有典型Sharpey纤维样结构。在以CBB颗粒为支架的移植物中,肉眼观是形成了扁平状的结构,HE染色结果显示也能也有矿化现象发生,但矿化基质较牙根状CBB为支架的标本少。而单纯细胞团移植物除小部分出现了一定的矿化现象,大部分不能产生任何的有形结构。在三个实验组中都没有发现有典型牙髓牙本质复合体样结构形成。
     本实验结果提示我们:在构建组织工程化牙根中,支架材料最好是有预成形状的,以引导相关干细胞沿着支架生长并形成大体结构良好的牙齿样组织;另外多种细胞构建一定结构时,不同的种子细胞最好是分别复合到支架上,而不应该简单混合到一起;细胞团移植不适合于用多种细胞复合构建有良好大体观的牙齿样结构。
Dental pulp stem cells (DPSCs) is an important candidate stem cells in tooth tissue engineering, and great progress have been made in identifying DPSC. Nevertheless, many problems have to be solved if we carry out further researches and application, for example,how to construct complex tooh like structure with DPSCs and other cells,and how to create appropriate microenvironment to guide DPSC to differentiate into specific direction, especially into odontogenic cell linage when DPSCs were cultured in vitro.This research tried to construct heterogeneous chimeric tooth structure with human DPSCs and xenogenic epithelial cells from tooth germ , to evaluate the effect of xenogenic tooth germ conditioned medium on human DPSCs, and to construct engineered bioroot by comination of human DPSC and periodontal ligament stem cells (PDLSC) .The aim of these studies was to establish experimental fondation for the further research and application of human DPSCs, to provide some useful clues for the future application of human DPSCs in tooth tissue engieering, and to explore some new methods and approaches for tooth regeneration with tooth derived stem cells.
     The main achivements are as follows:
     Section 1.Construction of heterogeneous chimeric tooth with human dental pulp stem cells
     Human DPSC were cultured with enzyme digestion solution. Results showed cultured DPSCs had typical morphology, and expressed surface markers of mesenchymal stem cells STRO-1 ,CD06 and CD29. cultured DPSCs held the potential to form colony ,and to differentiate into osteoblats or adipocytes after induction. These data indicated the DPSCs we cultured were mesenchymal stem cells. Porcine dental germ of the third molar was isolated and dental germ cells were cultured. Epithelial cells of dental germ were obtained by speed-differentiated digestion solution. Immunocytochemeical staining showed tooth germ derived epithelial cells were positive for CK14 and AMBN, but negative for Vimentin. Then human DPSCs and porcine tooth germ derived epithelial cells were combined with different methods and transplanted into subcutaneous pockets of nude mice. Implants were harvested after 6 weeks. It was found most of the implants did not form any ordinate structure, whereas some implants contained dentin-pulp like structure and enamel like structure.The probability of forming this kind of structure was just 20%. Immunohistochemistry results provided evidence that the enamel like structure was originated from porcine tooth germ derived epithelial cells while dentin like structure was originated from human DPSCs.
     The results of this part suggested that human DPSC and porcine tooth germ derived epithelial cells could mimic the interaction between epithelial cells and mesenchymal cells during tooth development, and induce each other and possessed the possibility to form heterogeneous chimeric tooth structure. So we could come to the conclusion that it is feasible to construct heterogeneous chimric tooth with human mesenchymal stem cells and xenogenic tooth germ derived epithelial cells, and this may be a solution to cope with ename regeneration.
     Section 2.Odontogenic differentiation of human dental pulp stem cells induced by swine tooth germ cell conditioned medium
     Previous studies showed that tooth germ cell conditioned medium (TGC-CM) hold the potential to induce dental pulp stem cells (DPSCs) to differentiate into odontogenic lineage. Nevertheless, human TGC-CM (hTGC-CM) is not feasible in practical application. We hypothesized that xenogenic TGC-CM may exert similar influence on DPSCs. In this study, we selected swine as a xenogenic origin and compared the effects of swine tooth germ cell conditioned medium (sTGC-CM) with hTGC-CM on human DPSCs. in vivo and in vitro. Results showed sTGC-CM, which is similar with the effect of hTGC-CM, was able to induce human DPSCs to make odontoblastic changes as indicated by remarkable morphological changes, increased proliferation ability, higher multipotential and colony forming capability, and expression of some odontogenic markers in gene and protein levels,such as DSP, DSPP, DMP1, BSP, OCN, OPN. Induced DPSC also maintained better stem-cell characteristics,. Besides, human DPSCs treated with sTGC-CM could form more regular dentine-pulp complex in vivo.The probability of forming this kind of structure was elevated from 20% to over 70%. These results was similar to DPSCs treated with hTGC-CM while quite different from that of control DPSCs.
     Our data provided evidence that sTGC-CM held almost the same potential as hTGC-CM in inducing DPSCs to differentiate along odontogenic direction.. The observations suggested xenogenic TGC-CM may be a useful tool in tooth regeneration and the application of xenogenic TGC-CM may facilitate generating a bioengineered tooth from tooth derived stem cells in future.
     Section 3 The trial of constructing engineered bioroot with human dental pulp stem cells and periodontal ligament stem cells
     Undoubtedly, DPSC and PDLSC was the most promising postnatal stem cells in future tooth tissue engineering.Then, is it possible to get tooth root like structure in vivo if these two kinds of stem cells were combined and transplanted?We carried out this kind of trial. PDLSCs were cultured ex vivo and were characterizied. Results showed PDLSCs were positive for Vimentin while negative for CK , indicating they were of mesenchymal origin.They were also positive for STRO-1, which suggest cultured PDLSCs were endowed with the phenotype of mesenchymal stem cells.The experiments of calcification and adipogenesis induction confirmed the multipotentiality and plasticity of human PDLSCs. DPSCs were labled with PKH26 and then were combined with PDLSCs by different methods and transplanted into nude mice. Results revealed the implants with toot-shaped CBB as scaffold presented small tooth root like structure in gross appearance.HE staining showed all the implants formed calcified matrix, and Sharpey fiber like structure could be found in some implants. While the implants with CBB particles as scaffold formed thin and plat structure in gross appearance and HE staining demonstated calcified matrix were also formed, but less than implants with root-shaped CBB as scaffold. Most cell pellet implants did not form any corporeal structure with exception that only a few contained calcified matrix. No dentin-pulp like structure was found in all the three kinds of implants.
     These data suggested: When constructing engineered tooth root, preshaped scalffold was the best choice to guide related stem cells grow along the scaffold and form good-shaped structure in gross appearance; it is recommended to seed stem cells onto the scaffold respectively instead of mixing them simply if more than one kinds of stem cells were used; it is not suitable to construct tooth like structure with good–shaped gross appearance by cell pellet transplantation method.
引文
1. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE, Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 1995,60(6): 513-6.
    2. Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 1994,27(1):263-76.
    3. Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. Brain Res Brain Res Rev 2005,49(1):48-64.
    4. Arvelo F, Perez P, Cotte C. [Obtention of human skin sheets by means of tissue engineering]. Acta Cient Venez 2004,55(1):74-82.
    5. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000,97(25):13625-30.
    6. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006,7:14.
    7. Ferreira CF, Magini RS, Sharpe PT. Biological tooth replacement and repair. J Oral Rehabil 2007,34(12):933-9.
    8. Ruch JV, Lesot H, Karcher-Djuricic V, Meyer JM, Olive M. Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation 1982,21(1):7-12.
    9. Thesleff I, Vaahtokari A, Partanen AM. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 1995,39(1):35-50.
    10.金岩.口腔颌面组织胚胎学.陕西科学技术出版社,西安,2002,110-146
    11. Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT. Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 1999,126(1):51-61.
    12. Thomas BL, Liu JK, Rubenstein JL, Sharpe PT. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development 2000,127(2):217-24.
    13. MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development 1992,115(2):403-20.
    14. James CT, Ohazama A, Tucker AS, Sharpe PT. Tooth development is independent of a Hox patterning programme. Dev Dyn 2002,225(3):332-5.
    15. D'Anto V, Cantile M, D'Armiento M, Schiavo G, Spagnuolo G, Terracciano L, Vecchione R, Cillo C. The HOX genes are expressed, in vivo, in human tooth germs: in vitro cAMP exposure of dental pulp cells results in parallel HOX network activation and neuronal differentiation. J Cell Biochem 2006, 97(4):836-48.
    16. Aberg T, Cavender A, Gaikwad JS, Bronckers AL, Wang X, Waltimo-Siren J, Thesleff I, D'Souza RN. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem 2004, 52(1):131-9.
    17. Bei M, Stowell S, Maas R. Msx2 controls ameloblast terminal differentiation. Dev Dyn 2004, 231(4):758-65.
    18. Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. Follistatin regulates enamel patterning in mouse incisors byasymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell 2004,7(5):719-30.
    19. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987,32(2):123-7.
    20. Tucker AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science 1998,282(5391):1136-8.
    21. Mustonen T, Pispa J, Mikkola ML, Pummila M, Kangas AT, Pakkasjarvi L, Jaatinen R, Thesleff I. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol 2003,259(1):123-36.
    22. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002,81(10):695-700.
    23. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 2004,83(7):523-8.
    24. Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res 2004,83(7):518-22.
    25. Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci U S A 2001, 98(8):4516-21.
    26.邓蔓菁,刘鲁川,陈小红,安建平,AJ Smith,金岩,史俊南.多种生长因子对胚胎面突外胚间充质细胞向成牙本质样细胞分化的诱导作用.牙体牙髓牙周病学杂志,2007,23(4):438-442
    27. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003,100(10):5807-12.
    28.郭红延,吴补领,郭希民,等.建牙本质-牙髓复合体样结构的实验研究.华口腔医学杂志, 2005, 40(6):511-514
    29. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364(9429):149-55.
    30. Saito M, Handa K, Kiyono T, Hattori S, Yokoi T, Tsubakimoto T, Harada H, Noguchi T, Toyoda M, Sato S and others. Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res 2005,20(1):50-7.
    31. Richman JM, Kollar EJ. Tooth induction and temporal patterning in palatal epithelium of fetal mice. Am J Anat 1986,175(4):493-505.
    32. Hu B, Unda F, Bopp-Kuchler S, Jimenez L, Wang XJ, Haikel Y, Wang SL, Lesot H. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res 2006,85(5):416-21.
    33. Harada H, Toyono T, Toyoshima K, Yamasaki M, Itoh N, Kato S, Sekine K, Ohuchi H. FGF10 maintains stem cell compartment in developing mouse incisors. Development 2002,129(6):1533-41.
    34. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 1999,147(1):105-20.
    35. Modino SA, Sharpe PT. Tissue engineering of teeth using adult stem cells. Arch Oral Biol 2005,50(2):255-8.
    36. Chun-mao H, Su-yi W, Ping-ping L, Hang-hui C. Human bone marrow-derived mesenchymal stem cells differentiate into epidermal-like cells in vitro. Differentiation 2007,75(4):292-8.
    37. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006,126(4):677-89.
    38. Sumita Y, Honda MJ, Ohara T, Tsuchiya S, Sagara H, Kagami H, Ueda M. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 2006,27(17):3238-48.
    39. Zhang W, Walboomers XF, van Osch GJ, van den Dolder J, Jansen JA. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A 2008,14(2):285-94.
    40. Kikuchi A, Okano T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 2005,101(1-3):69-84.
    41. Masuda S, Shimizu T, Yamato M, Okano T. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev 2008,60(2):277-85.
    42. Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006,12(11):3097-105.
    43. Smith AJ. Tooth tissue engineering and regeneration--a translational vision! J Dent Res 2004,83(7):517.
    44. Iwatsuki S, Honda MJ, Harada H, Ueda M. Cell proliferation in teethreconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci 2006,114(4):310-7.
    45. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 2007,28(4):680-9.
    46. Young CS, Abukawa H, Asrican R, Ravens M, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC. Tissue-engineered hybrid tooth and bone. Tissue Eng 2005,11(9-10):1599-610.
    47. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 2006,12(8):2069-75.
    48. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res 2002,81(8):531-5.
    49. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S and others. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 2006,1:e79.
    50. Zhu F, Nie RR, Wu L, Liu L, Tang W, Tian WD. [Spontaneous odontogenic differentiation and critical gene expression of mouse dental papilla mesenchymal cell in vitro]. Sichuan Da Xue Xue Bao Yi Xue Ban 2008,39(2):286-9, 297.
    51. Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 2008,26(4):1065-73.
    52. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M,Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods 2007,4(3):227-30.
    53. Sartaj R, Sharpe P. Biological tooth replacement. J Anat 2006,209(4):503-9.
    54. Chai Y, Slavkin HC. Prospects for tooth regeneration in the 21st century: a perspective. Microsc Res Tech 2003,60(5):469-79.
    55. Duailibi SE, Duailibi MT, Vacanti JP, Yelick PC. Prospects for tooth regeneration. Periodontol 2000 2006,41:177-87.
    56. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003,18(4):696-704.
    57. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 2001,29(6):532-9.
    58. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 2003,82(12):976-81.
    59. Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 2000,66(2):129-38.
    60. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 2004,19(9):2388-98.
    61. Fitzgerald M, Chiego DJ, Jr., Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. ArchOral Biol 1990,35(9):707-15.
    62. Yamamura T. Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res 1985,64 Spec No:530-40.
    63. Tecles O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, About I. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 2005,50(2):103-8.
    64. Lovschall H, Tummers M, Thesleff I, Fuchtbauer EM, Poulsen K. Activation of the Notch signaling pathway in response to pulp capping of rat molars. Eur J Oral Sci 2005,113(4):312-7.
    65.刘少华,魏奉才,孙善珍,张春艳,刘云生.牙髓细胞的原代培养方法探讨:冠部和根部牙髓的比较.上海口腔医学,2004,13(2):103-105
    66. Waddington RJ, Youde SJ, Lee CP, Sloan AJ. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 2009,189(1):268-74.
    67. Nakashima M, Mizunuma K, Murakami T, Akamine A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation- mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 2002,9(12):814-8.
    68. Graziano A, d'Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 2008,4(1):21-6.
    69. Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F and others. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008,26(3):638-45.
    70. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002,105(1):93-8.
    71. Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 2007,13(4):767-73.
    72. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953,172(4379):603-6.
    73. Kashiwagi N, Porter KA, Penn I, Brettschneider L, Starzl TE. Studies of homograft sex and of gamma globulin phenotypes after orthotopic homotransplantation of the human liver. Surg Forum 1969,20:374-6.
    74. Murase N, Demetris AJ, Matsuzaki T, Yagihashi A, Todo S, Fung J, Starzl TE. Long survival in rats after multivisceral versus isolated small-bowel allotransplantation under FK 506. Surgery 1991,110(1):87-98.
    75. Iwaki Y, Starzl TE, Yagihashi A, Taniwaki S, Abu-Elmagd K, Tzakis A, Fung J, Todo S. Replacement of donor lymphoid tissue in small-bowel transplants. Lancet 1991,337(8745):818-9.
    76. Starzl TE, Demetris AJ, Trucco M, Murase N, Ricordi C, Ildstad S, Ramos H, Todo S, Tzakis A, Fung JJ and others. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology 1993,17(6):1127-52.
    77. Randhawa PS, Starzl T, Ramos HC, Nalesnik MA, Demetris J. Allografts surviving for 26 to 29 years following living-related kidney transplantation: analysis by light microscopy, in situ hybridization for theY chromosome, and anti-HLA antibodies. Am J Kidney Dis 1994,24(1):72-7.
    78. Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M. Cell migration, chimerism, and graft acceptance. Lancet 1992, 339(8809):1579-82.
    79. Starzl TE, Demetris AJ, Trucco M, Ricordi C, Ildstad S, Terasaki PI, Murase N, Kendall RS, Kocova M, Rudert WA and others. Chimerism after liver transplantation for type IV glycogen storage disease and type 1 Gaucher's disease. N Engl J Med 1993,328(11):745-9.
    80. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med 2002,346(1):5-15.
    81. Koopmans M, Kremer Hovinga IC, Baelde HJ, Fernandes RJ, de Heer E, Bruijn JA, Bajema IM. Chimerism in kidneys, livers and hearts of normal women: implications for transplantation studies. Am J Transplant 2005,5(6):1495-502.
    82. Schlitt HJ, Hundrieser J, Hisanaga M, Uthoff K, Karck M, Wahlers T, Wonigeit K, Pichlmayr R. Patterns of donor-type microchimerism after heart transplantation. Lancet 1994,343(8911):1469-71.
    83. Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 2001,357(9249):33-7.
    84. Minami E, Laflamme MA, Saffitz JE, Murry CE. Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation 2005,112(19):2951-8.
    85. Zeng F, Chen MJ, Baldwin DA, Gong ZJ, Yan JB, Qian H, Wang J, JiangX, Ren ZR, Sun D and others. Multiorgan engraftment and differentiation of human cord blood CD34+ Lin- cells in goats assessed by gene expression profiling. Proc Natl Acad Sci U S A 2006,103(20):7801-6.
    86. Kollar EJ, Fisher C. Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 1980;207(4434):993-5.
    87. Mitsiadis TA, Cheraud Y, Sharpe P, Fontaine-Perus J. Development of teeth in chick embryos after mouse neural crest transplantations. Proc Natl Acad Sci U S A 2003,100(11):6541-5.
    88. Wang YH, Upholt WB, Sharpe PT, Kollar EJ, Mina M. Odontogenic epithelium induces similar molecular responses in chick and mouse mandibular mesenchyme. Dev Dyn 1998,213(4):386-97.
    89. Koyama E, Wu C, Shimo T, Pacifici M. Chick limbs with mouse teeth: an effective in vivo culture system for tooth germ development and analysis. Dev Dyn 2003,226(1):149-54.
    90. Lubbock MJ, Harrison VT, Lumsden AG, Palmer RM. Development and cell fate in interspecific (Mus musculus/Mus caroli) intraocular transplants of mouse molar tooth-germ tissues detected by in situ hybridization. Arch Oral Biol 1996,41(1):77-84.
    91. Carlile MJ, Harrison VT, Lumsden AG, Palmer RM. Development and cell fate in interspecific (Mus musculus/Mus caroli) orthotopic transplants of mouse molar tooth germs detected by in situ hybridization. Arch Oral Biol 1998,43(5):395-406.
    92.包柳郁,金岩,史俊南.人牙源性间充质细胞构建牙本质-牙髓复合体样结构的实验研究.中华口腔医学杂志, 2005, 40(5): 408-411
    93. Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y. Cell pelletsfrom dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006,346(1):116-24.
    94. Harada H, Toyono T, Toyoshima K, Ohuchi H. FGF10 maintains stem cell population during mouse incisor development. Connect Tissue Res 2002,43(2-3):201-4.
    95. Huysseune A, Thesleff I. Continuous tooth replacement: the possible involvement of epithelial stem cells. Bioessays 2004,26(6):665-71.
    96. Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Wang S, Lesot H. Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history. Arch Oral Biol 2005,50(2):131-6.
    97. Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Lesot H. Dental Epithelial Histomorphogenesis in vitro. J Dent Res 2005,84(6):521-5.
    98. Avery.JK.Oral development and histology.Baltimore,Waverly,1987
    99. Gerke MB, Plenderleith MB. Analysis of the unmyelinated primary sensory neurone projection through the dorsal columns of the rat spinal cord using transganglionic transport of the plant lectin Bandeiraea simplicifolia I-isolectin B4. J Neurol Sci 2004,221(1-2):69-77.
    100. Thornton PD, Gerke MB, Plenderleith MB. Histochemical localisation of a galactose-containing glycoconjugate expressed by sensory neurones innervating different peripheral tissues in the rat. J Peripher Nerv Syst 2005,10(1):47-57.
    101. Yen AH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2008,331(1):359-72.
    102. Barrilleaux B, Phinney DG, Prockop DJ, O'Connor KC. Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 2006,12(11):3007-19.
    103. Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007,28(2):316-25.
    104. Moore KA, Lemischka IR. Stem cells and their niches. Science 2006,311(5769):1880-5.
    105. Schaffer D. Exploring and Engineering Stem Cells and their Niches. Curr Opin Chem Biol 2007,11(4):355-356.
    106. He F, Yang Z, Tan Y, Yu N, Wang X, Yao N, Zhao J. Effects of Notch ligand Delta1 on the proliferation and differentiation of human dental pulp stem cells in vitro. Arch Oral Biol 2009,54(3):216-22.
    107. He H, Yu J, Liu Y, Lu S, Liu H, Shi J, Jin Y. Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 2008,32(7):827-34.
    108. Lossdorfer S, Sun M, Gotz W, Dard M, Jager A. Enamel matrix derivative promotes human periodontal ligament cell differentiation and osteoprotegerin production in vitro. J Dent Res 2007,86(10):980-5.
    109. Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev 2005,16(3):369-76.
    110. Mannello F, Tonti GA. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 2007,25(7):1603-9.
    111. Slavkin HC. Molecular determinants of tooth development: a review. Crit Rev Oral Biol Med 1990,1(1):1-16.
    112. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone 1999,25(1):123-5.
    113. Tompkins K. Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res 2006,47(3):111-8.
    114. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res 2008.
    115. Donnelly CE, Yatko C, Johnson EW, Edge AS. Human natural killer cells account for non-MHC class I-restricted cytolysis of porcine cells. Cell Immunol 1997,175(2):171-8.
    116. Maras B, Barra D, Dupre S, Pitari G. Is pantetheinase the actual identity of mouse and human vanin-1 proteins? FEBS Lett 1999,461(3):149-52.
    117. Meyer W. [Comments on the suitability of swine skin as a biological model for human skin]. Hautarzt 1996,47(3):178-82.
    118. Sachs DH. The pig as a potential xenograft donor. Vet Immunol Immunopathol 1994,43(1-3):185-91.
    119. Deng M, Shi J, Smith AJ, Jin Y. Effects of transforming growth factor beta1 (TGFbeta-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system. Arch Oral Biol 2005,50(11):937-45.
    120. Alliot-Licht B, Bluteau G, Magne D, Lopez-Cazaux S, Lieubeau B, Daculsi G, Guicheux J. Dexamethasone stimulates differentiation of odontoblast-like cells in human dental pulp cultures. Cell Tissue Res2005,321(3):391-400.
    121. Kasugai S, Ogura H. [Differentiation of odontoblast-like cells from dental pulp cells]. Kokubyo Gakkai Zasshi 1985,52(4):697.
    122. Shen YD, Tian WD, Liu L, He YH, Tang W, Zheng X. [Beta -transduction repeat containing protein expressed in tooth germs and ameloblast and odontoblast of different stage of tooth development. Hua Xi Kou Qiang Yi Xue Za Zhi 2007,25(2):195-7.
    123. Lindroos B, Maenpaa K, Ylikomi T, Oja H, Suuronen R, Miettinen S. Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Commun 2008,368(2):329-35.
    124. Qin C, D'Souza R, Feng JQ. Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 2007,86(12):1134-41.
    125. Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, Jansen JA. Hard Tissue Formation of STRO-1-Selected Rat Dental Pulp Stem Cells In Vivo. Tissue Eng Part A 2008.
    126. Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 2006,27(33):5658-68.
    127. Shulman RJ. The piglet can be used to study the effects of parenteral and enteral nutrition on body composition. J Nutr 1993,123(2 Suppl):395-8.
    128. Lopes FM, Markarian RA, Sendyk CL, Duarte CP, Arana-Chavez VE. Swine teeth as potential substitutes for in vitro studies in tooth adhesion: a SEM observation. Arch Oral Biol 2006,51(7):548-51.
    129. Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K. Characterization of dentalpulp stem cells of human tooth germs. J Dent Res 2008,87(7):676-81.
    130. Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 2007,10(3):149-60.
    131. Park SH, Park SR, Chung SI, Pai KS, Min BH. Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs 2005,29(10):838-45.
    132. Noailly J, Van Oosterwyck H, Wilson W, Quinn TM, Ito K. A poroviscoelastic description of fibrin gels. J Biomech 2008, 41(15):3265-9.
    133. Jeon O, Kang SW, Lim HW, Hyung Chung J, Kim BS. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 2006,27(8):1598-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700