Nano-MR阻尼器研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MR材料具有屈服应力大、响应速度快、能耗低、显著的流变效应、对污染不敏感等特点,逐渐成为了新型阻尼器的首选材料。MR(磁流变体)阻尼器是根据MR材料具有磁流变效应的特性,通过磁场来控制MR流体的流动特性,以实现阻尼力控制。这与通过改变阻尼通道面积的来控制阻尼器的阻尼力传统的半主动阻尼器原理截然不同。开创了半主动阻尼器研究的新思路,具有重要的研究意义和广泛的应用前景。
     本文根据磁流变体技术的发展趋势,针对微米级MR材料存在着不稳定的缺点,选择Nano-MR为主要研究对象。系统地研究了磁流变阻尼器技术:包括磁流变效应、磁流变材料的性质、MR阻尼器系统理论、阻尼器的设计准则、实验研究、阻尼器的动力学模型。根据高速电梯发展现状,选择高速电梯减振为应用对象,研究出高速电梯减振系统-Nano-MR阻尼器,并对电梯进行控制实验,旨在推进MR阻尼器和高速电梯减振系统的研究。
     本文分为八章。
     第一章,以大量的国内外文献为基础,全面综述了MR材料、MR阻尼器和高速电梯减振系统的研究现状。阐述了开发、研究Nano-MR阻尼器以及高速电梯减振系统的重要性和必要性。确定了具有发展前途的Nano-MR阻尼器和高速电梯减振系统为主要研究内容。
     第二章,介绍了磁流变现象、机理和结构。理论分析了MR的稳定性,根据微米MR材料存在的稳定性差的问题,选择Nano-MR材料为研究对象。对不同体积比的Nano-MR进行了稳定性实验。讨论了Nano-MR的顺磁性和磁松弛问题。分析体积比对MR粘度的影响。并进行了分析体积比对MR粘度的实验和温度对粘度影响的实验。比较Nano-MR和Micro-MR的特性。最后进行了磁流变特性测试实验。得到Nano-MR的流变特性,为Nano-MR阻尼器的研究奠定了基础。
     第三章,首先研究了Nano-MR阻尼器线圈(螺旋线圈)产生的电磁场,接着讨论了阻尼器设计中若干电磁学问题(包括磁芯材料的性质、磁芯材料的选用、和阻尼器磁路的能量损失),然后给出Nano-MR阻尼器的磁路设计、电路设计的计算公式。并对计算结果进行了实验验证。为Nano-MR阻尼器的磁路设计提供了计算方法。
     第四章,根据MR阻尼器的工作模式,分别建立了这几种工作模式的MR阻尼器的理论模型。推导出Nano-MR阻尼器阻尼力的计算公式。讨论了阻尼器结构参数对阻尼特性的影响。有限元仿真了阻尼器中Nano-MR流体的流场和应力分布。为Nano-MR阻尼器设计计算和结构设计提供了理论依据。
     第五章,针对MR阻尼器设计研究的不足,首先对各种MR阻尼器的结构形式
    
    和特点进行分析,接着讨论了MR阻尼器结构和结构参数设计。从而设计出用于
    电梯减振的MR阻尼器,并总结出MR阻尼器的设计准则。以期待为MR阻尼器的
    设计奠定基础。
     第六章,理论分析了阻尼器的示功性、速度特性等工作特性,说明了这些特
    性对于描述阻尼器工作性质的重要性。分别进行了一系列实验:演示实验,示功
    特性和速度特性实验,加速度特性实验,最后进行了MR阻尼器响应速度的实验。
    其中加速度特性实验包括:负载对加速度特性影响实验、电流对加速度特性的影
    响实验、正弦激励下的加速度和阻尼特性实验。实验结果反映了实际MR阻尼器
    的基本特性,说明磁流变体基本符合Bingham模型描述的本构关系。得出MR阻
    尼器的响应时间为毫秒级。
     第七章,介绍了提高高速电梯舒适性的发展概况,分别就人体舒适性和电梯
    舒适性的标准进行讨论,认为电梯的横向振动是提高高速电梯舒适性的重要影响
    因数之一。在电梯横向振动分析的基础上,用MR阻尼器作为减振器分别采用继
    电器控制,改进型继电器控制以及模糊变结构控制对电梯进行振动控制实验。实
    验表明减振效果较好,其中模糊变结构控制效果最为明显。
     第八章,概括课题的主要研究成果和课题的创新点,并展望了今后需要开展
    的研究工作。
     总结全文,本课题从纳米材料、功能材料、电磁学、流变力学、固体力学等
    方面出发,对Nano一MR流体的流变特性和Nano一MR阻尼器的阻尼特性性质进行了
    全面的研究。总结了MR阻尼器的设计准则。设计出电梯用Nan。一MR阻尼器。并
    对高速电梯横向减振系统一Nano一MR阻尼器进行了几种减振控制实验,实验表明
    作为新型的高速电梯减振系统一Nano--MR阻尼器是成功的。
    关键词:MR阻尼器,Nano--MR,高速电梯,振动控制,磁路,阻尼力
Because there are high yield stress, high reflect speed rate, low energy consumption, small pollution effect, etc., MR (magnetorheological ) becomes first choice for damper material. Principle of tradition damper is that change damper force with damper channel adjustment. There are the defects of complex construct and long reflect time on tradition damper. The principle of MR damper is change damper force by modifying fluid nature. It develops a new idea for damper and has significant research value and application prospect.Based on present development of high speed elevator and MR material technique , MR damper techniques have systemically studied on the dissertation. It includes mechanism of magnetorheology, nature of MR, theory of MR damper, design method, damper experiment, and vibration control of high speed elevator. All of those in order to promote development of MR damper and high speed elevator reducer technique. The main content of each chapter is as following.The first chapter according to large sums of documentation and information, overview the development of MR, MR damper, high speed elevator. Represent important and necessary of research to MR damper and vibration damp system of high speed elevator. Main content of the project is determined as MR damper and vibration damp system of high speed elevator.The second chapter introduces MR phenomenon, MR mechanics, MR fabric, theoretically analyses stability of MR. Relative experiments have done. In order to understand nature of MR. Some researches are done, such as analysis of paramagnetic phenomenon and paramagnetic relaxation, influence of volume percent to viscosity. Finally the project finished viscosity-temperature and nature of MR. All of those lay foundation of research on MR damper.Main study is magnetic field problem in the third chapter. The dissertation studies magnetic field of MR damper's coil, then discusses the problems of
    
    electromagnetics in MR damper design. The paper deduces formula of magnetic circle and electric circle of MR damper and certified those through experiment.According to the model of MR damper, these mechanical modes are built in the fourth chapter. The project discussed influence of damp force to the parameter of MR damper and carried finite element analysis of MR flow field and shearing stress. These works established the study foundation of MR damper.In the fifth chapter, the dissertation designed the MR damper for elevator through analysis of structure and character of MR damper. On basis of experience of practice deign, the paper put forward a design guide rule of MR damper.On the basis analysis on diagram of work and speed character of damper, the dissertation narrated the important of the natures in the sixth chapter. A series of experiments have done. Those include demonstration one, diagram of work experiment, speed character experiment of damper, acceleration experiment, and reflection experiment. The experiments gained the character of MR damper, proved that MR coincides Bingham model constitutive equation and reflection time of MR damper can reach microseconds.After introducing development of elevator amenity, the seventh chapter discussed elevator amenity standards and considered that lateral direction vibration is one of main aspect on elevator amenity. Based on analysis of elevator vibration, elevator vibration control has done by relay method, modified relay policy and fuzzy variable structure strategy. The experiment indicates the result by fuzzy variable structure strategy control is best. The research shows that Nano-MR damper as elevator vibration reducer is success.The eighth summarizes the main achievements and innovation points of the project, and prospects the demand research work needed for the future.Summarizing the dissertation, project study characters of Nano-MR and the damper put forward the criterion based on nanometer technology function material, electromagnetism, rheology, mechanics aspects. Finally the project design lateral vibration reducer of high speed elevator. These fill-up the blank.
引文
[1] Winslow, W.M., U. S. Patent. No:2417850, 1947
    [2] Rabinow, J. The Magnetic Fluid Clutch. ATEE Trans. Vol.67, 1948, P.1308-1315
    [3] Eige, J. J., et al. Feasibility of Vibration and Shock Exciter Using Electric Field Modulation of Hydraulic Power. WADD Technical Report, No; 61~185(Ohilo: Wright-patterson Air Force Base), 1961
    [4] Standrud, H. T. Electric-field Valves Inside Cylinder Vibrator, Hydraulics Pneumatics, Vol.9,1966, P.139-143
    [5] Coulter, J. P., et al., Application of Electrorheological Materials in Vibration Control, Proc.2nd Int. Conf. On ER Fluid, (Raleigh, Nc), 1989
    [6] Bullogh W A ed. Proc of 5th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology[C]. Singapore, World Scientific, 1996.
    [7] Nakano M, Koyama K eds. Proc of 6th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology[C]. Singapore, World Scientific, 1998.
    [8] Tod R ed. [A].Proc of the 7th Int Conf on ER Flu-ids, MR Suspensions and Associated Technology[C].Singapore: World Scientific, 2000.
    [9] Popplewell J. and Rosensweig R. E. , Magnetoreological Fluid Composites, J.Phys.D: Appl.Phys. 29(1996)2297-2303.
    [10] http:/ / www.rheonetic.com
    [11] Margida A J, Weiss K D, Carlson JD.[A].In: Bullogh W A ed. Proc of the 5th Int. Conf on ER Fluids, MR Suspensions and Associated Technology[C].Singapore:World Scientific,1996.544-550.
    [12] Felt, D. W., Rheology of a Magnetorheological Fluid, Proceedings of the 5th International Conference on ER Fluids, Sheffield. U.K.. July 1995
    [13] Foister RT.[P].U S Patent5667715, 1997
    [14] Shtarkman, e. m.1991, U.S. Patent 4,992,360 (1991) U.S.Patent 5,167,850 (1992)
    [15] Kordonsky, W. I., et al., Additional Magnetic Dispersed Phase Improve the Properties, Proc.of the 5th International Conference on ER and MR Fluids,Edited by Tao, R. 1995, 613-619
    [16]Kordonsky, W. I., Elements and Devices Based on Magnetorheological Effect, J. of Intel.Meter. Stru. Vol.4, 1993, P.65-69
    [17] Kordonsky, W. I., Magnetorheological Effect As a Base of New devices and Technologies, J.of Magnetism and Magnetic Materials, Vol.122, 1993,395-398
    [18] Kordonsky, W. I., Magnetorheological Fluids and Their Applications, Materials Technology,Vol.8(11), 1993, P.240-242
    
    [19] Kordonsky, W. I., Magnetorheological Valve and Devices Incorporating Magnetorheological Elements, U. S. Patent, No:5353839, 1994
    [20] Osama N. Ashour, Manufacturing and characterization of magnetorheological fluids, SPIE. Vol. 3040. 174-184. 1997
    [21] Ashour, D. et al., Magnetorheological Fluids: Materials, Characterization and Devices, Proc. of the 6th International Conference on Adaptive Structures, Edited by Rogers, C. A. 1995, 23-34
    [22] Lazareva T G, Shitik I G. [A]. In:Simmons W C ed. Proc of SPIE, Vol.3040[C]. Washington: SPIE, 1997. 185-189.
    [23] Phule P P, Ginder JM. [A]. In:Nakano M, Koyama K eds. Proc of the 6th Int Conf on ER Fluids, MR Suspensions and their Applications[C]. Singapore:World Scientific, 1998. 445-453.
    [24] Kormann C, Laun H M, Richter H J. [A]. In: Bullogh W A ed. Proc of the 5th Int Conf on ER Fluids, MR Suspensions and Associated Technology [C]. Singapore: World Scientific, 1996. 3
    [25] 余心宏,王立忠.磁流变流体稳定性机理分析,航空制造工程,1998,(6):7-8,43.
    [26] Kordonsky, W. I., et al., Additional Magnetic Dispersed Phase Improve the Properties, Proc. of the 5th International Conference on ER and MR Fluids, Edited by Tao, R. 1995, P. 613~619
    [27] Kordonsky, W. I., et al. First Experiments on Magnetoelectrorheological Fluids, Electrorheological Fluids: Mechanisms, Properties, Technology and Application, Edites by R. Tao and G, D Roy(World Scientific), Singapore, 1994. 22-36
    [28] Ginder J. M, Elie L D, Davis L C. [P]. U S Patent 55498 37, 1996.
    [29] Bossis G, Lemaire E, et. al.. Yield Stress in Magnetorheological Electrorheological Fluids: A Comparison between Microscopic and Nacroscopic Structural models. J. of Rheol., 1997, 41 (3): 687-704.
    [30] Ginder, J. M., et al., Shear Stress in Magnetorheological Fluids: Role of Magnetic Saturation, Applied Physics Letters, Vol. 65, 1994, P. 3410-3418
    [31] Chen Z Y, Tang X, Zhang G C, et al. [A]. In: NakanoM, Koyama K eds. Proc of the 6th Int Conf on ER Fluids, MR Suspensions and their Applications[C]. Singapore: World Scientific, 1998. 486-493.
    [32] 潘胜,吴建耀,等磁流变液的屈服应力与温度效应功能材料,1997,28(2):264-266.
    [33] Bossis G, Clercx H, Grasselli Y, et al. [A]. In: Tao R, Roy G D eds. Proc of the 4th Int Conf on ER Fluids[C]. Singapore: World Scientific, 1994. 153-171.
    [34] Lemaire E., et. al.. Influence of the Particle Size on the Rheology of Magnetorheological fluids. The Society of Rheology, Inc. J. Rheol. 39(5), September/October 1995
    [35] Jiang F Q, Wang Z W, Wu JY, et. al. [A]. In: Nakano M, Koyam a K eds. Proc of the 6th Int. Conf on ER Fluids, MR Suspensions and their Applications[C]. Singapore: World Scientific, 1998. 494-501.
    [3
    
    [36] http://www.mrfluid.com
    [37] Weiss, K. D. et al., High Strength Magneto-and Electro-rheogical Fluids, Society of Automotive Engineers, SAE paper, No: 932541, 1993
    [38] http://www.delphiauto.com
    [39] Carlson, J. D., Catanzarite, D. M., St. Clair, K. A., Commercial Magnetorheological Fluid Devices, Proc. 5th Int. Conf. On ER Fluid, MR fluid and Assoc. Tech., July 1995 (W. A. Bullough, Ed. World Scientific, Singapore). 20~28
    [40] Ralf Bolter, et al., Design Rules for MR Fluid Actuators in Different Working Modes, SPIE, Vol. 3045, 1997, P. 148~159
    [41] 李秀错,无机/有机复合颗粒的电流变和磁流变效应研究,机械科学与技术Vol. 17(增刊) 1998,P.142-144
    [42] 周刚毅,一种测量磁流变液流变特性的系统研制,机械科学与技,Vol.17(增刊)1998,101-102
    [43] 刘奇张,平王东,等,磁流变体(MRF)材料的制备与性能研究,功能材料Vol.32(3),2001,257—259
    [44] 第二届全国电磁流变学术会议论文集,西北工业大学,1998.9
    [45] 吴Min张秋禹等,软质磁性材料的制备及在磁流变液中的应用,化学物理学报.2001,14(5).-597-600
    [46] Thomas, M. Marksmeier, Eric L. Wang and Faramarz Gordaninejad, An Electro-rheological Grease Shock Absorber, SPIE, Vol. 3327, 1998, p. 242~250
    [47] Carlson, J. D., et al., Magnetorheological Materials Based on Alloy Particles, U. S. Patent, No: 5382373, 1995
    [48] Lou, Z. Ervin, R. D., Filisko, F. E., A Preliminary Parametric Study Of Eiectrorheological Damper, Trans. ASME, Journal of Fluid Engineering, Vol. 116, 1994, 570~577
    [49] Bica, loan, Damper with magnetorheological suspension, Journal of Magnetism and Magnetic Materials, Vol: 241, Issue: 2-3, March, 2002, 196-200
    [50] Lord Corporation Rheonetic Linear Damper, Rd-1001/Rd-1004, Product Information Sheet, Lord corp. Pub. 1997
    [51] Jason, E., Lindler, Glen, A. Dimock and Norman M. Wereley, Design of A Magnetorheological Automotive Shock Absorber, SPIE, Vol. 3985, 2000, 426~43
    [52] Rck T. Tong, Rider Control-a Two-State Design for Heavy Vehicle Suspension, Ph. D Thesis of University of Illinois, 2001. 5. 17
    [53] Weiss, K. D. et al., High Strength Magneto-and Electro-rheogical Fluids, Society of Automotive Engineers, SAE paper, No: 932541, 1993
    
    [54] Sameer Marathe, Farhan Gandhi and K.W. Wang, Helicopter Blade Response and Aeromechanical Stability with A Magnetorheological Fluid Based Lag Damper, SPIE,Vol.3329, 1998, 390-401
    [55] Laura M. Jansen and Shirley J. Dyke, Semi-Active Control Strategies for MR Dampers: A Comparative Study, ASCE Journal of Engineering Mechanics, Vol. 126(8), 2001,795-803
    [56] Jansen, Laura M.; Dyke, Shirley J. Semiactive Control Strategies for MR Dampers: Comparative Study; Journal of Engineering Mechanics, Aug2000, Vol. 126 Issue 8, 795
    [57] G. M. Kamath, N. M.Wereley and Mark R. Jolly, Characterization of Semi-Active Magnetorheological Helicopter Lag Mode Dampers, SPIE, Vol.3329, 1998,356-377
    [58] Kamath, G. M., et al., Analysis and Testing of A Mode-Scale Magnetorheological Fluid Lag Mode damper, 53rd Annual Forum of The American Helicopter Society, Virgina Beach, VA,1997, p.1325-1335
    [58]Mark R. Jolly, Jonathan W. Bender and J. D. Carlson, Properties and applications of Commercial Magnetorheological Fluid, SPIE, Vol.3327, 1998, 262-275
    [59] Darrell G. Breese, Faramarz Gordaninejad, Semi-Active Field Controllable Magnetorheological Fluid Damper for Mountain Bicycles, SPIE,Vol.3991,2000, 283-293
    [60]Sameer Marathe, Farhan Gandhi and K.W. Wang, Helicopter Blade Response and Aeromechanical Stability with A Magnetorheological Fluid Based Lag Damper, SPIE,Vol.3329, 1998, 390-401
    [61] Darrell G. Breese, Faramarz Gordaninejad, Semi-Active Field Controllable Magnetorheological Fluid Damper for Mountain Bicycles, SPIE,Vol.3991,2000, 283-293
    [62] Kelso, S. P. and Gordaninejad, F., Magnetorheological Fluid Damper for Off-Highway, High-Payload Vehicles, SPIE Vol.3672, 1999, 44-54
    [63] Ericksen, E. O. and Gordaninejad, F., A Magnetorheological Fluid Shock Absorber for Off-Road Motorcycle, Poc. Of Asia-Pacific Vibration Conf.'99, Ed by O. J. Huat and L. K.Meow, Vol.2, 1999, 267-271
    [64] Ericksen, E. O. and Gordaninejad, F., A Magnetorheological Fluid Shock Absorber for Suspension of An Off-Road Motorcycle: A theoretical Study, SPIE,Vol.3991, 2000,273-282
    [65] Roger Stanway, Neil, D. Sims and Andrew R. Johnson, Modeling and Control Of Magnetorheological Vibration Isolator, SPIE, Vol. 3989, 2000, p. 184-193
    [66] Andrew, N., Vavreck, Control of Adynamics Vibration Absorber with Magnetorheological Damping, SPIE, Vol.4073, 2000, p.252~263
    [67] C. Y. Lai and W. H. Laio, Vibration Control of A Suspension System via A Magnetorheological Fluid Damper, SPIE, Vol. 4073, 2000, p.240~251
    
    [68] Katsuaki Sunkoda, Hiroshi Sodeyama, et al., Dynamics Characteristics of Magnetorheological Fluid Damper, SPIE, Vol. 3989, 2000, p. 194~203
    [69] Carlson, J. D., et al., Magnetorheological Fluid Damper, U. S. Patent, No: 5277281, 1994
    [70] Henri, P. Gavin, Design Method for High-Force Electrorheological Dampers, Smart Mater. Struct. Vol. 7, 1998, p. 664~673
    [71] Shigeta M., et al, Development of Superhigh-Speed Elevators(810 m/min), Hitachi Review, Vol: 42 Iss: 5, 1993.
    [72] K. Nai, W Forsythe,改善高速电梯的乘坐舒适感,中国电梯,1997,12
    [73] 孙建安,奥的斯公司的几项最新发明,中国电梯,1997.2
    [74] Tzou H, Dynamics and Control of Elevators with Large Gaps and Rubber Dampers, Journal of Structural Engineering, 1989. 115(11), 2753-2771
    [75] 晔道佳明,高速纵振动系解析;日立评论,第50卷、第9号,昭和43年9月
    [76] 晔道佳明,超高层用系横振动;日本机械学会论文集(C编)59卷559号(1993-3)
    [77] Shigeta M., et al, Development of Superhigh-Speed Elevators(810 m/min), Hitachi Review, Vol: 42 Iss: 5, 1993.
    [78] Chi R. M., Longitudinal Vibration of a Hoist Rope Coupled with the Vertical Vibration of an Elevator Car, Journal of Sound and Vibration, 148(1): 154-159.
    [79] Tzou H, S, Dynamics and Control of Elevators with Large Gaps and Rubber Dampers, Journal of Structural Engineering, 1989, 115(11), 2753-2771.
    [80] Baz A., Active Control of Flow-induced Vibrations of a Flexible Cylinder Using Direct Velocity Feedback, Journal of Sound and Vibration, 1991, 146(1), 33-45.
    [81] Sung M. H., et al, A Study on the Vibration and Interior Noise Characterstics of a Passenger Car, 12th IMAC, 1994.
    [82] 张建民,VVVF液压电梯速度控制系统研究;浙江大学博士论文,1997.12
    [83] 李成荣,电梯系统的动态特性分析与故障诊断方法研究:浙江大学博士论文,1997.8
    [84] 张丽珍,液压电梯舒适性评价方法研究和液压电梯集成CAD软件的开发;浙江大学博士论文,1995,7
    [85] 张希农,电梯的振动特性分析,西安交通大学硕士论文,1984.
    [86] 余国勋,谈电梯共振现象,中国电梯,1996,9.
    [87] 王贤清,电梯运行抖动的原因及解决方法,中国电梯,1994,2.
    [88] 元兵,电梯给定运行曲线的研究与计算机仿真,建筑机械化,1989,4.
    [89] 洪致育,谈谈电梯故障诊断技术,上海电梯,1992,1.
    [90] 陈炳炎等,电梯机械系统动态分析研究(第一,二部分),中国电梯,1995,2
    [91] 池长青等,铁磁流体力学,北京航空航天大学出版社,1993.12
    [92] 曹茂盛,纳米材料科学,哈尔滨工业大学出版社,2002.8
    [93] Rosensweig R. E., Ferrohydrodynamics, Cambridge University Press, 1985
    [94] Jolly M R, Carlson J D. Controllable squeeze-film damping using an MR fluid. Proceedings of Actuator'96, Bremen, Germany, 333~336, 1996
    [95] Jeong-KIM, Chong-Wom Lee, etc, Design of magnetic-rheological fluid based device, FERROELECTRICS, 2001, V264, N1-4, p1901-1906
    
    [96] Kamath G M, and Wereley N M, A nonlinear Viscoelestic-plastic model for electrorhelolgical fluids, SmartMarterStruct. 6(3),351-359, 1977
    [97] Kamath G M, and Wereley N M, A nonlinear Viscoelestic-plastic mechansisms-based model of an electrorhelolgical damper, AIAA J. Guid. Control Dyn. 20 1125-1132, 1977.
    [98] Kamath G M, Hurt M K and Wereley N M, Analysis and testing of Bingham plastic behavior in semi-active eletrorhological fuid dampers, Smart Mater. Struct. 5 (5), 576-590, 1996.
    [99]popplewell J, T.E. Rosenweig, Magetorheological fluid composites. J Phys.D:Appl. Phys.,1996,Vol.29,pp.2279-2303
    [100]Sung M.H., et al, A Study on the Vibration and Interior Noise Characterstics of a Passenger Car, 12th IMAC, 1994.
    [101]Pasquale C, et al, Analysis of the Dynamic Behaviour of a Car Power Unit for Comfort Optimisation, 12th IMAC, 1994.
    [102]Dignan M., et al, Procedure for Design of Active Noise and Vibration Control Systems, 12th IMAC, 1994.
    [103] Spencer Jr. B.F., Carlson, J.D., Sain, M.K., and Yang, G. "On the Current Status of Magnetorheological Dampers: Seismic Protection of Full-ScaleStructures,"Proc. of the Amer. Control Conf. 1997, p. 458-462.
    [104] Alex Lukianovich, Osama Ashour, Wilbert Thurston and Graig Rogers,Electrically-Controlled Adjustable- Resistance Exercise Equipment Employing Magnetorhlogical Fluid, SPIE, Vol.2721, 1994, p.283~291
    [105] Gordaninejad, F., Saiidi, M., Hansen, B.C., and Chang, F. K."Magne-torheological Fluid Dampers for Control of Bridges,"Proc. of the Second World Conference on Structural Control, Kyoto, Japan, 2000, 991-1000.
    [106] Klingenberg, Daniel J..Making fluids into solids with magnets.; By:, Scientific American,Oct93, Vol. 269 Issue 4, 112-113
    [107] Carlson, David J.; Weiss, Keith D..A growing attraction to magnetic fluids. Machine Design,8/8/94, Vol. 66 Issue 15, 61-64
    [108] Ginder, J.M. Davis, L.C.. Shear stresses in magnetorheological fluids: Role of magnetic saturation. Applied Physics Letters, 12/26/94, Vol. 65 Issue 26, 34-44,
    [109] Dagani, Ron. 'smart' materials respond to changes in their environment. Chemical & Engineering News, 9/18/95, Vol. 73 Issue 38, 30-33
    [110] Nakano, Masami; Yamamoto, Hideki; Dynamic Viscoelasticity of a Magnetorheological Fluid in Oscillatory Slit Flow.;, International Journal of Modern Physics B: Condensed Matter Physics, 6/30/99, Vol. 13 Issue 14/16, 2068-2077
    [111] Davis, L.C, Model of magnetorheological elastomers. Journal of Applied Physics, 03/15/99,Vol. 85 Issue 6, 3348-3352,
    [112] Davis, L.C. Smart fluid dampens seismic forces. Civil Engineering, Dec98, Vol. 68 Issue 12,27-28
    [113] Johnson, Dan., Futurist, Bridges with brains, airplanes with feelings. Sep/Oct97, Vol. 31Issue 5,6
    
    [114] Spencer Jr., B.F.; Dyke, S.J. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, Mar97, Vol. 123 Issue 3, 230-239
    [115]'Shock Absorbers' Can Minimize Quake Damage.; USA Today Magazine, Jun2000, Vol. 128 Issue 2661, 13
    [116] Tang, X.; Zhang, X. Structure-enhanced yield stress of magnetorheological fluids. Journal of Applied Physics, 03/01/2000, Vol. 87 Issue 5, 2634-2639
    [117] Two-faced fluids may put a damper on quake motions in buildings. Chemical & Engineering News, 11/08/99, Vol. 77 Issue 45, 27
    [118] Cutillas, S.; Bossis, G; Lemaire, E.; Meunier, A.; Cebers, A.. Experimental and Theoretical Study of the Field Induced Phase Separation in Electro- and Magnetorheological Suspensions. International Journal of Modern Physics B: Condensed Matter Physics, 6/30/99, Vol. 13 Issue 14/16, 1791
    [119] Phule Pradeep P.; Ginder, John M. Synthesis and Properties of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility. International Journal of Modern Physics B: Condensed Matter Physics, 6/30/99, Vol. 13 Issue 14/16,2019,
    [120] Jolly, M. R.; Bender, J. W.; Mathers, R. T. Indirect Measurements of Microstructure Development in Magnetorheological Fluids. International Journal of Modern Physics B:Condensed Matter Physics, 6/30/99, Vol. 13 Issue 14/16,2036
    [121] Zhu, Yun; McNeary, Michael; Breslin, Neal; Liu, Jing. Effect of Structures on Rheology in a Model Magnetorheological Fluid, International Journal of Modern Physics B: Condensed Matter Physics, 6/30/99, Vol. 13 Issue 14/16, 2044
    [122] Mohebi, M.; Jamasbi, N.; Flores, G. A.; Liu, Jing. Numerical Study of the Role of Magnetic Field Ramping Rate on the Structure Formation in Magnetorheological Fluids. International Journal of Modern Physics B: Condensed Matter Physics, 6/30/99, Vol. 13 Issue 14/16, 2060
    [123] Ly, H. V; Ito, K.; Banks, H. T.; Jolly, M. R.; Reitich, F. Dynamic Simulation of the Temporal Response of Microstructure Formation in Magnetorheological Fluids. International Journal of Modern Physics B: Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 894
    [124] Kordonski, W. Gorodkin, S. Zhuravski, N. Static Yield Stress in Magnetorheological Fluid. International Journal of Modern Physics B: Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 1078
    [125] Dvorak, Paul; Higgins, Amy; Koucky, Sherri. Soon in your car: magnetorheological clutches and shocks. Machine Design, 02/22/2001, Vol. 73 Issue 4, 30
    [126] Carlson, J. David; Kren, Lawrence, Sponge wrings cost from MR-fluid devices. Machine Design, 02/22/2001, Vol. 73 Issue 4, 73
    
    [127] Soukhojak, Andrey N.; Chiang, Yet-Ming Generalized rheology of active materials. Journal of Applied Physics, 12/01/2000, Vol. 88 Issue 11, 6902
    [128] de Gans, B. J.; Duin, N. J.; van den Ende, D.; Mellema, J. The influence of particle size on the magnetorheologica! properties of an inverse ferrofluid. Journal of Chemical Physics,08/01/2000, Vol. 113 Issue 5
    [129] Murashov, Vladimir V; Patey, G. N.; Patey, G.N. Structure formation in dipolar fluids driven by rotating fields. Journal of Chemical Physics, 06/08/2000, Vol. 112 Issue 22
    [130] Gorodkin, S. R.; Kordonski, W. I.; Medvedeva, E. V.; Novikova, Z. A.; Shorey, A. B.;Jacobs, S. D. A method and device for measurement of a sedimentation constant of magnetorheological fluids. Review of Scientific Instruments, Jun2000, Vol. 71 Issue 6
    [131] Norman M. Fluids Improve Dampers.; Civil Engineering, Jun2000, Vol. 70 Issue 6, 32
    [132] Snyder, Rebecca A.; Kamath, Gopalakrishna M.; Wereley Characterization and Analysis of Magnetorheological Damper Behavior Under Sinusoidal Loading, AIAA Journal, Jul2001,Vol. 39 Issue 7, 1240
    [133] Tang, X.; Zhang, X.; Tao, R. Enhance the Yield Shear Stress of Magnetorheological Fluids.., International Journal of Modern Physics B: Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 549
    [134] Melle, Sonia; Rubio, Miguel A.; Fuller, Gerald G. Orientation Dynamics of Magnetorheological Fluids Subject to Rotating External Fields. International Journal of Modern Physics B: Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 758
    [135] Shkel, Y. M.; Klingenberg, D. J. A Thermodynamic Approach to Field-Induced Stresses in Electro- and Magnetoactive Composites. International Journal of Modern Physics B:Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 795
    [136] Gulley, G. L.; Tao, R. Structures of a Magnetorheological Fluid. International Journal of Modern Physics B: Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 851
    [137] Chaker, Mustapha; Breslin, Neal; Liu, Jing. Influence on Rheology of Static and Dynamic Structures in Model Magnetorheological Fluids. International Journal of Modern Physics B:Condensed Matter Physics, 3/20/2001, Vol. 15 Issue 6/7, 886
    [138] Qu, W.L.; Xu, Y.L.; Lv, M.Y. Seismic response control of large-span machinery building on top of ship lift towers using ER/MR moment controllers., Engineering Structures, Apr2002,Vol. 24 Issue 4, 517
    [139] Bica, Ioan. Damper with magnetorheological suspension. Journal of Magnetism & Magnetic Materials, Mar2002, Vol. 241 Issue 2/3, 196
    [140] Yang, G.; Spencer Jr., B.F.; Carlson, J.D.; Sain, M.K. Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering Structures, Mar2002, Vol. 24 Issue 3, 309
    
    [141] Chen, K.C.; Yeh, C.S. Description of magnetorheological behavior with internal variables.International Journal of Engineering Science, Feb2002, Vol. 40 Issue 4, 461
    [142] Chih-Chen Chang; Li Zhou .Neural Network Emulation of Inverse Dynamics for a Magnetorheological Damper. Journal of Structural Engineering, Feb2002, Vol. 128 Issue 2,231
    [143] Wang, Xiaotong; Chang, Chih-Chen; Du, Fang. Achieving a More Robust Neural Network Model for Control of a MR Damper by Signal Sensitivity Analysis. Neural Computing & Applications, 2002, Vol. 10 Issue 4, 330
    [144] Juan M. Magnetorheological damper charging system. Smart Materials Bulletin, Jan2002, Vol. 2002 Issue 1,14
    [145] Fu Yi; Dyke, Shirley J.; Caicedo,.; Carlson, David. J. EXPERIMENTAL VERIFICATION OF MULTIINPUT SEISMIC CONTROL OF STRATEGIES FOR SMART DAMPERS.;Journal of Engineering Mechanics, Nov2001, Vol. 127 Issue 11, 1152
    [146] Meng, G.,Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering.; Proceedings of the Institution of Mechanical Engineers - Part L -Journal of Materials: Design & Applications, 8/21/2001, Vol. 215 Issue 3, 165
    [147] Pfeil von, Karl; Graham, Michael D. Klingenberg, Daniel J. Morris, Jeffrey F. A Two-Fluid Model for Electro- and Magnetorheological Suspensions.;, International Journal of Modern Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18,2669
    [148] Horvath, A. T.; Klingenberg, D. J.; Shkel, Y. M. Determination of Rheological and Magnetic Properties for Magnetorheological Composites Via Shear Magnetization Measurements. International Journal of Modern Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18,2690
    [149] Kittipoomwong, David; Klingenberg, Daniel J.; Ulicny, John C. Simulation of Bidisperse Magnetorheological Fluids. International Journal of Modern Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18,2732
    [150] Jiang, Zehui; Lu, Kunquan. A Single-Chain Model for Quasi-Static Shear Stress-Strain Properties of Magnetorheological Fluids. International Journal of Modern Physics B:Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18, 2739
    [151] Donohue, M. D. A simple model for ordering in adsorbed layers. Molecular Physics, 7/10/2002, Vol. 100 Issue 13, 2121
    [152] El Walied, Ali K.; Sproston, John L.; Schleyer, Graham K. Electrorheological and magnetorheological fluids in blast resistant design applications. Materials & Design, Jun2002.Vol. 23 Issue 4, 391
    
    [153] Mcmanus S. J.,CLAIR, K. A., Boileau P., Boutin J., Rakheja S., EVALUATION OF VIBRATION AND SHOCK ATTENUATION PERFORMANCE OF A SUSPENSION SEAT WITH A SEMI-ACTIVE MAGNETORHEOLOGICAL FLUID DAMPER.. Journal of Sound & Vibration, May2002, Vol. 253 Issue 1,313
    [154] Yoshioka, H.; Ramallo, J.C.; Spencer Jr., B.F.,"Smart" Base Isolation Strategies Employing Magnetorheological Dampers., Journal of Engineering Mechanics, May2002, Vol. 128 Issue 5,540
    [155] Lai, C.Y.; Liao, W.H.., Vibration Control of a Suspension System via a Magnetorheological Fluid Damper.; Journal of Vibration & Control, May2002, Vol. 8 Issue 4, 527
    [156] Cutillas, S.; Liu, J., Particle Dynamics of Structure Formation and Disintegration in a Model Magnetorheological Fluid.; International Journal of Modem Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18, 2314
    [157] Wereley Norman M., Radakrishnan, Radhakumar, Sudarshan, Tirulai S., Behavior of Magnetorheological Fluids Utilizing Nanopowder Iron.; By: Rosenfeld, Nicholas;International Journal of Modem Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18,2392
    [158] Hu, Lin; Cai, Shaohong; Zhang, Chaoping, Protein-F[sub e] MR Fluid and Its Properties.;International Journal of Modem Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18,2399
    [159] Ginder J. M., Clark S. M., Schlotter W. F., Nichols, M. E., Magnetostrictive Phenomena in Magnetorheological Elastomers.; International Journal of Modern Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18, 2412
    [160] Schlotter W. F., Cionca C, The Dynamics of Magnetorheological Elastomers Studied by Synchrotron Radiation Speckle Analysis. International Journal of Modern Physics B: Condensed Matter Physics, JuI2002, Vol. 16 Issue 17/18,2426
    [161] de Vicente J.; Dura J. D. G; Delgado A. V; Gonz aez-Caballero F.; Bossis G.., Effect of Magnetic Hysteresis of the Solid Phase on the Rheological Properties of Mr Fluids.;International Journal of Modem Physics B: Condensed Matter Physics, Jul2002, Vol. 16 Issue 17/18,2576
    [162] Li, W. H.; Chen, G; Yeo, S. H.; Du, H., Stress Relaxation of Magnetorheological Fluids.;International Journal of Modem Physics B: Condensed Matter Physics, Jul. 2002, Vol. 16 Issue 17/18, 2655
    [163] Y1NG Z. G.., ZHU W. Q., SOONG, T. T., A STOCHASTIC OPTIMAL SEMI-ACTIVE CONTROL STRATEGY FOR ER/MR DAMPERS.; Journal of Sound & Vibration, Jan2003,Vol. 259 Issue 1,45
    
    [164] Former Brian., Magnetic Fluid Damps Motion in Civil Structures.; Civil Engineering, Jan2003, Vol. 73 Issue 1,40
    [165] Hiemenz, G.J.; Choi, Y.T.; Wereley, N.M., Seismic Control of Civil Structures Utilizing Semi-active MR Braces.; Computer-Aided Civil & Infrastructure Engineering, Jan2003, Vol.18 Issue 1,31
    [166] Moon, Seok J.; Bergman, Lawrence A.; Voulgaris, Petros G.., Sliding Mode Control of Cable-Stayed Bridge Subjected to Seismic Excitation.; Journal of Engineering Mechanics,Jan2003, Vol. 129 Issue 1,71
    [167] Choi, Seung-Bok; Lee, Hwan-Soo; Park, Young-Pil., H Control Performance of a Full-Vehicle SuspensionFeaturing [137]Magnetorheological Dampers.; Vehicle System Dynamics, Nov2002, Vol. 38 Issue 5,341
    [168] Ramallo, J. C; Johnson, E. A.; Spencer, B. F., Smart Base Isolation Systems.; Journal of Engineering Mechanics, Oct2002, Vol. 128 Issue 10, 1088
    [169] Yao, G.Z.; Yap, F.F.; Chen, G; Li, W.H.; Yeo, S.H., MR damper and its application for semi-active control of vehicle suspension system.; Mechatronics, Sep2002, Vol. 12 Issue 7,963
    [170] Bhalerao, Amol Ashok., Position control of multi-degree-of-freedom, mass-spring-damper system by direct adaptive control., M.S. Source: Masters Abstracts International, Volume: 40-01, 0226.
    [171] Olson, Steven Eric.,Development of a mathematical model to predict particle damping, Ph.D.Source: Dissertation Abstracts International, Volume: 62-10, Section: B, 47-48., Adviser:Robert A. Brockman.
    [172] Christenson, Richard Edward., Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies.,Ph.D.Source: Dissertation Abstracts International, Volume: 62-10, Section: B, page: 4664.;Director: B. F. Spencer, Jr.
    [173] Yalla, Swaroop Krishna., Liquid dampers for mitigation of structural response: Theoretical development and experimental validation, Ph.D.Source: Dissertation Abstracts International, Volume: 62-03, Section: B, page: 1499.;Director: Ahsan Kareem.
    [174] Tong, Rick Tar. Ride control: A two-state design for heavy vehicle suspension, Ph.D.Source:Dissertation Abstracts International, Volume: 62-07, Section: B, page: 3357.;Adviser: Far
    [175] Badreddine, Bader M., Active damping of engine idle speed oscillation by applying adaptive PID control, Ph.D.Source: Dissertation Abstracts International, Volume: 62-12, Section: B,page: 5869.;Adviser: Feng Lin.id Amirouche.
    [176] Christenson, Richard Edward, Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies..;,Ph.D.Source: Dissertation Abstracts International, Volume: 62-10, Section: B, page: 4664.; Director: B. F. Spencer, Jr.
    [1
    
    [177] Edmond C. C. Lai, et al, Vertical Transportation in Institutional Buildings: A Case Study of Hong Kong Polytechnic, ELEVATOR WORLD, 1992, 3: 49-53.
    [178] George R., Strakosch, Lofty Places: Elevator Overheads, ELEVATOR WORLD, 1992, 3: 49-53.
    [179] Doolaard D. A., Energy Consumption of Different Types of Lift Drive System, LIFT-REPORT, 1992, 18(6):28-30.
    [180] Chi R. M., et al, Longitudinal Vibration of a Hoist Rope Coupled with the Vertical Vibration of an Elevator Car, JOURNAL OF SOUND AND VIBRATION, 1991, 148(1).
    [181] Vetrella S., et al, Attitude Dynamics of the Tether Elevator/Crawler System for Microgravity Applications, ESA JOURNAL, 1990, 14.
    [182] Hanitsch R., et al, Contribution to State Control for Elevator Systems with Respect to Parameter Vibration and Non Linearity.
    [183] Shigeta M., et al, Development of Super high-Speed Elevators (810 m/min), Hitachi Review, Vol: 42 Iss: 5, 1993.
    [184] Chi R. M., Longitudinal Vibration of a Hoist Rope Coupled with the Vertical Vibration of an Elevator Car, Journal of Sound and Vibration, 148(1):154-159.
    [185] Tzou H, S, Dynamics and Control of Elevators with Large Gaps and Rubber Dampers, Journal of Structural Engineering, 1989, 115(11), 2753-2771.
    [186] Shinichi Kamiyama, et al, The Basic Characteristics of a Magnetic Fluid Actuator, 12th IMAC. 1994.
    [187] 季文美等,机械振动,科学出版社,1985.
    [188] 程耀东,机械振动学,浙江大学出版社,1988.
    [189] 张阿舟等,阻尼系统的振动分析,航空学报,1984,5:321-331.
    [190] GB10058-88:电梯技术条件,中华人民共和国国家标准,1988.
    [191] 王洪玺,电梯系统的振动分析,中国电梯,1991,2:16-18.
    [192] 陈影,力作用方式、弹性系数K对电梯轿厢振动的影响,建筑机械化,1989,1.
    [193] 郭贵士等,电梯轿厢降振的探讨,建筑机械化,1988,7:26-27.
    [194] Harwood F. S., 减轻电梯的各种振动,起重运输机械,1984,12:55-56.
    [196] 朱昌明,电梯振动的舒适性评价方法,建筑机械化,1988,6:29-32.
    [196] 包光地,日本电梯现状与展望,中国电梯,1992,3:5-7.
    [197] 杨英德,高速电梯的技术条件及相关问题探讨,中国电梯,1992,4.
    [198] 杨华勇等,液压电梯概论,浙江大学流体传动与控制研究所,1994.
    [199] 木村武雄等,电梯,郗小森等译,北京:中国建筑工业出版社,1979.
    [200] 廖昌荣,汽车悬架系统磁流变阻尼器研究,重庆大学博士论文,20001.9
    
    [201] 翁建生,基于磁流变阻尼器的车辆悬架系统半主动控制,南京航空航天大学博士论文,2001.8
    [202] Ashour, O., Rogers, C. A. and Kodonsky, W. Magnetorheological fluids: materials, characteristics, and devices. J. In tell. Mater. Systems and Structs, 1996, 7, 123-130.
    [203] Kamath G M, and Wereley N M, A nonlinear Viscoelestic-plastic model for electrorhelolgical fluids, Smart MarterStruct. 6(3), 351-359, 1977
    [204] Kamath G M, Hurt M K and Wereley N M, Analysis and testing of Bingham plastic behavior in semi-active eletrorhological fuid dampers, Smart Mater. Struct. 5 (5), 576-590, 1996.
    [205] Jolly M R, Carlson J D. Controllable squeeze-film damping using an MR fluid. Proceedings of Actuator'96, Bremen, Germany, 333~336, 1996
    [206] Rosensweig R. E., Ferrohydrodynamics, Cambridge University Press, 1985
    [207] Jeong-KIM, Chong-Wom Lee, etc, Design of magnetic-rheological fluid based device, FERROELECTRICS, 2001, V264, N1-4, P1901-1906
    [208] Kamath G M, and Wereley N M, A nonlinear Viscoelestic-plastic mechansisms-based model of an electrorhelolgical damper, AIAA J. Guid. Control Dyn. 20 1125-1132, 1977.
    [209] Carlson, J. D. Magnetorheological fluid actuators. In Adaptronics and Smart Structures(Ed. H. Janocha), 1999, pp. 180-195(Springer-Verlag, Berlin, Heidelberg).
    [210] Wang, L., Li, Y. and Wang, F. Status and progress of studies on magnetorheological fluids (in Chinese). Aviat. Prod. Engng, 1997, (7), 9-11.
    [211] Yang, S., Wang, H., Zhang, W., et al. The study on materials, characterization and devices of magnetorheological fluids (in Chinese). Explor. of Nature, 1998, 17(3), 38-41.
    [212] Bolter, R. and Janocha, H. Design rules for MR fluid actuators in different working modes. In Proceedings of the SPIE Conference of the International Society for Optical Engineers (Ed. L. P. Davis), 1997, Vol. 3045, pp. 148-159(SPIE, Washington).
    [213] Marathe, S., Gandhi, F. and Wang, K. W. Helicopter blade response and aeromechanical stability with a magnetorheological fluid based lag damper. In Proceedings of the SPIE Conference of the International Society of Optical Engineers (Ed. M. E. Regel brugge), 1998, Vol. 3329, pp. 390-401 (SPIE, Washington).
    [214] Jolly, M. R. and Chrzan, M. J. Passive magnetorheological fluid device with excursion dependent characteristic. US Pat. 5, 947, 238, 1999.
    [215] Jacobs, S. D., Kordonski, W. I. and Pollicove, H. M. Precision control of aqueous magnetorheological fluids for nishing of optics. In Proceedings of the 6th International Conference on ER Fluids, MR Suspensions and Their Applications (Eds M. Nakano and K. Koyama), Singapore, 1998, pp. 861-869 (World Scienti. c, Singapore).
    [216] 许孙曲,第六届磁流变体国际会议学术论文综述,磁性材料及器件。1994.2
    
    [217] Kordonsky, W. I. and Gorodkin, S. R. Magnetorheological fluid based seal. In Proceedings of the 5th International Conference on ER Fluids, MR Suspensions and Associated Technology (Ed. W. A. Bullogh), Singapore, 1996, pp. 704-709 (World Scientific, Singapore).
    [218]Napper, D H. Polymeric Stabilization of colloidal Dispersione; Academic Press: London, 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700