水稻NPR1基因的表达特征及基因(NPR1,AOS)的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NPR1基因在各种植物包括水稻中的功能都非常保守,它在植物的诱导抗性中起着非常重要的作用,并且是介导各种防御信号途径互作的重要组分。茉莉酸是植物诱导抗虫反应中的一类重要信号分子,AOS基因编码蛋白是调控茉莉酸生物合成的关键酶。然而,NPR1和AOS在水稻诱导抗虫害性中的作用至今仍不清楚。为了阐明基因NPR1和AOS在虫害诱导的水稻防御反应中的功能,我们研究了NPR1在不同信号分子处理和虫害为害后的表达特征,并且获得了沉默基因NPR1及AOS的水稻品系。我们的研究计划及主要结果如下:
     1)根据已经报道的水稻NPR1和AOS基因的序列设计引物,克隆了两个基因的片段。利用Realtime-PCR的方法,测定了NPR1在健康水稻体内不同部位的表达特征,同时测定了该基因在不同信号分子(水杨酸、茉莉酸、过氧化氢、乙烯ET)处理及不同虫害(二化螟、稻纵卷叶螟、褐飞虱)胁迫下的诱导表达特征。结果表明,茉莉酸、水杨酸和过氧化氢处理能在早期使NPR1的表达水平上升;ET处理则在24小时能显著诱导NPR1表达水平的变化。褐飞虱为害能诱导NPR1表达水平显著提高,并且是三种害虫为害中表达水平最高的;二化螟在为害只在早期诱导水稻茎中NPR1表达水平上升;但稻纵卷叶螟为害却降低了该基因的表达水平。这些结果表明,NPR1可能参与了水稻的防御反应。
     2)为了分析NPR1和AOS在水稻防御反应中的作用,利用农杆菌转化系统获得了分别沉默NPR1和AOS基因的水稻品系,并且收获了这些品系T1代的种子,这为阐明基因NPR1和AOS在虫害诱导的水稻防御反应中的作用打下了基础。
     通过基因工程技术可以帮助发展绿色的害虫控制技术。NPR1和AOS基因无疑是这方面的重要候选基因。通过阐明这些基因的生物学功能,可能为改进作物的抗虫性开启新的机会与可能性。
NPR1,functionally conserved in diverse plant species including rice Oryza sativaL.(Poeceae),plays a key role in induced plant resistance and mediates the cross talkbetween different defense pathways.Allene oxide synthase(AOS) is a focal point incontrolling biosynthesis of JAs,which are important signals in mediating plant resistanceagainst herbivores.However,the roles of NPR1 and AOS in induced resistance in ricecrop against herbivores remained unclear.To elucidate the biological functions of NPR1and AOS in herbivore-induced rice defenses,we observed the expression profile of NPR1following application of signaling molecules and herbivore feeding,and develop ricelines with silencing ofNPR1 orAOS gene.Our study layout and main results are:
     1) According to the published sequences,fragments of rice genes NPR1 and AOS were PCRamplified and cloned.Expression profiles of NPR1 in different tissues of healthy riceplants,following treatment with signaling molecules(salicylic acid,SA;jasmonicacid,JA;H_2O_2;ethylene,ET) and herbivores feeding [stripped stem borer SSB,Chilosuppressalis Walker(Lepidoptera:Pyralidae);leaf folder LF,Cnaphalocrocismedinalis Guenee(Lepidoptera:Pyralidae);brown plant hopper BPH,Nilaparvatalugens Stal(Hemiptera:Delphacidae)] was observed using realtime RT-PCR,one ofthe enabling techniques of the genomic era.The expression of NPR1 was highest inroots followed by inflorescence,leaves and stem.Following treatment with JA,SA,and H_2O_2,an early NPR1 induction was observed,however,drastic changes in genelevels were observed by 24 h after ET treatment.Among herbivores,the maximumgene induction was observed after BPH feeding.An early gene induction by SSB instem tissues was also observed but LF decreased the gene levels.The results showthat NPR1 may participates in defense responses in rice.
     2) To analyze the role of NPR1 and AOS in rice defense,rice lines silencing NPR1 and AOSexpression were obtained with an Agrobacterium-based transformation system.Theseeds of T_1 generation of these lines were collected,which lays the foundation forelucidating the functions of genes NPR1 and AOS in herbivore-induced rice defenseresponses.
     Modifying plant responses through manipulating expression of genes involved indefense pathways can greatly help to control pests in an environmental friendly way.NPR1 and AOS are no doubt an important such candidates to work on.Knowing their rolein rice plant resistance may open new opportunities and possibilities for improving cropresistance against herbivores.
引文
1.Abe, T., and Futsugara, Y. Efficient plant regeneration by somatic embryogenesis from root callus tissues of rice.Journal of Plant Physiology, 1985, 121: 111-118.
    2.Agrawal, G. K., Rakwal, R., Jwa, N. S., Han, K. S., and Agrawal, V. P. Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiology and Biochemistry, 2002, 40:771-782.
    3.Agrawal, G. K., Tamogami, S., Han, O., Iwahashi, H., and Rakwal, R. Rice octadecanoid pathway. Biochemical and Biophysical Research Communications, 2004,317: 1-15.
    4.Aldemita, R. R., and Hodges, T. K. Agrobacterium tumefaciens-mediated transformation of indica and japonica rice varieties. Planta, 1996, 199: 612-617.
    5.Ali, S. Development of strategies for the constitutive and tissue specific expression of CrylA(c) conferring resistance to Lepidoptera insect pests in transgenic rice (Oryza sativa L.), [PhD Thesis], Zhejiang University, 2005, 144pp.
    6.Amie, V. D. W., Martin, W., and Visser, B. PR proteins and Russian wheat aphid resistance: τβ-1,3-glucanases. The International Joint Workshop on PR-Proteins and Induced Resistance. Abstract-Book. 2004, http://pr-ir2004.risoe.dk.
    7.Anand, A., Uppalapati, S. R., Ryu, C-M., Allen, S. N., Kang, L., Tang, Y., and Mysore, K. S. Salicylic Acid and Systemic Acquired Resistance Play a Role in Attenuating Crown Gall Disease Caused by Agrobacterium tumefaciens. Plant Physiology, 2008, 146: 703-715.
    8.Arimura, G., Kost, C, and Boland, W. Herbivore-induced, indirect plant defenses. Biochimica et Biophysica Acta, 2005, 1734: 91-111.
    9.Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabyashi, J., Herbivory induced volatiles elicit defense genes in lima bean leaves. Nature, 2000a, 406:512-515.
    10.Arimura, G., Tashiro, K., Kuhara, S., Nishioka, T., Ozawa, R., and Takabayashi, J. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochemical and Biophysiological Research Communication, 2000b, 277:305-310.
    11.Auclair, J. L., and Baldos, E. Feeding by the whitebacked planthopper, Sogatella furcifera, within susceptible and resistant rice varieties. Entomologia Experimentalis et Applicata, 1982, 32: 200-203.
    12.Bajaj, S., and Mohanty, A. Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnology Journal, 2005, 3: 275-307.
    13.Baldwin, 1. T., Zhang, Z. P., Diab, N., Ohnmeiss, T. E., McCloud, E. S., Lynds, G. Y., and Schmelz, E. A. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 1997,201: 397-404.
    14.Becerra, C, Jahrmann, T., Puigdomenech, P., and Vicient, C. M. Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene, 2004, 340: 111-121.
    15.Beckers, G. J. M., and Spoel, S. H. Fine-Tuning Plant Defense Signalling: Salicylate versus Jasmonate. BMC Plant Biology, 2006, 8: 1-10.
    16.Bell, E., and Mullet, J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiology, 1993, 103: 1133-1137.
    17.Bell, E., Creelman, R. A., and Mullet, J. E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 8675-8679.
    18.Bennetzen, J. L., and Ma, J. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Current Opinion in Plant Biology, 2003, 6: 128-133.
    19.Bi, Y. M., Kenton, P., Mur, L., Darby, R., and Draper, j. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant Journal, 1995, 8: 235-245.
    20.Blanco, F., Garreton, V., Frey, N., Dominguez, C, Perez-Acle, T. Van der Straeten, D., Jordana, X., and Holuigue, L., Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Molecular Biology, 2005, 59: 927-944.
    21.Blee, E. Phytooxylipins and plant defense reactions. Progress in Lipid Research, 1998,37:33-72.
    22.Blee, E., and Joyard, J. Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiology, 1996, 110: 445-454.
    23.Bokshi, A. I., Morris, S. C, and Deverall, B. J. Effects of benzothiadiazole and acetylsalicylic acid on -1,3-glucanase activity and disease resistance in potato. Plant Pathology, 2003, 52: 22-27.
    24.Bouchez, D., Tokuhisa, J. G., Llewellyn, D. j., Dennis, E. S., and Ellis, J. G. The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO Journal, 1989, 8: 4197-4204.
    25.Brash, A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 1999, 274: 23679-23682.
    26.Brash, A. R., and Song, W. C. Structure-function features of flaxseed allene oxide synthase, Journal of Lipid Mediators and Cell Signalling, 1995, 12: 275-282.
    27.Brash, A. R., Baertschi, S. W., Ingram, CD., and Harris, T. M. Isolation and Characterization of Natural Allene Oxides: Unstable Intermediates in the Metabolism of Lipid Hydroperoxides, Proceedings of the National Academy of Sciences of the United States of America, 1988, 85: 3382-3386.
    28.Brookes, P., and Barfoot, G. B. GM rice, will this the way for global acceptance of GM crop technology. JSAAA Briefs No. 28, ISAAA, Ithaca, NY. 2003.
    29.Buell, C. R. Arabidopsis: A weed leading the field of plant-pathogen interactions. Plant Physiology and Biochemistry, 1998, 36: 177-186.
    30.Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6: 1583-1592.
    31.Cao, H., Glazebrook, J., Clark, J. D., Volko, S., and Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63.
    32.Cao, H., Li, X., and Dong, X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America, 1998,95: 6531-6536.
    33.Cbgowda, R., and Baldwin, I. T. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. The Plant Journal, 2007, 52: 700-715.
    34.Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C, Sandermann, H., Van Montagu, A., Inze, D., and Van Camp, W. Defense activation and enhanced pathogen tolerance induced by H_2O_2 in transgenic tobacco. Proceedings of the National Academy of Sciences of United States of America, 1998, 95: 5818-5823.
    35.Chehab, E. W., Perea, J. V., Gopalan, B., Theg, S., and Dehesh, K. Oxylipin Pathway in Rice and Arabidopsis. Journal of Integrative Plant Biology, 2007, 49:43-51.
    36.Chen, J. W., Wang, L., Pang, X. F., and Pan, Q. H. Genetic analysis and Gene mapping of a rice brown planthopper (Nilaparvata lugens St(?)l) resistance gene bpbl9(t). Theoretical and Applied Genetics, 2006, 275: 321-329.
    37.Chen, M, Zhao, J. Z., Ye, G. Y., Fu, Q., and Shelton, A. M. Impact of insect- resistant transgenic rice on target insect pests and non-target arthropods in China. Insect Science, 2006, 13: 409-420.
    38.Cheng, S. H., Cao, L. Y., Zhuang, J. Y., Chen, S. G., Zhan, X. D., Fan, Y. Y., Zhu, D. F., and Min, S. K. Super Hybrid Rice Breeding in China: Achievements and Prospects. Journal of Integrative Plant Biology, 2007, 49: 805-810.
    39.Chern, M, Canlas, P. E., Fitzgerald, H. A., and Ronald, P. C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1.The Plant Journal, 2005, 43: 623-635.
    40.Chern, M S., Fitzgerald, H. A., Canlas, P. E., Navarre, D. A., and Ronald, P. C. Over-expression of a rice NPR1 homologue leads to constitutive activation of defense response and hypersensitivity to light. Molecular Plant Microbe Interactions, 2005, 18:511-520.
    41.Chern, M. S., Fitzgerald, H. A., Yadav, R. C, Canlas, P. E., Dong, X., and Ronald, P. C. Evidence for a disease-resistance pathway in rice similar to the NPR1 -mediated signaling pathway in Arabidopsis. Plant Journal, 2001, 27: 101-113.
    42.Clarke, J.D., Volko, S.M., Ledford, H., Ausubel, F.M., and Dong, X.Roles of Salicylic Acid, Jasmonic Acid, and Ethylene in cpr-Induced Resistance in Arabidopsis.The Plant Cell, 2000, 12: 2175-2190.
    43.Coffman, W.R., and Juliano, B.R.Rice Nutritional quality of cereal grains, genetic and agronomic improvement.In: Agronomy Monograph 28, ASA-CSSA-SSSA,Madison, WI, USA, 1987.
    44.Cohen, Y., Gisi, U., and Mosinger, E.Systemic resistance of potato plants against Phytophthora infestans induced by unsaturated fatty acids.Physiological and Molecular Plant Pathology, 1991,38: 255-263.
    45.Cohen, Y., Gisi, U., and Niderman, T.Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic acid methyl ester.Phytopathology, 1993, 83: 1054-1062.
    46.Conconi, A., Mique, I.M., Browse, J.A., and Ryan, C.A.Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding.Plant Physiology, 1996, 111:797-803.
    47.Creelman, R.A., and Mullet, J.E.Jasmonic acid distribution and action in plants:regulation during development and response to biotic and abiotic stress.Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 4114-4119.
    48.Creelman, R.A., and Mullet, J.E.Oligosaccharins, brassinolides, jasmonates: Non traditional regulators of plant growth, development, and gene expression.Plant Cell,1997a,9:1211-1223.
    49.Creelman, R.A., and Mullet, J.E.Biosynthesis and action of jasmonates in plants.Annual Review of Plant Physiology and Plant Molecular Biology, 1997b, 48: 355- 381.
    50.Creelman, R.A., and Mulpuri, R.The oxylipin pathway in Arabidopsis.In: The Arabidopsis Book.(eds.C.R., Somerville, and E.M., Meyerozitz), American Society of Plant Biologists, Rockville, M.D., 2002, pp.1-24, doi/10.1199/tab.00 12,http://www.aspb.org/publications/ arabidopsis/.
    51.Cui, J., Bahrami, A.K., Pringle, E.G., Hernandez-Guzman, G., Bender, C.L., Pierce,N.E., and Ausubel, F.M.Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 1791-1796.
    52.Cui, J., Jander, G., Rack, L. R., Kim, P. D., Pierce, N. E., and Ausubel, F. M. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae. Plant Physiology,2002,129:551-564.
    53.Dean, C, and Schmidt, R. Plant genomes: A current molecular description. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 395-418.
    54.Delaney, T. P. Genetic dissection of acquired resistance to disease. Plant Physiology,1997, 113:5-12.
    55.Delaney, T. P., Friedrich, L., and Ryals, J. A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 6602-6606.
    56.Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, ML, Kessmann, H., Ward, E., and Ryals, J. A central role of salicylic acid in plant disease resistance. Science, 1994, 266: 1247-1250.
    57.De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. Herbivore infested plants selectively attract parasitoids. Nature, 1998, 393: 570-573.
    58.Dempsey, D. M. A., Shah, J., and Klessig, D. F. Salicylic acid and disease resistance in plants. Critical Reviews in Plant Science, 1999, 18: 547-575.
    59.De Nooiji, M. P., Biere, A., and Linders, E. G. A. Interactions of pests and pathogens through host predisposition. In: Pests and Pathogens- Plant responses to foliar attack, (ed. Ayres, P. G.) Bios Scientific Publishers, Oxford, 1992, pp. 143-160.
    60.Desikan, R., Hancock, J. T., Ichimura, K., Shinozaki, K., and Neill, S. J. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiology, 2001, 126: 1579-1587.
    61.Despres, C, Chubak, C, Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P. R. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 2003, 15:2181-2191.
    62.Despr(?)s, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R.The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors.Plant Cell, 2000, 12: 279-290.
    63.De Vos, M., Van Oosten, V.R., Van Poecke, R.M.P., Van Pelt ,J.A,Pozo, M.J.,Mueller, M.J., Buchala, A.J., Metraux, J-P., Van Loon, L.C., Dicke, M., and Pieterse, C.M.Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.Molecular Plant-Microbe Interactions, 2005, 18: 923- 937.
    64.Devoto, A., Nieto-Rostro, M., Xie, D.X., Ellis, C., Harmston, R., Patrick, E., Davis,J., Sherratt, L., Coleman, M., and Turner, J.G.COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis.Plant Journal, 2002, 32:457-466.
    65.Dicke, M., Gols, R., Ludeking, D., and Posthumus, M.A.Jasmonic acid and herbivory differentially induce carnivore attracting plant volatiles in lima bean plants Journal of Chemical Ecology, 1999, 25: 1907-1922.
    66.Distefano, G., Malfa, S.L., Vitale, A., Lorito, M., Deng, Z., and Gentile, A.Defenserelated gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection.Transgenic Research,2008, 10.1007/s11248-008-9172-9.
    67.Dixon, R.A., and Arntzen, C.J.Transgenic plant technology is entering the era of metabolic engineering.Trends in Biotechnology, 1997, 15: 441-444.
    68.Doares, S.H., Narvaez-Vasquez, J., Conconi, A., and Ryan, C.A.Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid.Plant Physiology, 1995, 108: 1741-1746.
    69.Doherty, H.M., Selvendram, R.R., and Bowles, D.J.The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acid.Physiological and Molecular Plant Pathology, 1988, 33: 377-384.
    70.Dombrowski, J.E.Salt stress activation of wound-related genes in tomato plants.Plant Physiology, 2003,132: 2098-2107.
    71.Dong, X.NPR1, all things considered.Current opinion in plant biology, 2004, 7: 547-552.
    72.Durner, J., Shah, J., and Klessig, D.F.Salicylic acid and disease resistance in plants.Trends in Plant Science, 1997, 2: 266-274.
    73.Durrant, W.E., and Dong, X.Systemic acquired resistance.Annual Review of Phytopathology,2004,42:185-209.
    74.Durrant, W.E., and Dong, X.Systemic acquired resistance.Science, 2005, 308: 1036-1040.
    75.Farmaki, T., Sanmartin, M., Jimenez, P., Paneque, M., Sanz, C., Vancanneyt, G.,Leon, J., and Sanchez-Serrano, J.J.Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts.Journal of Experimental Botany, 2007,58: 555-568.
    76.Farmer, E.E., Almeras, E., and Krishnamurthy, V.Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory.Current Opinion in Plant Biology,2003,6:372-378.
    77.Felton, G.W., Korth, K.L., Bi, J.L., Wesley, S.V., Huhman, D.V,, Mathews, M.C.Murphy, J.B., Lamb, C., and Dixon, R.A.Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory.Current Biology,1999, 9: 317-320.
    78.Feussner, 1., and Wasternack, C.The lipoxygenase pathway.Annual Review of Plant Biology, 2002, 53: 275-297.
    79.Feussner, I., Kuhn, H., and Wasternack, C.Lipoxygenase dependent degradation of storage lipids.Trends in Plant Science, 2001,6: 268-273.
    80.Feys, B.J.F., Benedetti, C.E., Penfold, C.N., and Turner, J.G.Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen.Plant Cell, 1994, 6: 751-759
    81.Fidantsef, A.L., Stout, M.J., Thaler, J.S., Duffey, S.S., and Bostock, R.M.Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor Ⅱ and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum.Physiological and Molecular Plant Pathology,]999, 54: 97-114.
    82.Fitzgerald, H.A., Chern, M.S., Navarre, R., and Ronald, P.C.Overexpression of (At) NPR1 in rice leads to a BTH-and environment-induced lesionmimic/ cell death phenotype.Molecular Plant-Microbe 1nteractions, 2004, 17: 140-151.
    83.Food and Agriculture Organization of the United Nations, FAO Quarterly Bulletin of Statistics, 1995, 8: 1-2.
    84.Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals, J. NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Molecular Plant-Microbe Interactions, 2001, 14: 1114-1124.
    85.Friedrich, L., Lawton, K., Reuss, W., Masner, P., Specker, N., Gut Rella, M., Meier, B., Dincher, S., Staub, T., and Uknes S., Metraux, J-P., M., Kessmann, H., and Ryals, J. A benzothiadiazole induces systemic acquired resistance in tobacco. Plant Journal, 1996,10:61-70.
    86.Froehlich, J. E., Itoh, A., and Howe, G. A. Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiology, 2001,125:306-317.
    87.Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261: 754-756.
    88.Gardner, H. W. Sequential enzymes of linoleic acid oxidation in corn germ: lipoxygenase and linoleate hydroperoxide isomerase. Journal of Lipid Research,1970,11:311-321.
    89.Gardner, H. W. Lipoxygenase as a versatile biocatalyst. Journal of American Oil Chemists Society, 1996,73: 1347-1357.
    90.Gardner, H. W., Kleiman, R., Christianson, D. D., and Weisleder, D. Positional specificity of y-ketol formation from linoleic acid hydroperoxides by a corn germ enzyme. Lipids, 1975, 10: 602-608.
    91.Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis - 2001 status. Current Opinion in Plant Biology, 2001, 4: 301-308.
    92.Glazebrook, J., Rogers, E. E., and Ausubel, F. M. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 1996, 143: 973- 982.
    93.Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 1996, 8: 629-643.
    94. Grechkin, A. N., Mukhtarova, L. S., and Hamberg, M. The lipoxygenase pathway in tulip (Tulipa gesneriand): detection of the ketol route. Biochemical Journal, 2000, 352: 501-509.
    95. Ha, S. B., Lee, B. C, Lee, D. E., Kuk, Y. I., Lee, A. Y., Han, O., and Back, K. Molecular characterization of the gene encoding rice allene oxide synthase and its expression. Bioscience Biotechnology and Biochemistry, 2002, 66: 2719-2722.
    96. Haga, K., and lino, M. Phytochrome-mediated transcription upregulation of allene oxide synthase in rice seedlings. Plant Cell Physiology, 2004, 45: 119-128.
    97. Halim, V. A., Vess, A., Scheel, D., and Rosahl, S. The role of salicylic acid and jasmonic acid in pathogen defense. Plant Biology, 2006, 8: 307-313.
    98. Halitschke, R., and Baldwin, 1. T. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuate. Plant Journal, 2003, 36: 794-807.
    99. Halitschke, R., and Baldwin, 1. T. Jasmonates and related compounds in plant-insect interactions. Journal of Plant Growth Regulation, 2005, 23: 238-245.
    100. Halitschke, R., Gase, K., Hui, D., Schmidt, D. D., and Baldwin, 1. T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅵ. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiology, 2003, 131: 1894-1902.
    101. Halitschke, R., Ziegler. J., Keinanen, M., and Baldwin, I. T. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling cross-talk in Nicotiana attenuate. Plant Journal, 2004, 40: 35-46.
    102. Hamberg, M. Mechanism of com hydroperoxide isomerase: Detection of 12, 13(S)- Oxido-9(Z),11-octadecadienoic acid, Biochimica et Biophysica Acta, 1987, 920: 76- 84.
    103. Hamberg, M. Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase. Biochemical and Biophysial Research Communications,1988, 156: 543-550.
    104. Hamberg, M. New cyclopentenone fatty acids formed from linoleic and linolenic acids in potato. Lipids, 2000, 35: 353-363.
    105. Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J-M, and Mauch-Mani, B. b-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 2005, 18: 819-829.
    106. Harms, K., Atzorn, R., Brash, A., Kuhn, H., Wasternack, C, Willmitzer, L., and Pena-Cortes, H. Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell, 1995, 7: 1645-1654.
    107. Harms, K., Ramirez, I., and Pena-Cortes, H. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid.Plant Physiology, 1998, 118: 1057-1065.
    108. Hause, B., Maier, W., Miersch, O., Kramell, R., and Strack, D. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant. Physiology, 2002, 130: 1213-1220.
    109. Hei, Y., Ohta, S., Kumari, T., and Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. The Plant Journal, 1994, 6: 271-282.
    110. Heil, M., Hilpert, A., Kaiser, W., and Linsenmair, K. E. Reduced growth and seed set following chemical induction of pathogen defense: does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology, 2000, 88: 645-654.
    111. Heinrichs, E. A. Control of leafhopper and planthopper vectors of rice viruses. In: Leafhopper vectors and plant disease agents (eds., Moramorosch, K., and Harris, K. F.). Academic Press, New York, 1979, pp. 529-558.
    112. Hermsmeier, D., Schittko, U., and Baldwin, 1. T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuatel. I. Large-scale changes in the accumulation of growth and defense-related plant mRNAs. Plant Physiology, 2001, 125: 683-700.
    113. Hiei, Y., Komari, T., and Kubo, T. Agrobacterium tumefaciens- mediated transformation. In: Molecular Biology of Rice. (ed. Shimamoto, K.), Springer, Heidelberg, 1999, pp. 235-255.
    114. Hiei, Y., Ohta, S., Komari, T., and Kubo, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, 1997, 35: 205?18.
    115. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence-analysis of the boundaries of the tDNA. Plant Journal, 1994, 6: 271-282.
    116. Howe, G. A. Cyclopentenone signals for plant defense: Remodeling the jasmonic acid response. National Academy of Sciences of the United States of America, 2001, 98: 12317-12319.
    117. Howe, G. A., and Schilmiller, A. L. Oxylipin metabolism in response to stress. Current Opinion in Plant Biology, 2002, 5: 230-236.
    118. Howe, G. A., Lee, G. I., Itoh, A., Li, L., and DeRocher, A. Cytochrome P450- dependent metabolism of oxylipins in tomato: cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiology, 2000, 123: 711-724.
    119. Howe, G., Lightner, J., Browse, J., and Ryan, C. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell, 1996,8:2067-2077.
    120. Hu, X., Bidney, D. L., Yalpani, N., Duvick, j. P., Crasta, O., Folkerts, 0., and Lu, G. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 2003, 133: 170-181.
    121. Huang, X., Stettmaier, K., Michel, C, Hutzler, P., Mueller, M. J., and Durner, J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 2004, 218: 938-946.
    122. Hui, D., Iqbal, J., Lehmann, K., Gase, K., Saluz, H. P., and Baldwin, 1. T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana atlenuata: V. Microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. Plant Physiology, 2003, 131: 1877-1893.
    123. Hunt, M. D., and Ryals, J. A. Systemic acquired resistance signal transduction. Critical Review in Plant Science, 1996, 15: 583-606.
    124. Inbar, M., Doostdar, H., Gerling, D., and Mayer, R. T. Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects. Entomologia Experimentalis et Applicata, 2001, 99: 65-70.
    125. Ishiga, Y., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y. Expression of allene oxide synthase and allene oxide cyclase in the interactions between pea and fungal pathogens. Journal of General Plant Pathology, 2003, 69: 351-3:57.
    126. Ishiguro, S., Kawai-Oda, A., Ueda, K., Nishida, I., and Okada, K. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalysing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 2001, 13: 2191-2209.
    127. Itoh, A., Schilmiller, A. L., McCaig, B. C, and Howe, G. A. Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids. Journal of Biological Chemistry, 2002, 277: 46051-46058.
    128. Izawa, T., and Shimamoto, K. Becoming a model plant: the importance of rice to plant science. Trends in Plant Science, 1996, 1: 95-99.
    129. Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J-P., and Mauch-Mani, B. b-Aminobutyric acid-induced resistance in plants. European Journal of Plant Pathology, 2001, 107: 29-37.
    130. Jenns, A. E., and Kue, J. Graft transmission of systemic resistance of cucumber to anthracnose induced by Colletotrichum lagenarium and tobacco necrosis virus. Phytopathology, 1979, 69: 753-756.
    131. Jiang, H., Guo, L. B., and Qian, Q. Recent Progress on Rice Genetics in China. Journal of Integrative Plant Biology, 2007, 49: 776-790.
    132. Jiang, K., Yan, P., Rong, H., Hainian, Z., Zhuoshi, H., Zheng, Z., Xiaofen, S., and Kexuan, T. Molecular cloning and expression profiling of the first specific jasm on ate biosynthetic pathway gene allene oxide synthase from Lonicera japonica. Molecular Biology Reports, 2008, 10.1007/s11033-007-9205-0.
    133. Johnson, C, Boden, E., and Arias, J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 2003, 15: 1846-1858.
    134. Jost, R., Altschmied, L., Bloem, E., Bogs, J., Gershenzon, J., Hahnel, U., Robert, H., Tanja, H., Stanislav, K., Cordula, K., Ralf, M., Jutta, P., Michael, R., Heinz, R., Ewald, S., Ahlert, S., Susanne, T., Jim, T., Andreas, W., Markus, W., Thomas, R., and Rudiger, H. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research, 2005, 86: 491-508.
    135. Julio, A. R., Ortego, F., Castanera, P. Carbonera, P., and Diaz, 1. Transgenic expression of trypsin inhibitor Cme from barley in indica and japonica rice confers resistance to the rice weevil Sitophilus oryzae. Transgenic Reasearch, 2003, 12: 23-31.
    136. Karban, R., and Baldwin, 1. T. Mechanisms of induced responses. In: Induced Responses to Herbivory. (eds., Karban, R., and Baldwin, I. T.). University of Chicago, 1L, 1997, pp. 47-103.
    137. Kessler, A., and Baldwin, I. T. Plant responses to insect herbivory: The emerging molecular analysis. Annual Review of Plant Biology, 2002, 53: 299-328.
    138. Khanna, H. K., and Raina, S. K. Agrobacterium-mediated transformation of indica rice cultivars using binary and super binary vectors. Australian Journal of Plant Physiology, 1999, 26: 311-324.
    139. Kim, H. S., and Delaney, T. P. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with N1M1INPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. The Plant Journal,2002,32: 151-163.
    140. Kinkema, M., Fan, W., and Dong, X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 2000, 12: 2339-2350.
    141. Klessig, D. F., and Malamy, J. The salicylic acid signal in plants. Plant Molecular Biology, 1994,26: 1439-1458.
    142. Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., and Kunkel, B. N. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. Plant Journal, 2001, 26: 509-522.
    143. Knoester, M, Pieterse, C. M. J., Bol, J. F., and van Loon, L. C. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Molecular Plant-Microbe Interactions, 1999, 12: 720-727.
    144. Kogel, K. H., Beckhove, U., Dreschers, J., Munch, S., and Romm(?), Y. Acquired resistance in barley. The resistance mechanisms induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance. Plant Physiology, 1994, 106: 1269-1277.
    145. Kogel, K. H., Ortel, B., Jarosch, B., Atzorn, R., Schiffer, R., and Wasternack, C. Resistance in barley against the powdery mildew fungus (Erysiphe graminis f.sp. hordei) is not associated with enhanced levels of endogenous jasmonates. European Journal of Plant Pathology, 1995, 101: 319-332.
    146. Koljak, R., Boutaud, O., Shieh, B-H., Samel, N., and Brash, A. R. Identification of a naturally occurring peroxidase-lipoxygenase fusion protein. Science, 1997, 277: 1994-1996.
    147. Kongrit, D., Jisaka, M., Kobayasi, K., Nishigaichi, Y., Nishimura, K., Nagaya, T., and Yokota, K. Molecular Cloning, Functional Expression, and Tissue Distribution of a Potato Sprout Allene Oxide Synthase Involved in a 9-Lipoxygenase Pathway. Bioscience, Biotechnology, and Biochemistry, 2006, 70: 2160-2168.
    148. Kubigsteltig, 1., Laudert, D., and Weiler, E. W. Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta, 1999, 208: 463-471.
    149. Kunkei, B. N., and Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Current Opinions in Plant Biology, 2002, 5: 325-331.
    150. Lam, E., and Lam, Y. K. P. Binding-site requirements and differential representation of TGA factors in nuclear ASF-1 activity. Nucleic Acids Research, 1995, 23: 3778- 3785.
    151. Lau, S-M. C, Harder, P. A., and O'Keefe, D. P. Low carbon monoxide affinity allene oxide synthase is the predominant cytochrome P450 in many plant tissues. Biochemistry, 1993, 32: 1945.
    152. Laudert, D., and Weiler, E. W. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant Journal, 1998, 15: 675-684.
    153. Laudert, D., Pfannschmidt, U., Lottspeich, F., Hollander-Czytko, H., and Weiler, E. W. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Molecular Biology, 1996, 31: 323-335.
    154. Laudert, D., Schaller, F., and Weiler, E. W. Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta, 2000, 211: 163-165.
    155. Lawrence, S. D., Dervinis, C, Novak, N., and Davis, J. M. Wound and insect herbivory responsive genes in poplar. Biotechnology Letters, 2006, 28: 1493-1501. doi: 10, 1007/s1 -529-006-9119-2.
    156. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal, 1996, 10:71-82.
    157. Lawton, K. A., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Molecular Plant-Microbe Interactions, 1995, 8: 863-870.
    158. Lehmann, J., Atzorn, R., Bruckner, C, Reinbothe, S., Leopold, J., Wasternack, C, and Parthier, B. Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta, 1995, 197: 156-162.
    159. Leon, J., Lawton, M. A., and Raskin, 1. Hydrogen peroxide stimulates salicyclic acid biosynthesis in tobacco. Plant Physiology, 1995, 108: 1673-1678.
    160. Li, C, Schilmiller, A. L., Liu, G., Lee, G. L, Jayanty, S., Sageman, C, Vrebalov, J.,Giovannoni, J. J., Yagi, K., Kobayashi, Y., and Howe, G. A. Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell, 2005,17: 971-986.
    161.Li, C., Williams, M.M., Loh, Y-T., Lee, G.I., and Howe, G.A.Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signalling pathway.Plant Physiology, 2002, 130: 494-503.
    162.Li, J., Brader, G., and Palva, E.T.The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense Plant Cell, 2004, 16: 319-331.
    163.Liu, G., Holub, E.B., Alonso, J.M., Ecker, J.R., and Fobert, P.R.An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance.Plant Journal, 2005, 41: 304-318.
    164.Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S.P.Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.Plant Journal, 2002, 30: 415-429.
    165.Livak, K.J., and Schmittgen, T.D.Analysis of relative gene expression data using real-time quantitative PCR and the2~(-△△)CT method.Methods, 2001,25: 402-408.
    166.Lucas, J.A.Plant Pathology and Plant Pathogens.Blackwell Science, Oxford, 1998.
    167.Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I.Salicylic acid a likely endogenous signal in the resistance response of tobacco to viral infection.Science,1990,250:1002-1004.
    168.Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dang, J.L., and Dietrich, R.A.The transcriptome of Arabidopsis thaliana during systemic acquired resistance.Nature Genetics, 2000, 26: 403-410.
    169.Malnoy, M., Borejsza-Wysocka, E.E., Aldwinckle, H.S., Jin, Q.L., and He, S.Y.Transgenic apple lines over-expressing the apple gene MpNPR1 have increased resistance to fire blight.Proceedings of the 10th International Workshop on Fire Blight, Bologna Italy 2004, Acta Horticulture, 2006, 704: 521-526.
    170.Mao, P., Duan, M., Wei, C., and Li, Y.WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression.Plant and Cell Physiology, 2007, 48: 833-842.
    171.Masuda, K..Kudo, S.A., and Inou, M.Callus transformation and plant regeneration from rice protoplasts purified by density gradient centrifugation.Plant Science, 1989,62: 337-342.
    172. Matsui, K. Properties and structures of fatty acid hydroperoxide lyase. Belgian Journal of Botany, 1998, 131: 50-62.
    173. Maucher, H., Hause, B., Feussner, I., Ziegler, J., and Wasternack, C. The allene oxide synthases of barley {Hordeum vulgare cv. Salome)-tissue specific regulation in seedling development. Plant Journal, 2000, 21: 199-213.
    174. Maucher, H., Stenzel, I., Miersch, O., Stein, N., Prasad, M., Zierold, U., Schweizer, P., Dorer, C, Hause, B., and Wasternack, C. The allene oxide cyclase of barley. Hordeum vulgare L.-cloning and organspecific expression. Phytochemistry, 2004, 65: 801-811.
    175. Mauch-Mani, B., and Metraux, J-P. Salicylic Acid and Systemic Acquired Resistance to Pathogen Attack. Annals of Botany, 1998, 82: 535-540.
    176. McConn, M., and Browse, J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell, 1996, 8: 403-416.
    177. McConn, M., Creelman, R.A., Bell, E., Mullet, J. E., and Browse, J. Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 5473-5477.
    178. McDowell, j. M., Cuzic, K. A., Can, C, Beynon, J., Dang, J. L., and Holub, E. B. Downy mildew {Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation.Plant Journal, 2000, 22: 523-529.
    179. McKenzie, C. L., Shatters, R. G., Doostdar, H., Lee, S. D., Inbar, M., and Mayer, R. T. Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Archives of Insect Biochemistry and Physiology, 2002, 49: 203-214.
    180. Mei, C. S., Qi, M., Sheg, G. Y., and Yang, Y. N. Inducible over expression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 2006, 19: 1127-1137.
    181. Metraux, J. P. Systemic acquired resistance and salicylic acid: current state of knowledge. European Journal of Plant Pathology, 2001, 107: 13-18.
    182. Meur, G., Budath, M., Gupta, A. D., Prakash, S., and Kirti, P. B. Differential induction of NPR1 during defense responses in Brassica juncea. Physiological and Molecular Plant Pathology, 2006, 68: 128-137.
    183. Mewis, I., Appel, H. M., Horn, A., Raina, R., and Schultz, J. C. Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both Phloem-Feeding and Chewing Insects. Plant Physiology, 2005, 138: 1149-1162.
    184. Moran, P. J., and Thompson, G. A. Molecular Responses to Aphid Feeding in Arabidopsis in Relation to Plant Defense Pathways. Plant Physiology, 2001, 125: 1074-1085.
    185. Moran, P. j., Cheng, Y., Cassell, J. L., and Thompson, G. A. Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of Insect Biochemistry and Physiology, 2002, 51: 182-203.
    186. Morris, S. W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C. C, Frederiksen, R. A., Bhandhufalck, A., Hulbert, S. and Uknes, S. Induced resistance responses in maize. Molecular Plant- Microbe Interactions, 1998, 11: 643-658.
    187. Mou, Z., Fan, W., and Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 2003, 113: 935-944.
    188. Mussig, C, Biesgen, C, Lisso, J., Uwer, U., Weiler, E. W., and Altmann, T. A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid action and jasmonic acid synthesis. Jouranl of Plant Physiology, 2000, 157: 143-152.
    189. Nagamura, Y., Antonio, B. A., and Sasaki, T. Rice molecular genetic map using RFLPs and its applications. Plant Molecular Biology, 1997, 35: 79-87.
    190. Narvaez-Vasquez, J., Florin-Christensen, J., and Ryan, C. A. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomotao leaves. Plant Cell, 1999, 11: 2249-2260.
    191. National Academy of Agricultural Sciences (NAAS), Biosafety of transgenic rice. Policy paper, 2003, 24: 1-3.
    192. Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant Journal, 1995, 8: 227-233.
    193.Nielsen, M.E., Lok, F., and Nielsen, H.B.Distinct developmental defense activations in barley embryos identified by transcriptome profiling.Plant Molecular Biology, 2006, 61:589-601.
    194.Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., and Ohashi, Y.Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves.Plant Cell Physiology, 1998, 39:500-507.
    195.Norm an- Setterblad, C., Vidal, S., and Palva, E.T.Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.Molecular Plant-Microbe Interactions, 2000, 13:430-438.
    196.O'Donnell, P.J., Schmelz, E., Block, A., Miersch, O., Wasternack, C., Jones, J.B.,and Klee, H.J.Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response.Plant Physiology, 2003, 133: 1181-1189.
    197.Olnes, S., Refsnes, K., and Pihl, A.Mechanism of action of toxin actins abrin and ricin.Nature, 1974, 249: 627-631.
    198.Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann,H.Jr., and Kangasjarv, J.Ozone-sensitive Arabidopsis rcdl mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death.Plant Cell, 2000, 12: 1849-1862.
    199.Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T.Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants.Plant and Cell Physiology, 2000, 41:391-398.
    200.Pan, Z., Durst, F., Wreck-Reichhart, D., Gardner, H.W., Camara, B., Cornish, K.,and Backhaus, R.A.The major protein of guayule rubber particles is a cytochrome P450.Journal of Biological Chemistry, 1995, 15: 8487-8494.
    201.Paquette, S.M., Bak, S.and Feyereisen, R.Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana.DNA Cell Biology, 2000, 19: 307-317.
    202.Pare, P.W., and Tumlinson, J.H.Plant volatiles as a defense against insect herbivores.Plant Physiology,1999, 121:325-331.
    203. Park, D. S., Lee, S. K., Lee, J. H., Song, M. Y., Song, S. Y., Kwak, D.Y., Yeo, U. S., Jeon, N. S., Park, S. K., Yi, G. W., Song, Y., Nam, M. J., Ku, Y. C, and Jeon, J. S. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis. Theoretical and Applied Genetics, 2007b, 115: 537-547.
    204. Park, J. H., Halitschke, R., Kim, H. B., Baldwin, 1. T., Feldmann, K. A., and Feyereisen, R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant Journal, 2002, 31: 1-12.
    205. Park, S. J., Huang, Y., and Ayoubi, P. Identification of expression profiles of sorghum genes in response to greenbug phloem feeding using cDNA subtraction and microarray analysis. Planta, 2005, 223: 932-947.
    206. Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D. F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007a, 318: 113-116.
    207. Pauw, B., and Memelink, J. Jasmonate-responsive gene expression. Journal of Plant Growth Regulation, 2005, 23: 200-210.
    208. Penninckx, I. A. M. A., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., Samblanx, G. W. D., Buchala, A., Metraux, J-P., Manners, J. M., and Broekaert, W. F. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 1996, 8: 2309-2323.
    209. Pereira, A. A transgenic perspective on plant functional genomics. Transgenic Research, 2000, 9: 245-260.
    210. Pfaffl, M. W., Horgan, G. W., and Dempfle, L. Relative expression software tool (REST_) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 2002, 30: e36.
    211. Pieterse, C. M. J., and Van Loon, L. C. NPR1: the spider in the web of induced resistance signaling pathways. Current Opinions in Plant Biology, 2004, 7: 456-464.
    212. Pieterse, C. M. J., Van Pelt, J. A., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Keurentjes, J. J. B., Verhagen, B. W. M., Knoester, M., Van der Sluis, 1., Bakker, P. A. H. M., and Van Loon, L. C. Rhizobacteria-mediated induced systemic resistance: triggering, signalling, and expression. European Journal of Plant Pathology, 2001,107:51-61.
    213. Pieterse, C. M. J., Van Wees, S. C. M, Hoffland, E., Van Pelt, J. A., and Van Loon, L. C. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogensis-related gene expression. Plant Cell, 1996, 8: 1225-1237.
    214. Pieterse, C. M. J., Van Wees, S. C. M., Van Pett, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and Van Loon, L. C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 1998, 10: 1571- 1580.
    215. Pilotti, M., Brunetti, A., Gallelli, A., and Loreti, S. NPR1-like genes from cDNA of rosaceous trees: cloning strategy and genetic variation. Tree genetics and genomes,2008, 4: 49-63.
    216. Powell, K. S., Gatehouse, A. M. R., Hilder, V. A., and Gatehouse, J. A. Antifeedant effects of plant lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata, 1995, 75: 51-59.
    217. 218.Pozo, M. J., Van Loon, L. C, and Pieterse, M. J. Jasmonates-signal in plant- microbe interactions. Journal of Plant Growth Regulation, 2005, 23: 211-222.
    218. Preston, C. A., Lewandowski, C, Enyedi, A. J., and Baldwin, 1. T. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta, 1999, 209: 87-95.
    219. Raacke, I. C, Mueller, M. J., and Berger, S. Defects in Allene Oxide Synthase and 12-Oxa-Phytodienoic Acid Reductase Alter the Resistance to Pseudomonas syringae and Botrytis cinerea, Journal of Phytopathology, 2006, 154: 740-744.
    220. Rao, M. V., Lee, H., Creelman, R. A., Mullet, J. E., and Davis, K. R. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell, 2000, 12: 1633-1646.
    221. Rashid, H., Yokoi, S., Toriyama, K., and Hinata, K. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Replication, 1996, 15: 727-730.
    222.Rasmussen, J.B., Hammerschmidt, R., and Zook, M.N.Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae.Plant Physiology, 1991,97:1342-1347.
    223.Repka, V.Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures.Plant Biology, 2001,44: 555-565.
    224.Raven, P.H., Evert, R.F., and Eichhorn, S.E.Biology of plants, 6~(th) Edition, W.H.Freeman, New York.1999.
    225.Reymond, P., Bodenhausen, N., Van Poecke, R.M.P., Krishnamurthy, V., Dicke,M., and Farmer, E.E.A conserved transcript pattern in response to a specialist and a generalist herbivore.Plant Cell, 2004, 16: 3132-3147.
    226.Reymond, P., Weber, H., Damond, M., and Farmer, E.E.Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis.Plant Cell, 2000, 12: 707-720.
    227.Richard, S., Lapointe, G., Rutledge, R.G., and Seguin, A.Induction of chalcone synthase expression in white spruce by wounding and jasmonate.Plant Cell Physiology, 2000, 41:982-987.
    228.Ross, A.F.Systemic acquired resistance induced by localized virus infections in plants.Virology, 1961,14: 340-358.
    229.Rueb, S., Leneman, M., Schilperoort, R.A., and Hensgens, L.A.M.Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.).Plant Cell Tissue and Organ Culture, 1994, 36: 259-264.
    230.Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H-Y., Johnson, J., Delaney, T.P., Jesse, T., VOS, P., and Uknesa, S.The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IkR.Plant Cell,1997,9:425-439.
    231 .Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D.Systemic acquired resistance.The Plant Cell, 1996, 8: 1809-1819.
    232.Saharan, V., Yadav, R.C., Yadav, N.R., and Ram, K.Studies on improved Agrobacterium-mediated transformation in two indica rice (Oryza sativa L.).African Journal of Biotechnology, 2004, 3: 572-575.
    233. Saltveit, M. E., Choi, Y-J., and Tomas-Barberan, F. A. Involvement of components of the phospholipid-signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca sativa) leaf tissue. Physiologia Plantarum, 2005, 125: 345-355.
    234. Sambrook, J., and Russell, D. W. In: Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. 2001.
    235. Sanders, P. M., Lee, P. Y., Biesgen, C, Boone, J. D., Beals, T. P., Weiler, E. W., and Goldberg, R. B. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell, 2000, 12: 1041-1061.
    236. Sasaki, T. The rice genome project in Japan. Proceedings of National Academy of Sciences USA., 1998, 95: 2027-2028.
    237. Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y., Antonio, B. A., Kanamori, H., Hosokawa, S., Masukawa, M., Arikawa, K., Chiden, Y., Hayashi, M., Okamoto, M., Ando, T., Aoki, H., Arita, K., Hamada, M., Harada, C, Hijishita, S., Honda, M., Ichikawa, Y., Idonuma, A.,Jijima, M., Ikeda, M., Ikeno, M., Ito, S., Ito, T., Ito, Y., Ito, Y., Iwabuchi, A., Kamiya, K., Karasawa, W., Katagiri, S., Kikuta, A., Kobayashi, N., Kono, I., Machita, K., Maehara, T., Mizuno, H., Mizubayashi, T., Mukai, Y., Nagasaki, H., Nakashima, M., Nakama, Y., Nakamichi, Y., Nakamura, M, Namiki, N., Negishi, M., Ohta, 1., Ono, N., Saji, S., Sakai, K., Shibata, M., Shimokawa, T., Shomura, A., Song, J., Takazaki, Y., Terasawa, K., Tsuji, K., Waki, K., Yamagata, H., Yamane, H., Yoshiki, S., Yoshihara, R., Yukawa, K., Zhong, H., lwama, H., Endo, T., Ito, H., Hahn, J. H., Kim, H. I., Eun, M. Y., Yano, M, Jiang, J., and Gojobori, T. The genome sequence and structure of rice chromosome 1. Nature, 2002,420:312-316.
    238. Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., Kuwata, C, Tsugane, T., Masuda, T., Shimada, H., Takamiya, K., Ohta, H., and Tabata, S. Monitoring of methyl jasmonate-responsive gene in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Research, 2001, 8: 153-161.
    239. Satou, M., Kuroda, K., Mitsuhara, L, Ohashi, Y., Hasegawa, M., Kodama, O., and Kanno, H. Induced disease resistance to pathogen infection by infestation with planthopper in rice plants. The International Joint Workshop on PR-Proteins and Induced Resistance, 2004, p. 26. http://pr-ir2004.risoe.dk.
    240. Savary, S., Willocquet, L., Elazegui, F. S., Castilla, N. P., and Teng, P. S. Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Disease, 2000, 84: 357-369.
    241. Schaller, F. Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. Journal of Experimental Botany, 2001, 52: 1-23.
    242. Schaller, F., Hennig, P., and Weiler, E. W. 12-Oxophytodienoate- 10,11-reductase: occurrence of two isoenzymes of different specificity against stereoisomers of 12- oxophytodienoic acid. Plant Physiology, 1998, 118:1345-1351.
    243. Schaller, F., Schaller, A., and Stintzi, A. Biosynthesis and metabolism of jasmonates. Jornal of Plant Growth Regulators, 2004, 23: 179-199.
    244. Schenk, P. M, Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C, and Manners, J. M. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 11655-11660.
    245. Schneider, M., Schweizer, P., Meuwly, P., and Metraux, J. P. Systemic acquired resistance in plants. International Journal of Cytolology, 1996, 168: 303-340.
    246. Schuler, M. A. Plant cytochrome P450 monooxygenases. Crititical Reviews in Plant Science, 1996, 15: 235-284.
    247. Schweizer, P., Buchala, A., and Metraux, J. P. Gene expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2,6-dichloroisonicotinic acid. Plant Physiology, 1997, 115: 61-70.
    248. Seo, H. S., Song, j. T., Cheong, J. J., Lee, Y-H., Lee, Y-W., Hwang, I., Lee, j. S., and Choi, Y. D. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 4788-4793.
    249. Shah, J. The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 2003,6:365-371.
    250. Shah, J., Tsui, F., and Klessig, D. F. Characterization of a salicylic acidinsensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Molecular Plant-Microbe Interactions, 1997, 10:69-78.
    251. Sharma, H. C, Sharma, K. K., and Crouch, J. H. Genetic transformation of crops for insect resistance: potential and limitations. Critical Reviews in Plant Science, 2004, 23: 47-72.
    252. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P., and Raskin, I. Salicylic acid in rice: biosynthesis, conjugation, and possible role. Plant Physiology, 1995,108:633-639.
    253. Siqueira-Junior, C. L., Jardim, B. C, Urmenyi, T. P., Vicente, A. P. C, Hansen, E., Otsuki, K., da Cunha, M., Madureira, H. C, de Carvalho, D. R., and Jacinto, T. Wound response in passion fruit (Passiftora f. edulis flavicarpa) plants: gene characterization of a novel chloroplast-targeted allene oxide synthase up-regulated by mechanical injury and methyl jasmonate, Plant Cell Replication, 2008, 27: 387-397.
    254. Sivasankar, S., Sheldrick, B., and Rothstein, S. J. Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiology, 2000, 122: 1335- 1342.
    255. Sogawa, K. The rice brown planthopper: feeding physiology and host plant interactions. Annual Review of Entomology, 1982, 27: 49-73.
    256. Song, J., Lee, D. E., Jung, S., Kim, H., Hand, O., Cho, B. H., Lee, I. J., and Back, K. Characterization of transgenic rice plants expressing an Arabidopsis FAD7. Biologia Plantarum, 2004, 48: 361-366.
    257. Song, W-C, and Brash, A. R. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science, 1991, 253: 781-784.
    258. Song, W-C, Funk, C. D., and Brash, A. R. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 8519-8523.
    259. Spoel, S. H., Koornneef, A., Claessens, M. S. C, Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J-P., Brown, R., Kazan, K., Van Loon, L. C, Dong, X., and Pieterse, C. M. J. NPR1 modulates crosstalk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 2003, 15:760-770.
    260. Staswick, P. E., and Lehman, C. C. Jasmonic acid-signaled responses in plants. In: Induced Plant Defenses against Pathogens and Herbivores, (eds. Agrawal, A. A., Tazun, S., Bent, E.), St. Paul, MN: APS Press. The American Phytopathological Society, 1999, 117-136.
    261. Staswick, P. E., Su, W. P., and Howell, S. H. Methyl jasmonate inhibition of root- growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of National Academy of Sciences USA, 1992, 89: 6837-6840.
    262. Steppuhn, A., Gasc, K., Krock, B., Halitschke, R., and Baldwin, 1. T. Nicotines defensive fluctuation in nature. PLOS Biology, 2004, 2: 1074-1080.
    263. Stenzel, 1., Hause, B., Maucher, H., Pitzschke, A., Miersch, O., Ziegler, J., Ryan, C.A., and Hamberg, M. Biosynthesis of 12-oxo-10,15 Z-phytodienoic acid: identification of an allene oxide cyclase. Biochemical and Biophysical Research Communications, 1988, 156: 543-550.
    264. Stenzel, I., Hause, B., Miersch, O., Kurz, T., Maucher, H., Weichert, H., Ziegler, J., Feussner, I., and Wasternack, C. Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Molecular Biology, 2003, 51: 895-911.
    265. Sticher, L., Mauch-Mani, B., and Metraux, J. P. Systemic acquired resistance. Annual Review of Phytopathology, 1997, 35: 235-270.
    266. Stintzi, A., and Browse, J. The Arabidopsis male-sterile mutant, opr3, lacks the 12- oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 10625- 10630.
    267. Stotz, H. U., Koch, T., Biedermann, A., Weniger, K., Boland, W., and Mitchell-Olds, T. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta, 2002, 214: 648-652.
    268. Stout, M. .1., Workman, K. V., Bostock, R. M., Duffey, S. S. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia,1998, 113: 74-81.
    269.Stumpe, M., Gobel, C., Demchenko, K., Hoffmann, M., Klosgen, R.B., Pawlowski, K., and Feussner, 1.Identification of an allene oxide synthase (CYP74C) that leads to formation of a-ketols from 9-hydroperoxides of linoleic and linolenic acid in belowground organs of potato.Plant Journal, 2006, 47: 883-896.
    270.Subramaniam, R., Desveaux, D., Spickler, C., Michnick, S.W., and Brisson, N.Direct visualization of protein interactions in plant cells.Nature Biotechnology, 2001,19: 769-772.
    271.Sugano, S., Kaminaka, H., Rybka, Z., Catala, R., Salinas, J., Matsui, K., Ohme-Takagi, M., and Takatsuji, H.Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia.Plant Journal, 2003, 36: 830-841.
    272.Summermatter, K., Sticher, L., and Metraux, J.P.Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae.Plant Physiology, 1995, 108: 1379-1385.
    273.Tang, Y., Zhang, Z., and Xin, Z.Isolation and characterization of NPR1 homolog gene TiNH1 in Thinopyrum intermedium.Scientia Agricultura Sinica, 2007, 40: 1101-1107.
    274.Thaler, J.S., Fidantsef, A.L., Duffey, S.S., and Bostock, R.M.Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance.Journal of Chemical Ecology, 1999, 25: 1597-1609.
    275.Thaler, J.S., Karban, R., Ullman, D.E., Boege, K., and Bostock, R.M.Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites.Oecologia, 2002, 131:227-235.
    276.Thaler, J.S., Owen, B., and Higgins, V.J.The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles.Plant Physiology,2004,135:530-38.
    277.Thomma, B.P., Eggermont, K., Penninckx, 1., Mauch-Mani, B., Vogelsang, R.,Cammue, B.P., and Broekaert, W.F.Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens.Proceedings of the National Academy of Sciences of United States ofAmerica, 1998.95: 15107-15111.
    278.Thomma, B.P., Nelissen, I., Eggermont, K., and Broekaert, W.F.Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola.Plant Journal, 1999, 19: 163-171.
    279.Tijet, N., and Brash, A.R.Allene oxide synthases and allene oxides.Prostaglandins Other Lipid Mediators, 2002, 69: 423-31.
    280.Ton, J., and Mauch-Mani, B.b-Amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose.Plant Journal, 2004, 38: 119-130.
    281.Ton, J., Jakab, G., Toquin, V., Flors, V., lavicoli, A., Maeder, M.N., Metraux, J-P., andMauch-Mani,B.Dissecting the b-aminobutyric acid-induced priming phenomenon in Arabidopsis.Plant Cell, 2005, 17: 987-999.
    282.Turlings, T.C.J., Tumlinson, J.H., and Lewis, W.J.Exploitation of herbivoreinduced plant odors by host-seeking parasitic wasps.Science, 1990, 30: 1251-1253.
    283.Turner, J.G., Ellis, C., and Devoto, A.The jasmonate signal pathway.Plant Cell,2002,14: 153-164.
    284.Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S.,Chandler, D., Slusarenko, A., Ward, E., and Ryals, J.Acquired resistance in Arabidopsis.Plant Cell, 1992, 4: 645-656.
    285.Vallad, G.E., and Goodman, R.M.Systemic acquired resistance and induced systemic resistance in conventional agriculture.Crop Science, 2004, 44: 1920-1934.
    286.Vanacker, H., Lu, H., Rate, D.N., and Greenberg, J.T.A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis.The Plant Journal, 2001,28: 209-16.
    287.Vandenabeele, S., Van Der Kelen, K., Dat, J., Gadjev, I., Boonefaes,T.,Morsa, S., Rottiers, P., Slooten, L., Van Montagu, M., Zabeau, M., Inze, D., and Van Breusegem, F.A comprehensive analysis of hydrogen peroxide induced gene expression in tobacco.Proceedings of the National Academy of Sciences, 2003, 100:16113-16118.
    288.Van der Westhuizen, A.J., Qian, X-M., and Botha, A-M.β-1,3-glucariase in wheat and resistance to the Russian wheat aphid.Physiologia Plantarum, 1998a, 103: 125-131.
    289. Van der Westhuizen, A. J., Qian, X-M, and Botha, A-M Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Replication, 1998b, 18: 132-137.
    290. Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 1997, 103: 753-765.
    291. Van Loon, L. C, and Van Kammen, A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. 'Samsun' and 'Sarnsun NN'. Ⅱ. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 1970,40:199-211.
    292. Van Loon, L. C, and Van Strien, E. A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-\ type proteins. Physiological and Molecular Plant Pathology, 1999, 55: 85-97.
    293. Van Loon, L. C, Bakker, P. A. H. M., and Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 1998, 36: 453- 483.
    294. Van Poecke, R. M. P., and Dicke, M. Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1. Plant, Cell and Environment, 2003, 26: 1541-1548.
    295. Van Poecke, R. M. P., Posthumus, M. A., and Dicke, M. Herbivore induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. Journal of Chemical Ecology, 2001, 27: 1911-1928.
    296. Van Wees, S. C. M., De Swart, E. A., Van Pelt, J. A., Van Loon, L. C, and Pieterse, C. M. J. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:8711-8716.
    297. Van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., Van Loon, L. C, and Pieterse, C. J. Rhizobacteria-mediated induced systemic resistance (1SR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology, 1999, 41: 537-549.
    298. Verberne, M. C, Hoekstra, J., Bol, J. F., and Linthorst, H. J. M. Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant Journal, 2003, 35: 27-32.
    299. Verhagen, B.W., Glazebrook, J., Zhu, T., Chang, H.S., Van Loon, L.C., and Pieterse, CM. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interacteractions, 2004, 17: 895-908.
    300. Vick, B. A. Oxygenated fatty acids of the lipoxygenase pathway. In: Lipid Metabolism in Plants (ed. Moore, T. S.), CRC Press Inc, Florida. 1993, pp. 167-191.
    301. Vick, B. A., and Zimmerman, D. C. The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochemical and Biophysical Research Communications, 1983, 111: 470-477.
    302. Vick, B.A., and Zimmerman, D. C. Biosynthesis of jasmonic acid by several plant species. Plant Physiology, 1984, 75: 458-461.
    303. Vick, B. A., and Zimmerman, D. C. Pathways of fatty acid hydroproxide metabolism in spinach leaf chloroplasts. Plant Physiology, 1987, 85: 1073-1078.
    304. Vijayan, P., Shockey, J., Levesque, C. A., Cook, R. J., and Browse, J. A role for jasmonate in pathogen defense of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 7209-7214.
    305. Von Malek, B., Van Der Graaff, E., Schneitz, K., and Keller, B. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta, 2002,216: 187-192.
    306. Vorwerk, S., Somerville, S., and Somerville, C. The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 2004, 9: 203-209.
    307. Walling, L. L. The myriad plant responses to herbivores. Journal of Plant Growth Regulation, 2000, 19: 195-216.
    308. Wang, C, Avdiushko, S., and Hildebrand, D. F. Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco. Plant Molecular Biology, 1999, 40: 783-793.
    309. Wang, K. L. C, Li, H., and Ecker, J. R. Ethylene biosynthesis and signaling networks. Plant Cell, 2002, 14: S131-S151.
    310. Wang, X. Influence of infestation by herbivores with different feeding habits or treatment by (3-glucosidase on levels of main defense-related signals in rice plants. [M.Sc. Thesis], Zhejiang University, 2006, 59pp.
    311. Wang, X. J., Dou, D. L., Wang, Z. X., and Jia, S. R. Cloning Full-Length cDNA ofGbNPR1 Gene from Gossypium barbadense and its Expression in Transgenic Tobacco. Scientia Agricultura Sinica, 2006, 39: 886-894.
    312. Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. Microarray analysis of the gene expression profile induced by the endophytic plant growth- promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Molecular Plant-Microbe Interactions, 2005, 18: 385-396.
    313. Ward, E. R., Uknes, S. J., Williams, S. C, Dincher, S. S., Wiederhold, D. L., Alexander, D. C, Ah1-Goy, P., Me traux, J-P., and Ryals, J. A. Coordinate gene activity in response to agents that induce systemicacquired resistance. Plant Cell, 1991,3: 1085-1094.
    314. Wastemack, C, and Hause, B. Jasmonates and octadecanoids: Signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, 2002, 72: 165-2.
    315. Wasternack, C, and Parthier, B. Jasmonate-signaled plant gene expression. Trends in Plant Science, 1997, 2: 302-307.
    316. Weber, H. Fatty acid-derived signals in plants. Trends in Plant Science, 2002, 7: 217-224.
    317. Whalon, M. E., and Morris, D. L. Managing target pest adaption: the case of Bt transgenic plant deployment. Managing Agricultural Biotechnology - Addressing Research Program Needs and Policy Implications (ed. Cohen, J. 1.), ISNAR, the Hague. The Netherlands and CAB International, Wallingford, UK. 1999, pp. 194- 205.
    318. White, R. F. Acetylsalicylic acid (aspirin) induces resistance to TMV in tobacco. Virology, 1979, 99: 410-412.
    319. Wu, G. S., Shortt, B. J., Lawrence, E. B., Leon, J., Fitzsimmons, K. C, Levine, E. B., Raskin, I., and Shah, D. M. Activation of host defense mechanisms by elevated production of H_2O_2 in transgenic plants. Plant Physiology, 1997, 115: 427-435.
    320. Wu, K. L., Guo, Z. J., Wang, H. H., and Li, J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 2005, 12: 9-26.
    321. Wunn, J., Kloti, A., Burkhardt, P. K., Ghosh Biswas, G. C, Launis, K., Iglesias, V. A., and Potrykus, I. Transgenic indica rice breeding line IR58 expressing a synthetic cry lA (b) gene from Bacillus thuringiensis provides effective insect pest control. Bio Technology, 1996, 14: 171-176.
    322. Xi, H., Stettmaier, K., Michel, C, Hutzler, P., Mueller, M. J., and Durner, J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 2004, 218: 938-946.
    323. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., and Turner, j. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998,280: 1091-1094.
    324. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W. L., Ma, H., Peng, W., Huang, D., and Xie, D. The SCF_(COII) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell, 2002, 14: 1919-1935.
    325. Yamasaki, Y., Kunoh, H., Yamamoto, H., and Akimitsu, K. Biological roles of monoterpene volatiles derived from rough lemon (Citrus jambhiri Lush) in citrus defense. Journal of General Plant Pathology, 2007, 73: 168-179.
    326. Yan, C. J., and Zhao, Q. H. Callus induction and plantlet regeneration from leaf blade of Oryza saliva subsp. Indica. Plant Science Letters, 1982, 29: 175-182.
    327. Yan, Z., Reddy, M. S., Yyu, C. M., Mclnroy, J. A., Wilson, M., and Kloepper, J. W. Induced systemic protection against tomato late blight by plant growth-promoting rhizobacteria. Phytopathology, 2002, 92: 1329-1333.
    328. Yang, Y. O., Shah, j., and Klessig, D. F. Signal perception and transduction in defense responses. Genes and Development, 1997, 11: 1621-1639.
    329.Yimiao, T., Zengyan, Z., and Zhiyong, X.Isolation and characterization of NPR1 homolog gene TiNH1 in Thinopyrum intermedium.Monograph, 2007, 40: 1101-1107.
    330.Yu, D., Chen, C., and Chen, Z.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression.Plant Cell, 2001,13:1527-1539.
    331.Yuan, Y., Zhong, S., Li, Q., Zhu, Z., Lou, Y.G., Wang, L., Wang, J., Wang, M., Li, Q., Yang, D., and He, Z.Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility.Plant Biotechnology Journal, 2007, 5: 313-324.
    332.Zarate, S.I., Kempema, L.A., and Walling, L.L.Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses.Plant Physiology, 2007, 143: 866-875.
    333.Zeringue, H.J.Jr.Effect of C6 to C9 alkenals on aflatoxin production in corn, cotton seed, and peanuts.Applied and Environmental Microbiology,1991,57: 2433-2434.
    334.Ziegler, J., Keinanen, M., and Baldwin, I.T.Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuate.Phytochemistry, 2001,58: 729-738.
    335.Ziegler, J., Stenzel, I., Hause, B., Maucher, H., Hamberg, M., Grimm, R., Ganal, M., and Wasternack, C.Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates.Journal of Biological Chemistry, 2000, 275: 19132-19138.
    336.Zhang, Y., and Wang, L.The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants.BMC Evolutionary Biology, 2005, 5:1-12.
    337.Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X.Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene.Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 6523-6528.
    338.Zhang, Y., Tessaro, M.J,Lassner, M,and Li, X.Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance.Plant Cell, 2003, 15: 2647-2653.
    339. Zhou, J. M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., and Klessig, D. F. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-\ gene required for induction by salicylic acid. Molecular Plant-Microbe Interaction, 2000, 13: 191-202.
    340. Zhu, Y. J., Qiu, X., Moore, P. H., Borth, W., Hu, J., Ferreira, S., and Albert, H. H. Systemic acquired resistance induced by BTH in papaya. Physiological and Molecular Plant Pathology, 2003, 63: 237-248.
    341. Zhu-Salzman, K., Bi, J. L., and Liu, T. X. Molecular strategies of plant defense and insect counter defense. Insect Science, 2005, 12: 3-15.
    342. Zhu-Salzman, K, Salzman, R. A., Ahn, J-E., and Koiwa, H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiology, 2004, 134: 420-431.
    343. Zimmerli, L., Jakab, G., Metraux, J. P., and Mauch-Mani, B. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by b-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 2000,97: 12920-12925.
    344. Zimmerman, D. C. A new product of linoleic acid oxidation by a flaxseed enzyme, Biochemical and Biophysical Research Communications, 1966, 23: 398-402.
    Agelopoulos, N. G., Dicke, M., and Posthumus, M. A., 1995. Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): A behavioral and chemical study. Journal of Chemical Ecology, 21: 1789-1811.
    Alborn, H. T., Lewis, W. J., and Tumlinson, J. H., 1995. Host-specific recognition kairomone for the parasitoid Microplitis croceipes (Cresson). Journal of Chemical Ecology, 21: 1697-1708.
    Aldrich, J. R., Bartelt, R. J., Dickens, J. C, Knight, A. L., Light, D. M., and Tumlinson, J. H., 2003. Insect chemical ecology research in the United States Department of Agriculture-Agricultural Research Service. Pest Management Science, 59: 777-787.
    Aldrich, J.R., Rosi, M.C., and Bin, F., 1995. Behavioral correlates for minor volatile compounds from stink bugs (Heteroptera: Pentatomidae). Journal of Chemical Ecology, 21: 1907-1920.
    Ananthakrishnan, T. N., Senrayan, R., Murugesan, S., and Annadurai, R. S., 1991. Kairomones of Heliothis armigera and Corcyra cephalonica and their influence on the parasitic potential of Trichogramma chilonis (Trichogrammatidae: Hymenoptera). Journal of Biosciences, 16: 111-119.
    Arthur, A. P., 1981. Host acceptance by parasitoids. Semiochemicals: Their Role in Pest Control (eds. D. A. Nordlund, R. L. Jones and W. J. Lewis), pp. 97-120. John Wiley, New York.
    Auger, J., Lecomte, C, Paris, J., and Thibout, E., 1989. Identification of leekmoth and diamondback-moth frass volatiles that stimulate parasitoid, Diadromus pulchellus. Journal of Chemical Ecology, 15: 1391-1398.
    Bai, S. X., Wang, Z. Y., He, K. L., and Zhou, D. R., 2004. Olfactory responses of Trichogramma ostriniae Pang et. Chen to kairomones from eggs and different stages of adult females of Ostrinia furnacalis (Guenee). Acta Entomologica Sinica, 47: 48-54.
    Battaglia, D., Pennacchio, F., Marincola, G., and Tranfaglia, A., 1993. Cornicle secretion of Acyrthosiphon pisum (Homoptera: Aphididae) as a contact kairomone for the parasitoid Aphidius ervi (Hymenoptera: Braconidae). European Journal of Entomology, 90: 423-428.
    Battaglia, D., Poppy, G., Powell, W., Romano, A., Tranfaglia, A., and Pennacchio, F., 2000. Physical and chemical cues influencing the oviposition behaviour of Aphidius ervi. Entomologia Experimentalis et Applicata, 94: 219-227.
    Beevers, M, Lewis, W. J., Gross, H. R. Jr., and Nordlund, D. A., 1981. Kairomones and their use for management of entomophagous insects: X. Laboratory studies on manipulations of host-finding behavior of Trichogramma pretiosum Riley with a kairomone extracted from Heliothis zea (Boddie) moth scales. Journal of Chemical Ecology, 7: 635-648.
    Bekkaoui, A., and Thibout, E., 1993. Role of the cocoon of Acrolepiopsis assectella(Lep., Hyponomeutoidae) in host recognition by the parasitoid Diadromus pulchellus (Hym., Ichneumonidae). BioControl, 38: 101-113.
    Benedet, F., Bigot, Y., Renault, S., Pouzat, J., and Thibout, E., 1999. Polypeptides of Acrolepiopsis assectella cocoon (Lepidoptera: Yponomeutoidea): an external host- acceptance kairomone for the parasitoid Diadromus pulchellus (Hymenoptera:Ichneumonidae). Journal of Insect Physiology, 45: 375-384.
    Bin, F., Vinson, S. B., Strand, M. R., Colazza, S., and Jones, W. A., 1993. Source of an egg kairomone for Trissolcus basalts, a parasitoid of Nezara viridula. Physiological Entomology, 18: 7-15.
    Boo, K. S., and Yang, J. P., 2000. Kairomones used by Trichogramma chilonis to find Helicoverpa assulta eggs. Journal of Chemical Ecology, 26: 359-375.
    Borges, M., Colazza, S., Ramirez-Lucas, P., Chauhan, K. R., Kramer, M., Moraes, M. C.B., and Aldrich, J. R., 2003. Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera: Scelionidade). Physiological Entomology, 28: 349-355.
    Borges, M, Costa, M. L. M., Sujii, E. R., Cavalcanti, M. D. G., Redigolo, G. F., Resck, I. S., and Vilela, E. F., 1999. Semiochemical and physical stimuli involved in host recognition by Telenomus podisi (Hymenoptera: Scelionidae) toward Euschistus heros (Heteroptera: Pentatomidae). Physiological Entomology, 24: 227-233.
    Bouchard, Y., and Cloutier, C, 1984. Honeydew as a source of host searching kairomones for the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Canadian Journal of Zoology, 62: 1513-1520.
    Brotodjojo, R. R. R., and Walter, G. H., 2006. Oviposition and reproductive performance of a generalist parasitoid (Trichogramma pretiosum) exposed to host species that differ in their physical characteristics. Biological Control, 39: 300-312.
    Budenberg, W. J., 1990. Honeydew as a contact kairomone for aphid parasitoids. Entomologia Experimental et Applicata, 55: 139-448.
    Bue, P. L., Colazza, S., Forster, L. D., Millar, J. G., and Luck, R. F., 2004. Responses of Metaphycus sp. nr. flavus to semiochemicals released from a scale host, Coccus hesperidum. Chemoecology, 14: 151-156.
    Calatayud, P. A., Auger, J., Thibout, E., Rousset, S., Caicedo, A. M, Calatayud, S., Buschmann, H., Guillaud, J., Mandon, N., and Bellotti, A. C, 2001. Identification and synthesis of a kairomone mediating host location by two parasitoid species of the cassava mealybug Phenacoccus herreni. Journal of Chemical Ecology, 27: 2203-2217.
    Carde, R. T., and Lee, H. P., 1989. Effect of experience on the responses of the parasitoid Brachymeria intermedia (Hymenoptera: Chalcididae) to its host, Lymantria dispar (Lepidoptera: Lymantriidae), and to kairomone. Annals of the Entomological Society of America, 82: 653-657.
    Chiri, A. A., and Legner, E. F., 1986. Response of three Chelonus (Hymenoptera: Braconidae) species to kairomones in scales of six Lepidoptera. Canadian Entomologist, 118: 329-333.
    Chuche, J., Xuereb, A., and Thiery, D., 2006. Attraction of Dibrachys cavus (Hymenoptera: Pteromalidae) to its host frass volatiles. Journal of Chemical Ecology, 32:2721-2731.
    Colazza, S., and Rosi, M. C, 2001. Difference in the searching behaviour of two strains of the egg parasitoid Telenomus busseolae (Hymenoptera: Scelionidae). European Journal of Entomology, 98: 47-52.
    Colazza, S., Aquila, G., De Pasquale, C, Peri, E., and Millar, J. G., 2007. The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. Journal of Chemical Ecology, 33: 1405-1420.
    Colazza, S., Rosi, M. C, and Clemente, A., 1997. Response of egg parasitoid Telenomus busseolae to sex pheromone of Sesamia nonagrioides. Journal of Chemical Ecology, 23: 2437-2444.
    Colazza, S., Salerno, G., and Wajnberg, E., 1999. Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biological Control, 16: 310-317.
    Conti, E., Salerno, G., Bin, F., and Vinson, S. B., 2004. The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biological Control, 29: 435-444.Conti, E., Salerno, G., Bin, F., Williams, H. J., and Vinson, S. B., 2003. Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. Journal of Chemical Ecology, 29: 115-130.
    Cortesero, A. M., and Monge, J. P., 1994. Influence of pre-emergence experience on response to host and host plant odors in the larval parasitoid Eupelmus vuilleti. Entomologia Experimentalis et Applicata, 72: 281-288.
    Cortesero, A. M., Monge, J. P., and Huignard, J., 1993. Response of the parasitoid Eupelmus vuilleti to the odors of the phytophagous host and its host plant in an olfactometer. Entomologia Experimentalis et Applicata, 69: 109-1 16.
    Cournoyer, M, and Boivin, G., 2004. Infochemical-mediated preference behavior of the parasitoid Microctonus hyperodae when searching for its adult weevil hosts. Entomologia Experimentalis et Applicata, 112: 117-124.
    Delury, N. C, Gries, R., Gries, G., Judd, G. J. R., and Khaskin, G., 1999. Moth scale derived kairomones used by egg-larval parasitoid Ascogaster quadridentata to locate eggs of its host, Cydia pomonella. Journal of Chemical Ecology, 25: 2419- 2431.
    De Moraes, C. M., and Lewis, W. J., 1999. Analyses of two parasitoids with convergent foraging strategies. Journal of Insect Behavior, 12: 571-583.
    De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H., 1998. Herbivore-infested plants selectively attract parasitoids. Nature, 393: 570-573.
    Dicke, M., and Sabelis, M. W., 1988a. How plants obtain predatory mites as bodyguards. Netherlands Journal of Zoology, 38: 148-165.
    Dicke, M., and Sabelis, M. W., 1988b. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds. Functional Ecology, 2: 131-139.
    Dmoch, J., Leiws, W. J., Martin, P. B., and Nordlund, D. A., 1985. Role of host-produced stimuli and learning in host selection behavior of Cotesia (Apanteles) marginiventris (Cresson). Journal of Chemical Ecology, 11: 453-463.
    Doutt, R. L., 1959. The biology of parasite Hymenoptera. Annual Review of Entomology, 4: 161-182.
    Du, Y., Poppy, G. M., Powell, W., Pickett, j. A., Wadhams, L. J., and Woodcock, C. M., 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. Journal of Chemical Ecology, 24: 1355-1368.
    Eller, F. J., Tumlinson, J. H., and Lewis, W. J., 1988. Beneficial arthropod behavior mediated by airborne semiochemicals: Source of volatiles mediating the host- location flight behavior of Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a parasitoid of Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Environmental Entomology, 17: 745-753.
    Eller, F. J., Tumlinson, J. H., and Lewis, W. J., 1992. Effect of host diet, and preflight experience on the flight responses of Microplitis croceipes (Cresson). Physiological Entomology, 17: 1607-1616.
    Elzen, G. W., Williams, H. J., and Vinson, S. B., 1984. Isolation and identification of cotton synomones mediating searching behavior by parasitoid Campoletis sonorensis. Journal of Chemical Ecology, 19: 1251-1264.
    Elzen, G. W., Williams, H. J., Vinson, S. B., and Powell, J. E., 1987. Comparative flight behavior of parasitoid Campoletis sonorensis and Microplitis croceipes. Entomologia Experimentalis et Applicata, 9:113-123.
    Fatouros, N. E., Bukovinszkine'Kiss, G., Dicke, M., and Hilker, M., 2007. The response specificity of Trichogramma egg parasitoids towards infochemicals during host location. Journal of Insect Behavior, 20: 53-65.
    Fatouros, N. E., Dicke, M., Mumm, R., Meiners, T., and Hilker, M, 2008. Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 19: 677-689; doi:10.1093/beheco/arn011.
    Fatouros, N. E., Huigens, M E., van Loon, J. J. A., Dicke, M., and Hilker, M., 2005. Chemical communication - Butterfly anti-aphrodisiac lures parasitic wasps. Nature, 433:704.
    Feener, D. H. Jr., Jacobs, L. F., and Schmidt, J. O., 1996. Specialized parasitoid attracted to a pheromone of ants. Animal Behaviour, 51: 61-66.
    Fiaboe, M. K., Chabi-Olaye, A., Gounou, S., Smith, H., Borgemeister, C, and Schultheiss, F., 2003. Sesamia calamistis calling behavior and its role in host finding of egg parasitoids Telenomus busseolae, Telenomus isis, and Lathromeris ovicida. Journal of Chemical Ecology, 29: 921-929.
    Frenoy, C, Durier, C, and Hawlitzky, N., 1992. Effect of kairomones from egg and female adult stages of Ostrinia nubilalis (Hubner) (Lepidoptera, Pyralidae) on Trichogramma brassicae Bezdenko (Hymenoptera, Trichogrammatidae) female kinesis. Journal of Chemical Ecology, 18: 761-773.
    Gardner, S. M., and van Lenteren, J. C, 1986. Characterization of the arrestment responses of Trichogramma evanescens. Oecologia, 68: 265-270.
    Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M., 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. Journal of Chemical Ecology, 23: 2935-2954.
    Grasswitz, T. R., and Paine, T. D., 1992. Kairomonal effect of an aphid cornicle secretion on Lysiphlebus testaceipes (Cresson) (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 5: 447-457.
    Gross, H. B. Jr., Lewis, W. J., Beevers, M., and Nordlund, D. A., 1984. Trichogramma pretiosum (Hymenoptera: Trichogrammatidae): Effects of augmented densities and distributions of Heliothis zea (Lepidoptera: Noctuidae) host eggs and kairomones on field performance. Environmental Entomology, 13: 981-985.Hardie, J., Hicks, A. J., Holler, C, Mann, J., Merrit, L., Nottingham, S. F., Powell, W., Wadhams, L. J., Witthinrich, J., and Wright, A. F., 1994. The response of Praon spp. parasitoids to aphid sex pheromone components in the field. Entomologia Experimental et Applicata, 71: 95-99.
    Hare, J. D.,1996. Priming Aphytis: behavioral modification of host selection by exposure to a synthetic contact kairomone. Entomologia Experimentalis et Applicata, 78: 263-269.
    Hare, J. D., Millar, j. G., and Luck, R. F., 1993. A caffeic acid ester mediates host selection by a parasitic wasp. Naturwissenschaften, 80: 92-94.
    Harris, V. E., and Todd, J. W., 1980. Male-mediated aggregation of male, female, and 5th-instar southern green stink bugs and concomitant attraction of a tachinid parasite, Trichopoda pennipes. Entomologia Experimentalis et Applicata, 27: 117-126.
    Haynes, K. F., and Birch, M. C, 1985. The role of other pheromones, allomones and kairomones in the behavioral responses of insects. Comprehensive Insect Physiology, Biochemistry and pharmacology (eds. G. A. Kerkut and L. I. Gilbert), pp. 225-255. Oxford: Pergamon.
    Hendry, L. B., Greany, P. D., and Gill, R. J., 1973. Kairomone mediated host-finding behavior in the parasitic wasp Orgilus lepidus. Entomologia Experimentalis et Applicata, 16:471-477.
    Herard, F., Keller, M. A., Lewis, W. J., and Tumlinson, J. H., 1988. Benificial arthropod behavior mediated by airborne semiochemicals. 111. Influence of age and experience on flight chamber responses of Microplitis demolitor Wilkinson. Journal of Chemical Ecology, 14: 1583-1596.
    Hilker, M., and Meiners, T., 1999. Chemical cues mediating interactions between chrysomelids and parasitoids. Advances in Chrysomelidae Biology (ed. M.J. Cox), pp. 197-216. Backhuys Publishers. Leiden, The Netherlands.
    Hilker, M., Blaske, V., Kobs, C, and Dippel, C, 2000. Kairomonal effects of sawfly sex pheromones on egg parasitoids. Journal of Chemical Ecology, 26: 2591-2601.
    Inoue, M., and Endo, T., 2008. Below-ground host location by Campsomeriella annulata (Hymenoptera: Scoliidae), a parasitoid of scarabaeid grubs. Journal of Ethology, 26: 43-50.
    Jones, R. L., 1981. Chemistry of semiochemicals involved in parasitoid-host and predator-prey relationships. Semiochemicals: Their role in pest control (eds. D.A. Nordlund, R.L. Jones and W.J. Lewis), pp. 239-251. John Wiley, New York.
    Jones, R. L., Lewis, W. J., Bowman, M. C, Beroza, M., and Beirl, B. A., 1971. Host- seeking stimulant for parasite of corn earworm: Isolation, identification, and synthesis: Science, 17: 842-843.
    Jones, R. L., Lewis, W. J., Beroza, M, Bierl, B. A., and Sparks, A. N., 1973. Host- seeking stimulants (kairomones) for the egg parasite, Trichogramma evanescens. Environmental Entomology, 2: 593-596.
    Kaeslin, M., Wehrle, 1., Grossniklaus-Burgin, C, Wyler, T., Guggisberg, U., Schittny, J. C, and Lanzrein, B., 2005. Stage-dependent strategies of host invasion in the egg- larval parasitoid Chelonus inanitus. Journal of Insect Physiology, 51: 287-296.
    Kainoh, Y., 1987. Behavior regulators of entomophagous insects. A Manual of Bio- Pesticides and Growth Regulators, (ed. M. Okada), pp. 254-277. L.I.C., Tokyo.
    Kainoh Y., Tatsuki, S., and Kusano, T., 1990. Host moth scales; a cue for host location for Ascogaster reticulatus Watanabe (Hymenoptera: Braconidae). Applied Entomology and Zoology, 25: 17-25.
    Kajita, H., and Drake, F., 1969. Biology of Apanteles chilonis and A. flavipes (Hym: Braconidae) parasites of Chilo suppressalis. Mushi, 42: 163-179.
    Kester, K. M, and Barbosa, P., 1991. Post emergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae). Journal of Insect Behavior, 4: 727-742.
    Klomp, H., 1981. Parasitic wasps as sleuthhounds. Responses of ichneumonid to the trail of its host. Netherlands Journal of Zoology, 31: 762-772.
    Kumazaki, M., Matsuyama, S., Suzuki, T., Kuwahara, Y., and Fujii, K., 2000. Parasitic wasp, Dinarmus basalis, utilizes oviposition-marking pheromone of host Azuki bean weevils as host-recognizing kairomone. Journal of Chemical Ecology, 26: 2677-2695.
    Laing, J., 1937. Host-finding by insect parasites. 1. Observations on the finding of hosts by Alysia manducator, Mormoniella vitripennis and Trichogramma evanescens. Journal of Animal Ecology, 6: 298-317.
    Leal, W. S., Higuchi, H., Mizutani, N., Nakamori, H., Kadosawa, T., and Ono, M., 1995. Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): Conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. Journal of Chemical Ecology, 21: 973-985.
    Leonard, D. E., Bierl, B. A., and Beroza, M, 1975. Gypsy moth kairomones influencing behavior of the parasitoids Brachymeria intermedia and Apanteles melanoscelus. Environmental Entomology, 4: 929-930.
    Leonard, D. E., Wu, Z. X., and Ferro, D. N., 1987. Responses of parasite Edovum puttleri to kairomone from eggs of Colorado potato beetle, Leptinotarsa decemlineata. Journal of Chemical Ecology, 13: 335-344.
    Lewis, W. J., and Jones, R. L., 1971. Substance that stimulates host-seeking by Microplitis croceipes (Hymenoptera: Braconidae), a parasite of Heliothis sp. Annals of the Entomological Society of America, 64: 298?17.
    Lewis, W. J., Jones, R. L., and Sparks, A. N, 1972. A host seeking stimulant for the egg parasite Trichogramma evanescens: Its source and demonstration of its laboratory and field activity. Annals of the Entomological Society of America, 65: 1087-1089.
    Lewis, W. J., Jones, R. L., Nordlund, D. A., and Gross, H. R. Jr., 1975b. Kairomones and their use for management of entomophagous insects 11. Mechanisms causing increase in rate of parasitization by Trichogramma sp. Journal of Chemical Ecology, 1: 349-360.
    Lewis, W. J., Jones, R. L., Nordlund, D. A., and Sparks, A. N., 1975a. Kairomones and their use for management of entomophagous insects I. Evaluation for increasing rate of parasitization by Trichogramma sp. in the field. Journal of Chemical Ecology, 1: 343-347.
    Lewis, W. J., Nordlund, D. A., Gueldner, R. C, Teal, P. E. A., and Tumlinson, J. H., 1982. Kairomones and their use for management of entomophagous insects. Journal of Chemical Ecology, 8: 1323-1331.
    Lewis, W. J., Sparks, A. N., and Redlinger, L. M., 1971. Moth odor: A method of host- finding by Trichogramma evanescens. Journal Economic Entomology, 64: 557-558.
    Loke, W. H., and Ashley, T. R., 1984. Sources of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), kairomones eliciting host-finding behavior in Cotesia (=Apanteles) marginiventris (Hymenoptera: Braconidae). Journal of Chemical Ecology, 10: 1019-1027.
    Lou, Y. G., and Cheng, J., 1994. The kairomone from Nilaparvata lugens (Stal) and its relation to rice varieties. Acta Phytophylacica Sinica, 21: 327-332.
    Lou, Y. G., and Cheng, J., 1996. The behavioral responses of Anagrus nilaparvatae Pang et Wang to the volatile of rice varieties. Entomological Journal of East China, 5: 60-64.
    Lou, Y. G., and Cheng, J., 1997. Interactions among host plants, phytophagous insects and natural enemies and their research methods. Chinese Journal of Applied Ecology, 8:325-331.
    Lou, Y. G., and Cheng, J., 2001. Host-recognition kairomone from Sogatella furcifera for the parasitoid Anagrus nilaparvatae. Entomologia Experimentalis et Applicata, 101: 59-67.
    Lou, Y. G., Xiao-fei, P., and Cheng, J., 1999. Role of kairomones in the host searching behavior of Anagrus nilaparvatae Pang et Wang, a parasitoid of rice planthopper. Proceedings of First Asia-Pacific Conference on Chemical Ecology (ed. J. Du), Shanghai, China.
    Luck, R. F., and Uygun, N., 1986. Host recognition and selection by Aphytis species: Response to California red, oleander, and cactus scale cover extracts. Entomologia Experimentalis et Applicata, 40: 129-136.
    Mansfield, S., and Mills, N. J., 2004. A comparison of methodologies for the assessment of host preference of the gregarious egg parasitoid Trichogramma platneri. Biological Control 29: 332-339.
    Mattiacci, L., and Dicke, M., 1995a. Host-age discrimination during host location by Cotesia glomerata, a larval parasitoid of Pieris brassicae. Entomologia Experimentalis et Applicata, 76: 37-48.
    Mattiacci, L., and Dicke, M., 1995b. The Parasitoid Cotesia Glomerata (Hymenoptera: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae on the basis of contact cues from frass, silk and herbivore-damaged leaf tissue. Journal of Insect Behavior, 8: 485-497.
    Mattiacci L, Vinson, S. B., Williams, H. J., Aldrich, J. R., and Bin, F., 1993. A long- range attractant kairomone for egg parasitoid Trissolcus basalis, isolated from defensive secretion of its host, Nezara viridula. Journal of Chemical Ecology, 19: 1167-1181.
    Mehrnejad, M. R., and Copland, M. j. W., 2006. Behavioral responses of the parasitoid Psyllaephagus pistaciae (Hymenoptera: Encyrtidae) to host plant volatiles and honeydew. Entomological Science, 9: 31-37.
    Meiners, T., and Hilker, M., 1997. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia, 112: 87-93.
    Meiners, T., Westerhaus, C, and Hilker, M., 2000. Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomologia Experimentalis et Applicata, 95: 151-159.
    Meyhofer, R. J. C, and Dorn, S., 1994. Host location by a parasitoid using leafminer vibrations: characterizing the vibrational signal produced by the leaf mining host. Physiological Entomology, 19: 349-359.
    Millar, J. G., and Hare, J. D., 1993. Identification and synthesis of a kairomone inducing oviposition by parasitoid Aphytis melinus from California Red Scale Covers. Journal of Chemical Ecology, 19: 1721-1736.
    Mitchell, W. C, and Mau, F. L., 1971. Response of the female southern green stink bug and its parasite, Trichopoda pinnipes, to male stink bug pheromones. Journal of Economic Entomology, 64: 856-859.
    Mizutani, N., 2006. Pheromones of male stink bugs and their attractiveness to their parasitoids. Japanese Journal of Applied Entomology and Zoology, 50: 87-99.
    Mohyuddin, A. I., 1971. Comparative biology and ecology of Apanteles flavipes (Cam.) as parasites of graminaceous borers. Bulletin of Entomological Research, 61: 33-39.
    Mohyuddin, A. I., Inayatulla, C, and King, E. G., 1981. Host selection and strain occurance in Apanteles flavipes (Cameron) (Hymenoptera: Braconidae) and its bearing on biological control of graminaceous borers (Lepidoptera: Pyralidae). Bulletin of Entomological Research, 71: 575-581.
    Mudd, A., 1981. Novel 2-acylcyclohexane-1, 3-diones in the mandibular glands of lepidopteran larvae. Kairomone of Ephestia cautella Zellar. Journal of the Chemical Society, Perkin Transactions, 1: 2357-2362.
    Mudd, A., and Corbet, S. A., 1973. Mandibular gland secretion of larvae of the stored products pests Anagasta kuehniella, Ephestia cautella, Plodia interpunctella and Ephestia elutella. Entomologia Experimentalis et Applicata, 16: 291-292.
    Mudd, A., and Corbet, S. A., 1982. Response of the ichneumonid parasite Nemeritis canescens to kairomones from the flour moth, Ephestia kuehniella. Journal of Chemical Ecology, 8: 843-850.
    Mudd, A., Walters, J. H. H., and Corbet, S. A., 1984. Relative kairomonal activities of 2- acylcyclohexane-1,3-diones in eliciting oviposition behavior from parasite Nemeritis canescens (Grav.). Journal of Chemical Ecology, 10: 1597-1601.
    Noldus, L. P. J. J., 1988. Response of the egg parasitoid Trichogramma pretiosum to the sex pheromone of its host Heliothis zea. Entomologia Experimentalis et Applicata,48: 293-300.
    Noldus, L.P.J.J., 1989.Semiochemicals, foraging behavior and quality of entomo- phagous insects for biological control.Journal of Applied Entomology, 108, 425-451.
    Noldus, L.P.J.J., and van Lenteren, J.C., 1985.Kairomones for the egg parasite Trichogramma evanescens Westwood.I.Effect of volatile substances released by two of its hosts, Pieris brassicae L.and Mamestra brassicae L.Journal of Chemical Ecology, 11:781-791.
    Nordlund, D.A., and Lewis, W.J., 1976.Terminology of chemical releasing stimuli in intraspecific and interspecific interactions.Journal of Chemical Ecology, 2: 211-220.
    Nordlund, D.A., and Lewis, W.J., 1985.Response of females of the Braconid parasitoid Microplitis demolitor to frass of larvae of the Noctuids, Heliothis zea and Trichoplusia ni and to 13-methylhentriacontane.Entomologia Experimentalis et Applicata, 38: 109-112.
    Nordlund, D.A., and Sauls, C.E., 1981.Kairomones and their use for management of entomo-phagous insects.XI.Effect of host plants on kairomonal activity of frass from Heliothis zea larvae for the parasitoid, Microplitis croceipes.Journal of Chemical Ecology, 6: 1057-1061.
    Nordlund, D.A., Chalfant, R.B., and Lewis, W.J., 1984.Response of Trichogramma pretiosum females to extracts of two plants attacked by Heliothis zea.Agriculture,Ecosystems and Environment, 2: 127-133.
    Nordlund, D.A., Lewis, W.J., and Gueldner, R.C., 1983.Kairomones and their use for management of entomophagous insects.XIV.Response of Telenornous remus to abdominal tips of Spodoptera frugiperda as well as to (Z)-9-tetradecen-1-ol acetate and (Z)-9-dodecen-1-ol acetate.Journal of Chemical Ecology, 9: 695-701
    Ohara, Y., Takabayashi, J., and Takahashi, S., 1996.Oviposition kairomones in the cuticular wax of host larvae, Pseudaletia separata, toward its parasitic wasp,Cotesia kariyai.Applied Entomology and Zoology, 31:271-277.
    Onodera, J., Matsuyama, S., Suzuki, T., and Fujii, K., 2002.Host-recognizing kairomones for parasitic wasp, Anisopteromalus calandrae, from larvae of azuki bean weevil, Callosobruchus chinensis. Journal of Chemical Ecology, 28: 1209- 1220.
    Peri, E., Sole, M. A., Wajnberg, E., and Colazza, S., 2006. Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. Journal of Experimental Biology, 209: 3629-3635.
    Powell, W., 1999. Parasitoid hosts. Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants (eds. Hardie, J. and A. K. Minks), pp. 405-427. CAB1 Publishing, Wallingford.
    Powell, W., Pennacchio, F., Poppy, G. M., and Tremblay, E., 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biological Control, 11, 104-112.
    Ramachandran, R., Norris, D. M., Phillips, J. K., and Phillips, T. W., 1991. Volatiles mediating plant-herbivore-natural enemy interactions: Soyabean looper frass volatiles, 3-octanone and guaiacol, as kairomones for the parasitoid Microplitis demolitor. Journal of Agricultural Food Chemistry, 39: 2310-2317.
    Rani, P. U., Kumari, S.I., Sriramakrishna, T., and Sudhakar, T. R., 2007. Kairomones extracted from Rice Yellow Stem Borer and their influence on egg parasitization by Trichogramma japonicum Ashmead. Journal of Chemical Ecology, 33: 59-73.
    Reddy, G. V. P., Holopainen, J. K., and Guerrero, A., 2002. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. Journal of Chemical Ecology, 28: 131-143.
    Rogers, M. E., and Potter, D. A., 2002. Kairomones from scarabaeid grubs and their frass as cues in below-ground host location by the parasitoids Tiphia vernalis and Tiphia pygidialis. Entomologia Experimentalis et Applicata, 102: 307-314.
    Renou, M, Nagnan, P., Berthier, A., and Durier, C, 1992. Identification of compounds from the eggs of Ostrinia nubilalis and Mamestra brassicae having kairomone activity on Trichogramma brassicae, Entomologia Experimentalis et Applicata, 63: 291-303.
    Rojas, J. C, Castillo, A., and Virgen, A., 2006. Chemical cues used in host location by Phymaslichus coffea, a parasitoid of coffee berry borer adults, Hypothenemus hampei. Biological Control, 37: 141-147.
    Rostas, M., Dippel, C, and Hilker, M., 1998. Infochemicals influencing the host foraging behaviour of Dahlbominus fuscipennis, a pupal parasitoid of the European spruce sawfly {Gilpinia hercyniae). Entomologia experimentalis et applicata, 86: 221-227.
    Roth, J. P., King, E. G., and Thompson, A. C, 1978. Host location behavior by the tachinid, Lixophaga diatraeae. Environmental Entomology, 7: 794-798.
    Rutledge, C. E., 1996. A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology, 7: 121-131.
    Salerno, G., 2000. Evaluation of host specificity in pentatomid parasitoids through their response to the host unit. PhD Thesis, University of Perugia, Italy.
    Salerno, G., Conti, E., Peri, E., Colazza, S., and Bin, F., 2006. Kairomone involvement in the host specificity of the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). European Journal of Entomology, 103: 311-318.
    Sales, F. M., Me Laughlin, J. R., and Sailer, R. I., 1980. Quantitative analysis of the behavior patterns of the female, Trissolcus basalis (Wollaston) when stimulated by the kairomonal extracts of the host, Nezara viridula (L.). Fitossanidade, 4: 43-50.
    Sandlan, K., 1980. Host location by Coccygominus turionellae (Hymenoptera: Ichneumonidae). Entomologia Experimentalis et Applicata, 27: 233-245.
    Sauls, C. E., Nordlund, D. A., and Lewis, W. J., 1979. Kairomones and their use for management of entomophagous insects.Ⅷ. Effect of diet on the kairomonal activity of frass from Heliothis zea (Boddie) larvae for Microplitis croceipes (Creson). Journal of Chemical Ecology, 5: 363-369.
    Sch(?)ller, M., and Prozell, S., 2002. Response of Trichogramma evanescens to the main sex pheromone component of Ephestia spp. and Plodia interpunctella, (Z,E)-9,12- tetra-decadenyl acetate (ZETA). Journal of Stored Products Research, 38: 177-184.
    Shaltiel, L., and Ayal, Y., 1998. The use of kairomones for foraging decisions by an aphid parasitoid in small host aggregations. Ecological Entomology, 23: 319-329.
    Sheehan, W., and Shelton, A. M., 1989. The role of experience in plant foraging by the aphid parasitoid Diaeretiella rapae (Hymenoptera: Aphididae). Journal of Insect Behavior, 2: 743-758.
    Shu, S., Swedenborg, P. D., and Jones, R. L., 1990. A kairomone for Trichogramma nubilale (Hymenoptera: Trichogrammatidae): Isolation, identification and synthesis. Journal of Chemical Ecology, 16: 521-529.
    Silva, C. C, Moreas, M. C. B., Laumann, R. A., and Borges, M., 2006. Sensory response of the egg parasitold Telenomus podisi to stimuli from the bug Euschistus heros. Pesquisa agropecuaria brasileira, 41: 1093-1098.
    Steidle, J. L. M, and Ruther, J., 2000. Chemicals used for host recognition by the granary weevil parasitoid Lariophagus distinguendus. Journal of Chemical Ecology, 26: 2665-2675.
    Steidle, J. L. M., and van Loon, J. J. A., 2003. Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomologia Experimentalis et Applicata, 108: 133-148.
    Steinberg, S., Dicke, M., and Vet, L. E. M., 1993. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata. Journal of Chemical Ecology, 19: 47-58.
    Strand, M. R., and Vinson, S. B., 1982. Behavioral response of the parasitoid Cardiochiles nigriceps to a kairomone. Entomologia Experimentalis et Applicata, 31:308-315.
    Strand, M. R., Williams, H. J., Vinson, S. B., and Mudd, A., 1989. Kairomonal activities of 2-acylcyclohexane-l,3 diones produced by Ephestia kuehniella zeller in eliciting searching behavior by the parasitoid Bracon hebetor (Say). Journal of Chemical Ecology, 15: 1491-1500.
    Takabayashi, J., and Takahashi, S., 1985. Effect of kairomones in the host searching behavior of Apanteles kariyai Watanabe (Hymenoptera: Braconidae), a parasitoid of the common armyworm, Pseudaletia separata Walker (Lepidoptera: Noctuidae). Ⅱ. Isolation and identification of arrestants produced by the host larvae. Applied Entomology and Zoology, 21: 484-489.
    Takabayashi, J., and Takahashi, S., 1989. Effects of fecal pellet and synthetic kairomone on host-searching and postoviposition behavior of Apanteles kariyai, a parasitoid of Pseudaletia separata. Entomologia Experimentalis et Applicata, 52: 221-227.
    Takabayashi, J., Takahashi, S., Dicke, M, and Posthumus, M.A., 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. Journal of Chemical Ecology, 21: 273-287.
    Takasu, K., and Nordlund, D. A., 2001. Host recognition kairomones for Anaphes iole Girault, an egg parasitoid of the western tarnished plant bug. Biological Control, 22: 60-65.
    Tanaka, C, Kainoh, Y., and Honda, H., 2001. Host frass as arrestant chemicals inlocating host Mythimna separata by the tachinid fly Exorista japonica. Entomologia Experimentalis et Applicata, 100: 173-178.
    Thibout, E., 2005. Role of caterpillar silk thread in location of host pupae by the parasitoid Diadromus pulchellus. Journal of Insect Behavior, 18: 817-826.
    Tucker, J. E., and Leonard, D. E., 1977. The role of kairomones in host recognition and host acceptance behavior of the parasite Brachymeria intermedia. Environmental Entomology, 6: 527-531.
    Tumlinson, J. H., Turlings, T. C. J., and Lewis, W. J., 1992. The semiochemical complexes that mediate insect parasitoid foraging. Agriculture Zoology Reviews, 5: 221-252.
    Turlings, T. C. J., Tumlinson, J. H., Eller, F. J., and Lewis, W. J., 1991. Larval-damaged plants: source of volatile synomones that guide the parasitoid Cotesia marginiventris to the micro-habitat of its host. Entomologia Experimentalis et Applicata, 58: 75-82.
    Turlings, T. C. j., Tumlinson, J. H., Lewis, W. J., and Vet, L. E. M., 1989. Beneficial arthropod behavior mediated by airborne semiochemicals: Ⅷ. Learning of host- related odours induced by a brief contact experience with host by-products in Cotesia marginiventris (Cresson), a generalist larval parasitoid. Journal of Insect Behavior, 2: 217-226.
    Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H., 1993. Learning of host-finding cues by hymenopterous parasitoids. Insect Learning: Ecological and Evolutionary Perspectives (eds. D. R. Papaj and A. C. Lewis), pp. 51-78. Chapman and Hall, New York.
    Van Alphen, J.J.M., and Vet, L.E.M., 1986.An evolutionary approach to host finding and selection.Insect Parasitoids (eds.J.K.Waage and D.J.Greathead), pp.23-61.Academic Press, London.
    Van den Meiracker, R.A.F., Hammond, W.N.O., and Van Alphen, J.J.M., 1990.The role of kairomones in prey finding by Diomus sp.and Exochomus sp., two coccinellid predatorsofthecassavamealybug,Phenacoccusmanihoti.Entomologia Experimentalis et Applicata, 56: 209-217.
    Van Leerdam, M.B., Smith J.W.Jr., and Fuchs, T.W., 1985.Frass-mediated.Host-finding behavior of Cotesiaflavipes, a braconid parasite of Diatraea saccharalis (Lepidoptera:Pyralidae).Annals of Entomological society ofAmerica, 78: 647-650.
    Vet, L.E.M,and Dicke, M., 1992.Ecology of infochemical use by natural enemies in a tritrophic context.Annual Review of Entomology, 37: 141-172.
    Vet, L.E.M., and Groenewold, A.W., 1990.Semiochemicals and learning in parasitoids.Journal of Chemical Ecology,16: 3119-3135.
    Vet, L.E.M., W(a|¨)ckers, F.L., and Dicke, M., 1991.How to hunt for hiding hosts: The reliability-detectability problem in foraging parasitoids.Netherlands Journal of Zoology,41:202-213.
    Vinson, S.B., 1976.Host selection in parasitoids.Annual Review of Entomology, 21:109-133.
    Vinson, S.B,1981.Habitat location.Semiochemicals-Their Role in Pest Control (eds.D.A.Nordlund, R.L.Jones and W.J.Lewis), pp.51-77.John Wiley and Sons.New York.Vinson, S.B., 1984.Parasitoid-host relationship.Chemical Ecology of Insects (eds.W.J.Bell and R.T.Carde), pp.205-236.Chapman and Hall, London.Vinson, S.B., 1991.Chemical signals used by parasitoids.Proceedings of the 4th European Workshop, Insect Parasitoids (ed.F.Bin), Redia, Perugia, 15-42.
    Vinson, S.B., and lwantsch, G.F., 1980.Host suitability for insect parasitoids.Annual Review of Entomology, 25: 397-419.
    Vinson, S.B., Harlan, D.P., and Hart, W.G., 1978.Response of the parasitoid Microterys flavus to the brown soft scale and its honeydew.Environmental Entomology, 7: 874-878
    Vinson, S.B..Jones, R.L., Sonnet, P.E,Bierl, B.A., and Beroza, M., 1975.Isolation, identification and synthesis of host seeking stimulants for Cardiochiles nigriceps, a parasitoid of tobacco budworm.Entomologia Experimentalis et Applicata, 18: 443-450.
    Wackers, F., and Lewis, W.J., 1994.Olfactory and visual learning and their combined influence on host site location by the parasitoid Microplitis croceipes (Cresson).Biological Control, 4: 105-112.
    Weseloh, R.M,1981.Host location by parasitoids.Semiochemicals-Their Role in Pest Control (eds.D.A.Nordlund, R.L.Jones and W.J.Lewis), pp.79-95.John Wiley and Sons, New York.
    Weseloh, R.M., 1987.Orientation behavior and effect of experience and laboratory rearing on responses of Cotesia melanoscela (Ratzeburg) (Hymenoptera: Braconidae) to gypsy moth silk kairomone.Journal of Chemical Ecology, 13: 1493-1502.
    Yasuda, K., 1998.Function of the male pheromone of the leaf-footed plant bug, Leptoglossus australis (Fabricius) (Heteroptera: Coreidae) and its kairomonal effect.Jarq-Japan Agricultural Research Quarterly, 32: 161-165.
    Yong, T.H., Pitcher, S., Gardner, J., Hoffmann, M.P., 2007.Odor specificity testing in the assessment of efficacy and non-target risk for Trichogramma ostriniae (Hymenoptera:Trichogrammatidae).Biocontrol Science and Technology, 17: 135-153.
    Zaborski, E., Teal, P.E.A., and Laing, J.E., 1987.Kairomone-mediated host finding by spruce budworm egg parasite, Trichogramma minutum.Journal of Chemical Ecology,13: 113-122.
    Zaki, F.N., El-Saadany, G., Gomma, A., and Saleh, M., 1998.Increasing rates of parasitism of the larval parasitoid Bracon brevicornis (Hym,Braconidae) by using kairomones,pheromones and a supplementary food.Journal of Applied Entomology-zeitschrift fur angewandte entomologie, 122: 565-567.
    Zhou, D.R., Weng, L.P., He, K.L.,Wang, Z.Y.and Bai, S.X.(2004) Olfactory responses of Trichogramma ostriniae Pang et.Chen to kairomones from eggs and different stages of female adults of Ostrinia furnacalis (Guenee).Acta Entomologica Sinica, 47, 48-54.(in Chinese)
    Zhu, Z., Cheng, J,and Chen, X., 1992.Host selection and suitability of Anagrus nilaparvatae Pang et Wang.Acta Entomologica Sinica, 36: 430-436.
    Zvereva, E.L., and Rank, N.E., 2004.Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host.Oecologia, 140:516-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700