土壤中甲磺隆结合残留的风险评价及水稻对其响应基因型差异的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口的迅速增长、工农业生产的迅速发展和人民生活水平的不断提高,人类对化学品,尤其是对人工合成有机化合物的依赖程度越来越大。化学农药、除草剂以及工业“三废”如酚、油类、多氯联苯、苯并芘等有机化合物在其中占有重大的比例。有机化合物大都以土壤或水体环境作为其最终的归宿地,且大部分有机化合物易与土壤或水体环境中的沉积物形成结合残留而长期残留于环境中。环境中的结合残留有可能再次释放出来对环境造成一定的危害,且易于通过食物链影响人体的健康。甲磺隆曾是我国“九五”期间广泛应用于麦田的一种磺酰脲类除草剂。我们前期的研究结果表明,甲磺隆较易与土壤有机质等组分结合形成结合残留。残留量一般达引入量的11.4%-55.7%。由于甲磺隆结合残留主要分布于土壤中松结态有机质中,所以我们认为,甲磺隆结合残留在环境中再次释放的可能性极大,很可能存在一定的生态风险。此外,小麦—水稻轮作是我国华南及华东地区较常见的轮作方式,应用于麦田中的甲磺隆极易形成结合残留对后茬水稻产生药害。然而,目前国内外有关这方面的系统报道较少。为此,我们通过室内微型模拟培养试验,并采用分子生物学等手段,对甲磺隆结合残留的环境效应进行了较为系统的评价,并通过室外盆栽试验进行了水稻对土壤中甲磺隆结合残留响应基因型差异及机理的研究,试图为栽种对甲磺隆耐性较强的水稻品种,来减轻除草剂所造成的农业损失提供一定的理论依据。取得的主要研究结果如下:
     1.甲磺隆结合残留的生态毒理效应评价
     室内培养试验研究结果表明,甲磺隆结合残留在土壤中具有一定的生态风险,对土壤酶活性、土壤微生物量和土壤微生物多样性的影响与其在土壤中的持留时间有关,具体表现为:
     (1) 甲磺隆结合残留对土壤酶学指标的影响。甲磺隆结合残留对土壤脲酶、酸性磷酸酶、过氧化氢酶和蔗糖酶的影响较为复杂,但仍有一定的规律。培养第7天,甲磺隆结合残留对土壤脲酶具有激活作用,对土壤过氧化氢酶则有抑制作用,对其他两种酶的影响不显格。培养第14天,甲磺隆结合残留对土壤过氧化氢酶和酸性磷酸酶具有抑制作用。而对土壤脲酶和蔗糖酶的影响则表现为,低浓度时对土壤脲酶和蔗糖酶具有激活作用;高浓度时对土壤脲酶和蔗糖酶具有抑制作用。培养第28天及28天后,甲磺隆结合残留对土壤脲酶、酸性磷酸酶和过氧化氢酶活性具有激活作用以及在0.05-0.281 mg kg~1范围内对土壤蔗糖酶活性具有激活作用。
    
    (2)甲磺隆结合残留对十壤微生物生物量的影响。本试验条件卜,甲磺隆结合残留对
    十壤微生物生物量及微生物生物量碳,氮的影响随时间而变化。第7大,低浓度甲磺隆结合
    残留处理十壤微生物生物量的含量降低:高浓度甲磺隆结合残留处理十壤微生物生物量的含
    举增加。士言养第14大,甲磺隆结合残留显艺一地降低了十壤微生物生物量的含量。第28大,
    甲磺隆结合残留能够提高十壤微生物生物量。第56大和第98大,甲磺隆结合残留对十壤微
    生物生物量的影响则表现为,低浓度时,甲磺隆结合残留显著地提高十壤微生物生物量:高
    浓度时,甲磺隆结合残留显著地降低十壤微生物生物量。另外,培养98天时,甲磺隆结合
    残留处理十壤微生物生物量碳/氮显著降低。表明甲磺隆结合残留可能会引起十壤微生物种
    群的改变。
     (3)甲磺隆结合残留对十壤微生物多样性的影响。通过在不同培养时间和不同浓度甲
    磺隆结合残留胁迫卜,对十壤微生物DNA进行DGGE基因多样性指纹图谱分析结果表明,甲
    磺隆结合残留对十壤微生物多样性的影响与其在土壤中持留时间有关。培养第14大,低浓
    度甲磺隆结合残留对十壤微生物多样性与对照差异不明显;高浓度甲磺隆结合残留对土壤微
    生物多样性的影响较为明显,十壤微生物多样性卜降。培养中期(14一56大),甲磺隆结合
    残留对十壤微生物的作用为先刺激和后毒害作用,各处理条带数先增加后减少。培养后期
    (56一98大),甲磺隆结合残留对十壤部分微生物.n.-有毒害作用,可致使人多数条带的消失,
    导致十壤微生物多样性卜降。培养后期,经0.158 ogkg’甲磺隆结合残留处理的土壤DGGE
    指纹图谱中部分条带较其他处理颜色加深。说明在一定浓度的甲磺隆结合残留范围内,土壤
    中可能存在甲磺隆结合残留专性微生物种。
    2.水稻对甲磺隆结合残留响应基因型差异及机理研究
     采用生物测定和十_壤盆栽试验法,研究了水稻对甲磺隆及土壤中甲磺隆结合残留响应
    的基因刑差异及机理,研究结果表明:
     (1)水稻对甲磺隆的耐性存在基因烈差异。浙农952对甲磺隆的耐性较强:秀水63
    对甲磺隆的耐性较敏感:两优培九和H优810对甲磺隆的耐性介于浙农952和秀水63之间。
     (2)十壤中甲磺隆结合残留对水稻具有约害作用,对水稻生长具有抑制作用。以水稻
    根系总长度为指标,十壤甲磺隆结合残留对浙农952、两优培九、H优810和秀水63的ECSO
    值分别为13.876一、4.1701、0.2257平11 0.ooxZ林gkg一’。对于同一品种来讲,十壤中甲磺隆
    结合残留对水稻根系的抑制作川强丁水稻地卜部。水稻根系总长度、总表面积和根系数量可
    以作为评价水稻对十壤中甲磺隆结合残留耐性强弱的指标。
    
    (3)水稻对十壤中甲磺隆结合残留的响应存在基因烈差异,水稻对土壤中甲磺隆结合
    残留耐性
Dependence of human beings on chemicals, especially synthetic organic compounds increased gradually with the rapid development of agriculture and industry, improvement of life quality, and the fast growth of population. Organic compounds mainly consisted of pesticides, herbicides, and industrial organic wastes like phenols, oils, polychlorinated biphenyl, benzopyrene. These organic compounds enter into soil or sediments in water at last, while most of these are considered as bound residues in soil or sediments. Bound residues in environment could be released again and pose impacts on plants, animals, or human beings through food chains. Metsulfuron-methyl, one of sulfonylurea herbicides, was widely used in wheat fields during period of the ninth five-year plan in China. Our previous results showed that 11.4 %-55.7 % of metsulfuron-methyl used could tightly bind with organic matter and form bound residues in soils. Bound residues of metsulfuron-methyl in soil were likely to result in some ecological risk, especially in rice fields due to the formation of loose bound residues of metsulfuron-methyl combined with soil organic matter. However, systemic reports about these are very few. The present research illustrates the environmental risk of bound residues of metsulfuron-methyl in soil, and proves the probability of agricultural reduction resulted from use of metsulfuron-methyl. A set of experiments were conducted to investigate effects of bound residues of metsulfuron-methyl on soil enzymes, microbial biomass, and microbial diversities,
    
    and the genotypic different responses of rice to bound residues of metsulfuron-methylin soil. The major results were summarized as follows:1. Ecological risk assessment of bound residues of metsulfuron-methyl in soil.Ecological risk of bound residues of metsulfuron-methyl in soil has been found. Effects of bound residues of metsulfuron-methyl in soil on soil enzymes such as urease, hydrogen peroxidase, acid phosphatase, and sucrase, microbial biomass, and microbial diversity are dependent on the incubation time when bound residues of metsulfuron-methyl exist in soil. (1) Effects of bound residues of metsulfuron-methyl on soil enzymes. At 7 days after treatment (DAT), urease was induced, and hydrogen peroxidase was inhibited significantly by bound residues of metsulfuron-methyl, however sucrase and acid phosphatase were not changed. At 14 DAT, hydrogen peroxidase and acid phosphatase were inhibited significantly by bound residues of metsulfuron-methyl in soil. Urease and sucrase were induced and inhibited significantly by bound residues of metsulfuron-methyl at the levels of 0-0.281 mg kg"1, and 0.50 mg kg'1, respectively. At 28 DAT, soil enzymes such as urease, hydrogen peroxidase, acid phosphatase, and sucrase were induced by bound residues of metsulfuron-methyl in soil. At 56 and 98 DAT, effects of bound residues of metsulfuron-methyl on soil enzymes are similar to that at 28 DAT. (2) Effects of bound residues of metsulfuron-methyl on soil microbial biomass. Effects of bound residues of metsulfuron-methyl in soil on microbial biomass and ratio of microbial biomass carbon to nitrogen changed with time. At 7 DAT, microbial biomass decreased in soil treated with bound residues of metsulfuron-methyl at levels of 0.05 -0.156 mg kg"1 and increased at the levels of 0.281-0.50 mg kg"1 compared with that of control. At 14 DAT, microbial biomass decreased significantly with the increase of bound residues of metsulfuron-methyl in soil compared with that of control. At 28 DAT, microbial biomass increased with the increase of bound residues of metsulfuron-methyl in soil. At 56 and 98 DAT, microbial biomass increased significantly at lower level of bound residues of metsulfuron-methyl and decreased significantly at higher level of bound residues of metsulfuron-methyl in soil. The significant decrease in ratio of microbial biomass carborn to nitrogen has also been
    
    found, indicating that microbial communities changed under the stress of bound residues of metsulfuron-methyl. (3) Effect of bound resi
引文
1.万本山主编.突发性环境污染事故应急监测与处理处置技术.北京:中国环境科学出版社,1996
    2.王倩如,叶晶菁.甲胺磷农药废水生化处理高效菌选育的研究.化工环保,1995,15(4),205-210
    3.王永杰,李顺鹏,沈标,等.有机磷农药乐果降解菌的分离及其活性研究.南京农业大学学报,2001,24(2),32-35
    4.孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨.中国农业大学学报,2002,7(6),92-96
    5.王金花,朱鲁生,王军,孙瑞莲,赵秉强.除草剂阿特拉津对土壤脲酶活性的影响.应用生态学报,2003,14(12),2281-2284
    6.刘维屏,王琪全,方卓.新农药环境化学行为研究—除草剂绿草定(Triclopyr)在土壤—水环境中的吸附和光解.中国环境科学,1995,15(4),311-315
    7.刘维屏,Gessa C.利谷隆在土壤中的吸附过程与机理.环境科学,1995,16(1),16-18
    8.刘维屏,郑巍,宣日成,等.除草剂咪草烟在土壤上吸附-脱附过程及作用机理.土壤学报,1998,35(4),475-481
    9.古智生.利用生活污水进行农田灌溉的可行性.节水灌溉,1999,3,31-31,38
    10.刘培桐,薛纪渝,王华东.土壤环境.环境学概论.高等教育出版社.北京.2000
    11.刘惠君,刘维屏.农药污染土壤的生物修复技术.环境污染治理技术与设备,2001,2(2),74-80
    12.刘洪升,宋秋华,李凤民.根系分泌物对根际矿质营养及根际微生物的效应.西北植物学报,2002,22(3),693-702
    13.叶庆富,邬建敏,孙锦荷.~HC—甲磺隆在土壤中的可提态残留、结合态残留和矿化.环境科学,2002,23(6),62-68
    14.司友斌,岳永德,汤锋,陈怀满.磺酰脲类除草剂在硅胶G表面的光解.环境科学学报,2002,22(2),270-272
    15.可欣,颜丽,朱宁,王旭,李伟.双氰胺对土壤酶活性的影响.土壤通报,2003,34(4),346-348
    16.刘军,鲍林发,汪苹.运用GC—MS联用技术对垃圾渗滤液中有机污染物成分的分析.环境 污染治理技术与设备,2003,4(8),31-33
    17
    
    17.叶央芳,闵航,周湘池.苯噻草胺对水田土壤呼吸强度和酶活性的影响.土壤学报,2004,41 (1),93-96
    18.关松荫.土壤酶及其研究法.农业出版社.1983,293-376
    19.安琼.土壤中的农药结合残留问题.土壤学进展,1992,1,10-15
    20.安琼,陈祖义.氟乐灵在土壤中的结合残留及其对作物的影响.环境科学学报,1993,13(3),295-302
    21.华小梅,单正军.涕灭威在土壤中的降解特性.农村生态环境,1995,5(2),33—45
    22.孙波,赵其国,张桃林,俞慎.土壤质量与持续环境:Ⅲ.土壤质量评价的生物学指标.土壤,1997,29(5):225-234
    23.任剑璋,全浩.污泥中潜在的二恶英污染物质.环境科学研究,1998,11(3),11-14
    24.孙晓璐,杨海莲,陈志和,宋未.两个品种水稻植株根面细菌的区系组成研究.植物病理学报,2000,284-285
    25.华小梅,江希流.我国农药环境污染与危害的特点及控制对策.环境科学研究,2000,13(3),40-43
    26.朱兆良.合理施用化肥充分利用有机肥发展环境友好的施肥体系.中国科学院院刊,2003,2,89-93
    27.全先庆,高文.盐生植物活性氧的酶促清除机制.安徽农业科学,2003,31(2),320-322
    28.严旭升.土壤肥力研究方法.农业出版社,1988,274-287
    30.张福锁,曹一平.根际动态过程与植物营养.土壤学报,1992,29(3),239-250
    31.张宪政.作物生理研究法.中国农业出版社,1992,117-105
    32.张宏伟,陈港,陈志泉等.腐殖酸共聚物对土壤酶活性的影响.土壤通报,2003,34(1):29-32
    33.吴辉.根系分泌物及其生态效应.生态学杂志,1992,11(6),42-47
    34.严小龙.植物营养性状的遗传学改良:进展和期望.华南农业大学学报,1992,13(4),121-128
    35.李德平.磺酰脲类除草剂在土壤中的物理化学行为.土壤,1996,28(3),128-133
    36.肖方祥.生物体内自由基及其生物学意义.实用医学进修杂志,1997,25(1),8-11
    37.苏少泉.长残留除草剂对后茬作物安全性问题.农药,1998,37(12),4-7
    38.张福锁.环境胁迫与植物根际营养.中国农业出版社,1998,10-42
    
    39.李克斌,王琪全,刘维屏.除草剂苯达松与腐殖酸作用机理的研究.上海环境科学,1998,17(5),18-20
    40.李玉文.环境分析与评价.东北林业大学出版社,1999,110-137
    41.沈宏等.根系分泌物研究现状及其在农业环境领域的应用.农村生态环境,2000,16(3),51-54
    42.李淑彬,钟英长.固定化假单胞菌降解甲胺磷的研究.应用与环境生物学报,1999,5(4),422-426
    43.李民.规模化畜禽养殖场粪污污染与防治措施.农业科技通讯.2001,(10).22-23
    44.阮少江,刘洁,王银善,等.微生物酶催化甲胺磷降解机理初探.武汉大学学报(自然科学版),2001,46(4),33-35
    45.汪海珍,徐建民,谢正苗,等.土壤中~(14)C-甲磺隆存在形态的动态研究.土壤学报,2001,38(4),547-557
    46.汪海珍,徐建民,谢正苗,叶庆富.甲磺隆在土壤腐殖物质中结合残留的动态变化.环境科学学报,2002,22(2),256-260
    47.沈东升,方程冉,周旭辉.土壤中结合残留态甲磺隆的微生物降解研究.土壤学报,2002,39(5),714-719
    48.汪海珍,徐建民,谢正苗.甲磺隆污染土壤生物修复的初步探索.农药学学报,2003,5(4),53-58
    49.吴建富,施翔,肖青亮,许新南.我国肥料利用现状及发展对策.江西农业大学学报,2003,25(5),725-727
    50.杨景辉.污水对土壤的污染.十壤污染与防治.科学出版社.北京.1995
    51.陈以峰,李宜慰,汤日圣,李永丰,梅传生,瞿其楷,刘宁政.乙酰乳酸合酶活性的简易测定方法建立.江西农业大学学报,1996,18(2),213-218
    52.陈祖义,程薇.绿磺隆在麦茬土壤中的残留及其对后茬水稻的影响.农村生态环境,1996a,12(1),54-57
    53.陈祖义,程薇,成冰.~(14)C-绿磺隆的土壤结合残留及其有效性.南京农业大学学报,1996b,19(2),78-83
    54.和文祥,朱铭莪.陕西主要土壤脲酶活性与肥力关系研究.土壤学报,1997,34(4),392-398
    55.周立祥,胡霭堂,胡忠明,厌氧消化污泥化学组成及其环境化学性质.植物营养与肥料学报,1997,3(2),176-181
    
    56.单正军.农药的结合残留及其环境意义.农药译丛,1998,20(6),51-54
    57.杨光富,赵国锋,鹿荣健,等.以ALS为靶标的新型除草剂的分子设计、合成及生物活性研究—V.磺酰脲、稠杂磺酰胺类除草剂与受体的初级作用模型.中国科学(B辑),1998,28(3),283-288
    58.范志金,刘丰茂,钱传范.磺酰脲类除草剂的现状和发展趋势分析.农药,1999,38(5),6-9
    59.杨永华,姚健.分子生物学方法在微生物多样性研究中的应用.生物多样性,2000,8(3),337-342
    60.邹世春,张淑娟,张展霞,王新明,盛国英.垃圾填埋场空气中微量挥发性有机物的组成和分布.中国环境科学,2000,20(1),77-81
    61.和文祥,韦革宏,武永军,朱铭莪.汞对土壤酶活性的影响.中国环境科学,2001,21(3),279-283
    62.南京农业大学主编.土壤农化分析.农业出版社.北京,1981,33-117
    63.施国涵.有机磷农药在土壤中的吸附与降解.环境科学,1982,3(4),69-72
    64.娄国强,党润生,陈荣江,吕文彦,高扬帆.不同小麦品种对麦田磺酰脲类除草剂的耐药性研究.河南农业大学学报,1997,31(3),268-271
    65.姚东瑞,宋小玲,陈杰,李庆康,刘友兆,孙新军.麦田后茬作物对甲磺隆残留敏感性的研究.江苏农业学报,1997,13(3),171-175
    66.夏北成,Zhou J.Z.,Tiedje J.M.分子生物学方法在微生物生态学中的应用.中山大学学报(自然科学版),1998,37(2),97-101
    67.俞慎,李勇,王俊华,车玉萍,潘映华,李振高.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3),413-422
    68.胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素.环境科学进展,1999,7(5),14-22
    69.郑巍,刘慧君,刘维屏.吡虫啉农药及代谢产物对土壤过氧化氢酶活性的影响.中国环境科学,2000,20(6),524-527
    70.郑和辉,叶常明.甲草胺和丁草胺等除草剂在多介质环境中环境行为综述.环境科学进展,1999,7(3),1—10
    71.宣日成,王琪全,郑巍,等.吡虫琳在土壤中的吸附及作用机理研究.环境科学学报,2000,20(2),198-238
    72.赵霖,鲍善芬.21世纪中国食品安全问题.中国食物与营养,2001,(2),5-7
    
    73.夏颖,闵航.一株多环芳烃降解细菌的鉴定及GST基因克隆和序列分析.微生物学报,2003,43(6),691-697
    74.曹亨云.营养胁迫与根系分泌物.土壤学进展,1994,22(3),28-32
    75.唐启义和冯明光.数据处理系统.中国农业出版社,1997
    76.徐建民,汪海珍,谢正苗,陈祖亮.甲磺隆结合残留物在土壤结合态腐殖物质中的分布.中国环境科学,2002,22(1),1-5
    77.徐阳春,沈其荣.有机肥和化肥长期配合使用对土壤及不同粒级供氮特性的影响.土壤学报,2004,41(1),87-92
    78.盖新杰,贾春明.北方降雪对大气中有机污染物的净化.环境与健康杂志,1995,12(6),257-258
    79.黄亿等.菌根真菌对土壤有机污染物的生物降解.土壤与环境,2002,11(3),221-226
    80.曹慧,孙辉,杨浩,孙波,赵其国.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1),105-109
    81.曹志洪.施肥与土壤健康质量——论施肥对环境的影响(3).土壤2003,35(6),450-455
    82.韩如旸,闵航,程志强,柳良好.石油降解细菌的表性特性和系统发育分析.生物多样性,2002,10(2),202-207
    83.程云,周启星.土壤脲酶和脱氢酶对活性X-3B红污染暴露的耐受性及机理研究.环境科学,2003,24(2),23-29
    84.蔡全英,莫测辉,吴启堂,李桂荣,王伯光,田凯,李拓.城市污泥和土壤中苯并(a)芘的初步研究.应用生态学报,2001,12(5),769-772
    85.蔡继红,丁长春,朱伊君.淮安市农产品中重金属及有机氯、有机磷农药残留量调查.环境监测管理与技术,2002,14(1),20-23
    86.虞云龙,杨基峰.潘学冬,喻景权,杨肖娥.樊德方.作物种类对根际土壤中丁草胺降解的影响.农药学学报,2004,6(1),16-52
    87.谭小平,柏连阳,肖启明,彭丽莎,周小毛.水稻不同品种或组合对甲磺隆耐药性差异的机制研究.农药学学报,2002,4(2),45-49
    88.魏东斌,张爱茜,韩朔睽,王连生.磺酰脲类除草剂研究进展.环境科学进展,1999,7(5),34-42
    89. Abdullah A. R., Sinnakkannu S., Tahir N. M. Adsorption, desorption, and mobility of metsuifuron-methyl in Malaysian agricultural soils. Bulletin of Environmental Contamination and Toxicology, 2001, 66, 762-769
    
    90.Adler P., Arora R., Ghaouth A. E., Glenn D. M., Solar J. M. Bioremediation of phenolic compounds from water with plant root surface peroxidases. Journal of Environmental Quality, 1994,23, 1113-1117
    91 .Ajwa H. A., Dell C. J., Rice C. W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Bio & Biochem, 1999, 31,769-777
    92.Alkorta I., Garbisu C. Phytoremediation of organic contaminants in soils. Bioresource Technology, 2001, 79, 273-276
    93.Anderson J. J., Dulka J. J. Environmental effects on metsulfuron and chlorsulfuron bioactivity in soil. J. Environ. Qual, 1985, 14 (4): 517-521
    94.Andreux F. Portal J. M., Schiavon M. et al. The binding of atrazine and its dealkylated derivatives to humic-like polymers derived from catechol. Science of the total Environment, 1992, 117/118,207-217
    95.Aochi Y. O., Farmer W. J., Sawhney B. L. In situ investigation of 1,2-dibromoethane sorption/desorption processes on clay mineral surfaces by diffuse reflectance infrared spectroscopy. Environmental Science and Technology, 1992, 26 (2), 329-335
    96.Aprril W., Sims R. C. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chernosphere, 1990, 20, 253-265
    97.Baath E. Effects of heavy metal in soil on microbial processes and populations: a review. Water Air Soil Pollution, 1989, 335-379
    98.Backhus D. A., Gschwend P. M. Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environmental Science and Technology, 1990, 24 (8), 1214-1223
    99.Badiane N. N. Y., Chotte J. L., Pate E., Masse D., Rouland C. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology, 2001, 18,229-238
    100.Baisak R., Rana D., Acharya P.B.B., and Kar M., Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress, Plant Cell Physiol. 1994, 35, 489-495
    101 .Banerjec B D., Seth V., Bhattacharya A. Biochemical effects of some pesticides on lipid
     peroxidation and free-radical scavengers. Toxicology Letters, 1999, 107, 33-47
    
    102.Barraclough D., Kearney T., Croxford A. Bound residues: environmental solution or future problem?. Environmental Pollution, 2005, 133, 85-90
    103.Barriuso E., Houot S., Serra W. C. Influence of compost addition to soil on the behavior of herbicides. Pesticide Science, 1997, 49, 65-75
    104.Baskaran, S., Bolan, N. S., Rahman, A. Pesticide sorption by allophanic and non-allophanic soils of New Zealand. New Zealand Journal of agricultural Research 1996, 39, 297-310.
    105.Bassam, B.J., Caetano-Anolles, G, Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Annals of Biochemistry 1991, 80, 81-84
    106.Benoit P., Preston C. M. Transformation and binding of ~13C and ~14C-labelled atrazine in relation to straw decomposition in soil. European Journal of Soil Science, 2000, 51, 43-54
    107.Bert E., Kristin M., Friedriech V. W. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Applied and Environmental Microbiology, 1998, 64 (8), 2814-2821
    108.Beyer E. M., Brown H. M., Duffy M. J. Sulfonylurea herbicide soil relation. Poc. Brighton Crop Protect Conf. Weeds, 1987, 531-540
    109.Bhandari A., Novak J. T., Berry D. F. Binding of 4-monochlorophenol to soil. Environmental Science and Technology, 1996, 30,2305-2311
    110.Black I. D., Pederson R. N., Flynn A., Moerkerk M., Dyson C. B., Kookana R., Wilhelm N. Mobility and persistence of three sulfonylurea herbicides in alkaline cropping soils of south eastern Australia. Aust. J. Exp. Agric. 1999, 39,465-472
    111.Blair A. M. Martin T. D. A review of the activity, fate and mode of action of sulfonylurea herbicides. Pesticide Science, 1988,22, 195-219
    112.Bollag J. M., Loll M. J. Incorporation of xenobiotics into soil humus. Experientia, 1983, 39, 1221-1232
    113.Bortiatynski J. M., Hatcher P. G, Minard R. D., Dec J., Bollag J. M. Enzyme-catalysed binding of ~13C-Iabelled 2,4-dichlorophenol to HA using high resolution ~13C-NMR. In: Senesi, N., Miano T. M. (Eds), Humic Substances in the Global Environmental and Implications on Human Health. Elsevier, New York, 1994, pp. 1091-1099
    114.Bradley L., Fyles J. W. A kinetic parameter describing soil available carbon and its
     relationship to rate increase in C mineralization. Soil Biol. Biochem., 1994, 22 (2), 167-172
    
    115.Brookes P. C, Pruden G., Jenkinson D. S. Chloroform fumigation and release of soil N: a rapid direct extraction method to measure microbial biomass N in soil. Soil Biol. Biochem., 1985, 17,837-842
    116.Brosius J., Palmer M. L., Kennedy P. L., Noller H. F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coll Proc. Nat. Acad. Sci. 1978, 75, 4801-4805.
    117.Brown H. M. Mode of action, crop selectivity, and soil relations of sulfonylurea herbicides, Pesticide Science, 1990, 29 (3), 263-281
    118.Burken J. G, Schnoor J. L. Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Techno!., 1997,31,1399-1406
    119.Burkhard N., Guth J. A. Rate of volatilization of pesticides from soil surfaces; comparision of calculated results with those determination in a laboratory model system. Pesticide Science, 1981, 12,37-44
    120.Cabrera M. L., Bear M. H. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. of Am. J., 1993, 57, 1007-1012
    121.Calderbank, A. The occurrence and significance of bound pesticide residues in soil: Reviews in Environmental Contamination and Toxicology, 1989, 108,71-103
    122.Carbonell G. Pablos M. V., Garcia P., Ramos C, Sanchez P., Fernandez C, Tarazona J. V. Rapid and cost-effective multiparameter toxicity tests for soil microorganisms. The Science of the Total Environment. 2000, 247, 143-150
    123.Carlos A. Martinez, Marcelo E. Loureiro, Marco A. Oliva, and Moacyr Maestri.Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Science, 2001, 160, 505-515.
    124.Carreira J. A. Careia R. R., Lietora J., Harrison A. F. Changes in soil phosphatase activity and P transformation rates induced bu application of N- and S-containing acid-mist to a forest canopy. Soil Bio & Biochem, 2000, 32, 1857-1865
    125.Catriona J. M., Gevao B., Jones K. C, Semple K. T. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues. Environmental Pollution, 2005, 133, 25-34
    
    l26.Caux. P. Y., Bastien C, Crowe A. Fate and impact of pesticides applied to potato cultures: the nicolet river basin. Ecotoxicology and Environmental safety, 1996, 33, 175-185
    127.CEC. EC Draft Guidance Document 9188/VI/97, Persistence in soil. Commission of the European Communities, Directorate-General for Agriculture, Brussels, Belgium, DG VI B II-1, 1997
    128.Celi L., Negre M., Gennari M. Adorption of the herbicide acifluorfen on soil humic acides. Journal of Agricultural and food Chemistry, 1996, 44, 3388-3392
    129.Chen S., Inskeep W. P., Williams S. A. Complexation of 1-naphthol by humic and fulvic acids. Soil Science Society of America Journal, 1992, 56,67-73
    130.Chin Y., Gschwend P. M. Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environmental Science and Technology, 1992, 26 (8), 1621-1626
    131.Chiou C. T., Shoup T. D. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol, 1985, 19(12), 1196-1200
    132.Chowdhury A., Vockel D., Moza P. N., Klein W., Korte F. Balance of conversion and degradation of 2,6-dichlorobenzonitrile -~14C in humus soil. Chemosphere. 1981, 10 (10), 1101-1108
    133.Christopher J. T., Powles S. B., Holtum J. A. M., Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms, Plant. Physiol. 1992, 100,1909-1913
    134.Chrysi S. L., Bruce E. R. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 2002, 36,2711-2720
    135.Cobb A. The inhibition of amino acid biosynthesis. In: Herbicides and Plant Physiology (Eds). Chapman and Hall, London, 1992, 126-143
    136.Cook R. L., Langford C. H. Structural characterization of a FA and a HA using solid-state Ramp-CP-MAS ~13C nuclear magnetic resonance. Environmental Science and Technology, 1998, 32 (5), 719-725
    137.Corapcioglu M. Y., Rhykerd R. L., Munster C. L., Drew M. C, Sung K., Chang Y. Y. Phtoremediation and modeling of land contaminated by hydrocarbons. In: Leeson A., Alleman B. C. Phytoremediation and innovative strategies for specialized remedial applications. Columbus: Battelle Press, 1999, pp 9-14
    
    138.Damiani G., Amedeo P., Bandi C. et al. Bacteria identification by PCR-based techniques. Chapter 10, Microbial Genome Methods. CRC press. 1996, 167-177
    139.Dankwardt A., Hock B., Simon R., Freitag D., Kettrup A. Determination of non-extractable triazine residues by enzyme immunoassay: investigation of model compounds and soil fulvic and Has. Environmental Science and Technology, 1996, 30 (12), 3493-3500
    140.Dankwardt A., Freitag D., Hock B. Approaches to the immunochemical analysis of non-extractable triazine residues in refractory organic substances (ROS) and characterization of ROS. Acta Hydrochimica et Hydrobiologica, 1998,26(3), 145-151
    141.Dastghheib F., Field R. J., Namjou S. The mechanism of differential response of wheat cultivars to chlorsulfuron. Weed Research, 1993, 33 (2), 299-308
    142.Dec J., Haider K., Rangaswamy A., Formation of soil-bound residues of cyprodinil and their plant uptake. Journal of Agricultural and Food Chemistry, 1997, 45,514-520 a
    143.Dick R. P., Breakwill D., Turco R. Soil enzyme activities and biodiversity measurements as integrating biological indicators. In: Doran et al. Handbook of Methods for Assessment of Soil Quality (Eds). Madison: SSSA Special Pub. 49. Soil Sci Soc Am Spec Publ, 1996, 247-272
    144.Dick R. P. Soil enzyme activities as indicators of soil quality. In: Doran J. W., Coleman D. C, Bezdicek D. F., Stewart B. A. Defining soil quality for a sustainable environment (Eds). Soil Science Society of America, Madison, WI, USA, 1994, 107-124
    145.Dick R. P. Soil enzyme activities as integrative indicators of soil health: In: Pankhurst C. E., Doube B M., Gupta V. V. S. R. Biological Indicators of Soil Health, CAB International, Wellingford, 1997, 121-156
    146.Doran J W., Parkin T B. Defining soil quality for sustainable environment (Eds). Soil Science Society of America Special Publication. Madison, Wisconsin, 1994, 35, 3-324
    147.Duarte-Davidson R., Clayton P., Davis B., Halsall C, Jones K. C, Janes P. PCDDs and PCDFs in British urban air and deposition. Environ. Sci. Pollut. Res. 1994, 1, 262-270
    148.Duineveld B. M. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via DGGE and substrate utilization patterns. Appl. Environ. Microbiol. 1998, 64, 4950-4957
    149.Elsas J. D. V., Mantynen V., Wolters A. C. Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene
     sequence based most-probable-number PCR and immunofluorescence, Biol. Fertil. Soils, 1997, 24, 188-195
    
    150.Eschenbach A., Kastner M., Bieri R., Schaefer G, Mahro B. Evaluation of a new, effective method to extract polycyclic aromatic hydrocarbons from soil samples. Chemosphere, 1994, 28 (4), 683-692
    151.Field J. A., Monohan K., Reed R. Coupling supercritical CO2 and subcritical (hot) water for the determination of Dacthal and its acid metabolites in soil. Analytical Chemistry, 1998, 70 (9), 1956-1962
    152.Forlani G E., Niclsen P. L., Tuberosa R. Chlorsulfuron tolerance and acetolactate synthase activity in corn (Zea mays L.) inbred lines. Weed Science, 1991, 39 (3), 553-557
    153.Francis T. Lichtner, Robert F. Dietrich, and Hugh M. Brown, Ethametsulfuron methyl metabolism and crop sensitivity in spring oilseed rape (Brassica napus L). Pesticide Biochemistry and Physiology. 1995,52, 12-24
    154.Frankenberger W. T., Dick W. A. Relationship between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 1983, 47, 945-951
    155.Fuhremann T. W., Lichtenstein E. P. Release of soil-bound methyl [14C] parathion residues and their uptake by earthworms and oat plants. Journal of Agricultural and Food Chemistry, 1978,26,605-610
    156.Fiihr F., Ophoff H. Burauel P., Wanner U., Haider K. Modification of the definition of bound residues. In: Pesticide Bound Residues in Soil (Report of a Workshop, September 3-4, 1996). Eds. State Commission for the Assessment of Chemical used in Agriculture. Report No. 2. Publ., Wiley-VCH, DFG 1998
    157.Gennari M., Negre M, Raimondo E. Effects of soil properties on adsorption and desorption of acifluorfen. Journal of Agricultural and Food Chemistry, 1994,42, 2329-2332
    158.Gevao B., Semple K. T., Jones K. C. Bound pesticide residues in soils: a review. Environmental Pollution, 2000, 108,3-14
    159.Ghani, A., Wardle, D. A., Fate of ~14C from glucose and the herbicide metsulfuron-methyl in a plant-soil microcosm system. Soil Bio. Biochemi. 2001, 33, 777-785
    160.Gohre K., Miller G. C. Singlet oxygen generation on soil surfaces. Journal of agricultural and food chemistry, 1983,31, 1104-1108
    
    161.Gordon M., Choe N., Duffy J. Phytoremidiation of trichloroethylene with hybrid polar trees. Environ Heath Perspect, 1998, 106(4), 1001-1004
    162.Hakan W., Shahid M., David H., Leif J., Jan P. Elemental composition of ectomycorrhizal mycelia identified by PCR-Rf LP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology, 2003, 44, 57-65
    163.Hance R. J., Chesters G. The fate of hydroxyatrazine in a soil and lake sediment. Soil Biology and Biochemistry. 1969, 1 (4), 309-315
    164.Hartmann R. Polycyclic aromatic hydrocarbons (PAHs) in forest soils: critical evaluation of a new analytical procedure. InternationalJournal of Environmental Analytical Chemistry, 1996, 62, 161-173
    165.Hatcher P. G. Bortiatynski J. ML, Minard R. D., Dec J., Bollag J. M. Use of high-resolution ~13C NMR to examine the enzymatic covalent binding of ~13C-labeled 2,4-dichlorophenol to humic substances. Environmental Science and Technology, 1993, 27 (10), 2098-2103
    166.Hayano B., Tubaki K., Origin and properties of p-glucosidase activity of tomato field soil. Soil Biol. Biochem. 1985, 17,553-557
    167.Heim K., Schuphan I., Schmidt B. Behavior of 14C-4-nitrophenol and 14C-3,4-dichloroaniline in laboratory sediment-water systems: Part 2. Desorption experiments and identification of sorptive fraction. Environmental Toxicology and Chemistry, 1995, 14 (5), 755-761
    168.Hema K. C, Eunsun K., Yongin K., Kyoungwon C, Oksoo H. Kinetics of wound-induced activation of antioxidative enzymes in Oryza satica: differential activation at different growth stages. Plant Science, 2003, 164, 935-941
    169.Hemmamda S., Calmon M., Calmon J. P. Kinetics and hydrolysis mechanism of chlosulfuron and metsulfuron-methyl. Pesticide Science, 1994, 40 (1), 71-76
    170.Henrot J. Vegetation removal in two soils of the humid tropics: Effect in microbial biomass. Soil Bio. Biochem., 1994, 26, 111-116
    171.Heuer H., Small K., Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial community. In: Modern soil microbiology, 1997, 353-373
    172.Hundal L. S., Shea P. J., Comfort S. D., Powers W. L., Singh J. Long-term TNT sorption and
     bound residue formation in soil. Journal of Environmental Quality, 1997, 26, 896-904
    
    173.Huang W., Schlautman M. A., Weber W. J. Distributed Reactivity Model for Sorption by Soils and Sediments. 5. The Influence of Near-Surface Characteristics in Mineral Domains. Environ. Sci. Technol., 1996, 30(10), 2993-3000
    174.Hutchison J. M., Shapiro R., Sweester P. B. Metabolism of chlorsulfuron by tolerant broadleaves. Pesticide Biochemistry and Physiology, 1984, 22 (1), 242-247
    175.Hwang S., Cutright T. J. Preliminary exploration of the relationships between soil characteristics and PAH desorption and biodegradation. Environment International, 2003, 29, 887-894
    176.Hyo-bang, M., Gon O., Sung-Hee J., Yung-Ho H. Concentration levels and behavior characteristics of PCDDs and PCDFs in the atmosphere. Organohalogen Compd. 1999, 43, 209-212
    177.IAEA, Quantification, nature and bioavailability of bound ~14C residues in soil. Plant and Food, Vienna, 1986, 177-185
    178.Ismail B. S., Kalithasan K. Mobility of metsulfuron-methyl in tropical soils. Australian Journal of Soil Research, 1997,35, 1291-1300
    179.James T. K., Klaffenbach P., Holland P. T. Degradation of primisulfuron-methyl and metsulfuron-methyl in soil. Weed Research, 1995, 35: 113-120
    180.Jenkinson, D.C. The turnover of organic matter in soil. In: Wild, A. (Eds.), Soil Conditions and Plant Growth. Longmans, Harlow, 1988, pp. 564-607.
    181 Juhler R. K., Sorensen S. R., Larsen L. analyzing transformation products of herbicide residues in environmental samples. Wat. Res. 2001, 35 (6), 1371-1378
    182Junnila, S., Heinonen-Tanski, H., et al. Phytotoxic persistence and microbiological effects of chlorsulfuron and metsulfuron in Finnish soils. Weed Research, 1994, 34 (2), 413-423
    183.Kandeler E., Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1996, 23, 299-306
    184.Kandeler E., Luftenegger G, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1997, 23, 299-306
    185.Karichoff S. W., Brown D. S., Scott T. A. Sorption of hydrophobic pollutants on natural sediments. Water Research, 1979, 13 (3), 241-248
    
    186.Kearney P. C, Plimmer J. R., Wheeler W. B., Kontson A. Persistence and metabolism of dinitroaniline herbicides in soils. Pesticide Biochemistry and Physiology. 1976, 6 (3), 229-238
    187.Khan S. U. Studies on bound 14C-prometryn residues in soil and plants. Chemosphere, 1982, 11(8), 771-795
    188.Khan S. U., Behki R. M. Effects of pseudomonas species on the release of bound ~14C residues from soil treated with ~14C-atrazine. Journal of Agricultural and Food Chemistry, 1990, 38, 2090-2093
    189.Klausen J., Troeber S. P., Haderlein S. B., Schwarzenbach R. P. Reduction of Substituted Nitrobenzenes by Fe(II) in Aqueous Mineral Suspensions. Environ. Sci. Technol, 1995, 29(9), 2396-2404
    190.Koeppe M. K., Barefoot A. C, Cotterman W. T., Zimmerman W. T. and Leep D. C, Basis of selectivity of the herbicide Flupyrsulfuron-methyl in wheat. Pesticide Biochemistry and Physiology, 1998,59, 105-117.
    191.Koeppe M. K., Hirata C. M., Brown H. M, Kenyon W. H., O'Keefe D. P., Lau S. C, Zimmerman W. T. and Green J. M., Basis of selectivity of the herbicide rimsulfuron in maize. Pesticide Biochemistry and Physiology, 2000,66, 170-181.
    192.Konopka A., Zakharova T., Willy V. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rDNA gene fingerprints and community-level physiological profiles. Applied and Environmental Microbiology, 1999, 65 (3), 982-988
    193.Kotoula-Skya E., Elefthrohorinos I. C, Gagianas A. A. Persistence of chlorsulfuron, metsulfuron-methyl, triasulfuron and tribenuron-methyl in three soils. Weed Research, 1993, 33, 355-367
    194.Kucerova P., Maeckova M., Chroma L. Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone CNC-90 and analysis of transformation products.Plant and Soil, 2000, 225, 109-115
    195.Lambers H., Poorter H., Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res., 1992, 23, 187-250
    196.Landi P., Vicari A., Carizone P. Response of maize (Zea mays L.) inbred lines and hybrids to chlorsulfuron. Weed Research, 1989, 29 (2), 265-271
    197.Langenfeld J. J., Hawthorne S. B., Miller D. J., Pawliszyn J. Effects of temperature and
     pressure on supercritical fluid extraction efficiencies of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Analytical Chemistry, 1993, 65 (4), 338-344
    
    198.Langenfeld J. J., Hawthorne S. B., Miller D. J., Pawliszyn J. Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples. Analytical Chemistry, 1994, 66 (6), 909-916
    199.Langenfeld J. J., Hawthorne S. B., Miller D. J., Pawliszyn J. Kinetic study of supercritical fluid extraction of organic contaminants from heterogeneous environmental samples with carbon dioxide and elevated temperatures. Analytical Chemistry, 1995, 67 (10), 1727-1736
    200.LaR.ossa R. E. and Schloss J. V., The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium, J. Biol. Chem. 1984, 259, 8753
    201.Lee K. E., Pankhurst C. E. Soil organisms and sustainable productivity. Aust. J. Soil Res. 1992, 30, 855-892
    202.Lerch R. N., Thurman E. M., Kruger E. L. Mixed-mode sorption of hydroxylated atrazine degradation products to soil: a mechanism for bound residue. Environmental Science and Technology, 1997, 31, 1539-1546
    203.Li Y, Zimmerman W. T., Gorman M. K., et al. Aerobic soil metabolism of metsulfuron-methyl. Pesticide Science, 1999, 55,434-445
    204.Maqueda C, Morillo E., Perez R. J. L. Interaction in aqueous solution of certain pesticides with fulvic acids from a spodosol soil. Soil Science, 1989, 148, 336-345
    205.Maqueda C, Morillo E., Perez R. J. L. Adsorption of chlordimeform by humic substances from different soils. Soil Science, 1990, 150,431-437
    206.Marador C, Ciavatta D., Montecchio D., et al. Effect f lead pollution on different soil enzyme activities. Bio. Fertil. Soil, 1996, 22, 53-58
    207.Marzadori C. Francioso O., Ciavatta C, Gessa C. Influence of the content of heavy metals and molecular weight of humic acids fractions on the activity and stability of urease. Soil Biology & Biochemistry, 2000, 32, 1893-1898
    208.Manley B. S., Singh B. K., Shaner D. L., Wilson H. P., Imidazolinone resistance in smooth pigweed (Amaranthus hybridus) is due to an altered acetolactate synthase. Weed Tech. 1999, 13,697-705
    
    209.Marschaner H. Mineral nutrition of higher plants. Diego USA, Academic Press, 1995, 185-193
    210.Martin N. L., Vieira E. M., Sposito G. Mechanism of atrazine sorption by humic acid: a spectroscopic study. Environmental Science and Technology, 1994, 28(11), 1867-1873
    211.Mingelgrin U. Gerstl Z. Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. Journal of Environmental Quality, 1983, 12, 1-11
    212.Moran J.K., Becana M., Iturbe-Ormaexte I., Frechilla S., Klucas R.V., Aparicio-Tejo P., Drought induces oxidative stress in pea plants, Planta. 1994, 194, 346-352
    213.Moreno J. L., Garcia C, Landi L., Falchini L., Pietramellara G, Nannipieri P. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. So/7 Biology and Biochemistry, 2001, 33,483-489
    214.Moyer, J.R., Esau, R., Kozub, GC, Chlorsulfuron persistence and response of nine rotational crops in alkaline soils of Southern Alberta. Weed Technol. 1990, 4, 543-548
    215.Moyer, J.R., Sulfonylurea herbicide effects on following crops. Weed Technol. 1995, 9, 373-379
    216.Murphy E. M., Zachara J. M., Smith S. C. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science and Technology, 1990,24, 1507-1516
    217.Muyzer G, Waal E. C, Uitterlinden A. G. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59, 695-700
    218.Nanny M. A., Bortiatynski J. M., Tien M., Hatcher P. G Investigations of enzymatic alterations of 2,4-dichlorophenol using C-nuclear magnetic resonance in combination with site specific ~13C-labeling: understanding the environmental fate of this pollutant. Environmental Toxicology and Chemistry, 1996, 15 (11), 1857-1864
    219.Nicholls, PH., Evans, A. A., The behavior of chlorsulfuron and metsulfuron in soils in relation to incidents of injury to sugar beet. Proc. Brighton Crop Protec. Conf. Weeds, 1998, 554, 91-101
    220.Nina C, Niels H. S., Jens C. S. Species-specific sensitivity of aquatic macrophytes towards two herbicide. Ecotoxicology and Environmental Safety, 2004a, 58, 314-323
    
    221.Nina C, Jens C. S., Niels H. S. Sensitivity of aquatic plants to the herbicide metsulfuron-methyl. Ecotoxicology and Environmental Safety, 2004b, 57, 153-161
    222.Northcott G. L., Jones K. C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environmental Pollution, 2000, 108, 19-43
    223.Nystrom B., Bj6rnsater B., Blanck H. Effects of sulfonylurea herbicides on non-targer aquatic micro-organisms: growth infibition of microalgae and short-term inhibition of adenine and thymine incorporation in periphyton communities. Aquat. Toxicol, 1999, 47, 9-22
    224.Oliveira R. S., Koskinen W. C, Ferreira F. A. Sorption and leaching potential of herbicides on Brasilian soils. Weed Res. 2001,41, 97-110
    225.Oppong F. K., Sagar G R. The activity and mobility of triasulfuron in soil as influenced by organic matter, duration, amount and frequency of rain. Weed Research, 1992, 32, 157-165
    226.Park J. H., Yucheng F., Cho S. Y., Thomass C. V., Stephen A. B. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging. Water Research, 2004, 38, 3881-3892
    227.Parrish, S.K., Kaufinann, J.E., Croon, K.A., Ishida, Y., Ohta, K., Itoh, S., MON 37500: a new selective herbicide to controlannual and perennial weeds in wheat. Br. Crop Prot. Conf.-Weeds 1995, 1, 57-63
    228.Peter K. K. L., Delia W. S. A preliminary investigation of persistent organic pollutants in ambient air in Hong Kong. Chemosphere, 2003, 52, 1397-1403
    229.Piccolo A., Celano G Hydrogen-bonding interactions between the herbicide glyphosate and water-soluble humic substances. Environmental Toxicology and Chemistry, 1994, 13: 1737-1741
    230.Pignatello J. J., Xing B. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology, 1996, 30, 1-11
    231.Pons N., Barriuso E. Fate of metsulfuron-methyl in soils in relation to pedo-climatic conditions. Pesticide Science, 1998, 53, 311-323
    232.Prasad D. Soil Environment and Pesticide.Venus Publishing House, 1994, pp. 157-201
    233.Pusino A., Liu W, Gessa C. Influence of organic matter and its clay complexes on metolachlor adsorption on soil. Pesticide Science, 1992, 36, 283-286
    234.Rappe C. Environmental concentrations and ecotoxicological effects of PCDDs, PCDFs and
     related compounds. Organohalogen Compd, 1993, 12, 595-600
    
    235.Raveton M., Ravanel P., Serre A. M. Kinetics of uptake and metabolism of atrazine in model plant. Pestic. Sci, 1997, 49, 157-163
    236.Ray, T. B., Site of action of chlorsulfuron: Inhibition of valine and isoleucine biosynthesis in plants, Plant Physiology. 1984, 75: 827-831.
    237.Reddy K. R., and Angelo E. M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Wat. Sci. Tech., 1997,35 (5), 1-10
    238.Richnow H. H., Seifert R., Hefter J., Link M., Francke W., Schaeffer G, Michaerlis W. Organic pollutants associated with macromolecular soil organic matter: mode of binding. Organic Geochemistry, 1997, 26 (11-12), 745-758
    239.Richnow H. H., Eschenbach A., Mahro B., Wehrung P., Albrecht P., Michaerlis W. The use of ~13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil. Chemosphre, 1998, 36 (10), 2211-2244
    240.Riggs K. B., Roth A., Kelly T. J., Schrock M. E. Ambient PCDD/PCDF levels in Montgomery County, Ohio. Comparison to previous data and source attribution. Organohalogen Compd, 1996,28, 128-133
    241.Roberts, T.R., Non-extractable pesticide residues in soils and plants. Pure and Applied Chemistry, 1984,56,945-956.
    242.Saari L. L., Cotterman J. C, Primiani M. M., Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia, Plant. Physiol. 1990, 93, 55-61
    243.Saari L. L., Cotterman J. C, Smith W. F., Primiani M. M., Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle, Pestic. Biochem. Physiol. 1992, 42, 110-118
    244.Saari L. L., Cotterman J. C, Thill D. C, Resistance to acetolactate synthase inhibiting herbicides, in: S. B. Powles, J. A. M. Holtum (Eds.), Herbicide Resistance in Plants: Biology and Biochemistry, CRC Press, Boca Ration, FL, 1994, PP. 83-139
    245.Salt D. E., Smith R. D., Raskin I., Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998,49,643-668
    246.Sanchez-Camazano M., Arienzo M., Sanchez-Martin M. J., Crisanto T. Effect of different surfactants on the mobility of selected non-ionic pesticides in soil. Chemosphere, 1995, 31 (8),
     3793-3801
    
    247.Sanchez-Martin M. J., Rodriguez-Cruz M. S., Sanchez-Camazano M. Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil-water system. Water-Research, 2003, 37, 3110-3117
    248.Sanchezpalacios A., Perezruiz T., Martinezlozano C. Determination of diaquat in real samples by electron-spin-resonance spectrometry, Analytica Chimica Acta, 1992, 268 (2), 217-223
    249.Sannino F., Gianfreda L. Pesticide influence on soil enzymatic activities. Chemosphere, 2001, 45,417-425
    250.Sarmah A. K., Kookana R. S., Alaton A. M. Fate and behaviour of triasulfuron, metsulfuron-methyl, and Chlorsulfuron in the Australian soil environment: a view. Aust. J. Agric Res., 1998,49,775-790
    251.Scheunert I, Mansour M, Andreux F. Binding of organic pollutants to soil organic mater. International journal of environmental analytical chemistry, 1992, 46, 189-199
    252.Scheunert I., Reuter S. Formation and release of residues of ~14C-labelled herbicide isoproturon and its metabolites bound in model polymers and in soil. Environmental Pollution, 2000, 108, 61-68
    253.Schlautman M. A., Morgan J. J. Binding of fluorescent hydrophobic organic probe by dissolved humic substances and organically-coated aluminium oxide surfaces. Environmental Science and Technology, 1993, 27 (12), 2523-2532
    254.Schloss, J.V. Acetolactate synthase, mechanism of action and its herbicide binding site, Pesticide Science. 1990, 29, 283-292
    255.Schnoor J. L., Licht L. A., Mccultcheon S. C. Phytoremediation of organic and nutrient contaminants. Env Sci. Tech., 1995, 29(7), 318-323
    256.Senesi N., Paolo G. B., Miano T. M. Adsorption of alachlor by humic acids from sewage sludge and amended and non-amended soil. Soil Science, 1994, 157, 176-184
    257.Senesi N. Binding mechanisms of pesticides to soil humic substances. Science of the Total Environment, 1992, 123 /124, 63-76
    258.Shane M. P., John P. B., Ian S., Jonathan S. S. Microbial community variation in pristine and polluted nearshore. FEMS Microbiology Ecology, 2003, 45, 135-145
    259.Sheng G, Xu S., Boyd S. A. Mechanism controlling sorption of low-polarity compounds in
     glassy poly (vinyl chloride) and soil organic matter. Environmental Science and Technology, 1997,31,792-799
    
    260.Singh S. B., Stidharn M. A., Shaner D. L. Assay of acetohydroxyacid synthase. Analytical Biochemistry, 1988, 171, 173-179
    261.Sojo L. E., Gamble D. S., Gutaman D. W. Sorption and bound residue formation of linuron, methylparathion, and metolachlor by carrot tissues: kinetics by on-line HPLC microextraction. Journal of Agricultural and Food Chemistry, 1997, 45, 3634-3641
    262.Sparling G. P., Chun Yazhu and Fillery I. R. P. Microbial immobilization of 15N from legume residues in soil of differing textures: measurement by persulphate oxidation and ammonia diffusion methods. Soil Bio. Biochem., 1996,28: 1707-1715
    263.Stidham M. A., Shaner D. L. Imidazolinone inhibition of acetohydroxyacid synthase in vitro and vivo, Pesticide. Science, 1990, 29, 335-340
    264.Stork P. R. Field leaching and degradation of soil-applied herbicides in a gradationally textured alkaline soil: chlorsulfuron and triasulfuron. Aust. J. Agric. Res. 1995, 46, 1445-1458
    265.Sweester P. B., Schow C. S., Hutchison J. M. Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pesticide Biochemistry and Physiology, 1982, 17 (1), 18-23
    266.Taucher J. A., Buckland S. J., Lister A. R., Porter L. J. Levels of polychlorinated dibenzofurans in ambient urban air in Sydney, Australia. Chemosphere, 1992,25, 1361-1365
    267.Tebbe C. C, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Applied and Environmental Microbiology, 1993, 59, 2657-2665
    268.Thill D. C, Mallory-Smith C. A., Saari L. L., Cotterman J. C, Primiani M. M., Saladini J. L., Sulfunylurea herbicide resistant weeds: discovery, distribution, biology, mechanism, and management, in: J. C. Caseley, G. W. Cussans, R. K. Atkin (Eds.), Herbicide Resistance in Weeds and Crops, Butterworth and Heinemann, London, 1993, pp. 115-128
    269.Thomas M. Y., Weber W. J. A Distributed Reactivity Model for Sorption by Soils and Sediments. 3. Effects of Diagenetic Processes on Sorption Energetics. Environ. Sci. Technol., 1995,29(l),92-97
    270.Thompson P. L., Ramer L. A., Schnoor J. L. Uptake and transformation of TNT by hybrid poplar trees. Environ.Sci.Technol., 1998, 32, 975-980
    
    271.Thorn K. A., Pettigrew P. J., Goldenberg W. S., et al. Covalent binding of aniline to humic substances ~15N NMR studies of nucleophilic addition reactions. Environmental Science and Technology, 1996, 30, 2764-2775
    272.Trasar C. C, Leiros M. C, Seoane S., Gil S. F. Limitations of soil enzymes as indicators of soil pollution. Soil Bio & Biochem, 2000, 32, 1867-1875
    273.Tsai Y. L., Olson B. H. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Applied and Environmental Microbiology, 1992, 58, 754-757
    274.Ukrainczyk L., Ajwa H. A. Primisulfuron sorption on minerals and soils. Soil Science Society of America Journal, 1996, 60, 460-467
    275.Unger D. R., Lam T. T., Schaefer C. E., Kosson D. S. Predicting the Effect of Moisture on Vapor-Phase Sorption of Volatile Organic Compounds to Soils. Environ. Sci. Technol., 1996, 30(4), 1081-1091
    276.Vaga D., Bastide J., Poulain C. Chemical or microbial degradation of sulfonylureas in the soil II. Metsulfuron-methyl. Weed Res., 1992, 32 (1), 149-155
    277.Vance E. D., Brookes P. C, Jenkinson D. S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 1987, 19, 703-707
    278.Van Rensburg L., Kruger G.H.J., Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L., Plant Physiol. 1994, 143, 730-737
    279.Veldhuis L. J., Hall L. M., O' Donovan J. T., Dyer W., Hall J. C, Metabolism-based resistance of a wild mustard {Sinapis arvensis L.) biotype to ethametsulfuron-methyl, J. Agric. Food Chem. 2000, 48, 2986-2990
    280.Verma A., Pillai M. K. K. Bioavailability of soil-bound residues of DDT and HCH to earthworms. Current Science, 1991a, 61 (12), 840-843
    281.Verma A ., Pillai M. K. K. Bioavailability of soil-bound residues of DDT and HCH to certain plants. Soil Biology and Biochemistry, 1991 b, 23, 347-3 51
    282.VOlkel W., Chone T., Portal J. M., et al. Reaction of the pesticide metabolite 3,4-dichloroaniline with humic acid monomers. Fresenius Environmental Bulletin, 1993, 2, 262-267
    283. Wang Q, Yang W, Liu W. Adsorption of acetanilide herbicides on soils and its correlation with
     soil properties. Pesticide Science, 1999, 55, 1103-1108
    
    284.Weber W. J., McGinley P. M., Katz L. E. A distributed reactivity model for sorption by soils and sediments. I. Conceptual basis and equilibrium assessments. Environ. Sci. Technol, 1992,26(10), 1955-1962
    285.Weber, W. J., Huang, W. A Distributed Reactivity Model for Sorption by Soils and Sediments. 4. Intraparticle Heterogeneity and Phase-Distribution Relationships under Nonequilibrium Conditions. Environ. Sci. Technol., 1996, 30(3), 881-888
    286.WeIler M. G, Simon E., Pfortner P., Dosch M., Niessner R. Detection of bound residues by enzyme immunoassay. In: Pesticide Bound Residues in Soil (Report of a Workshop, September 3-4, 1996). Eds. State Commission for the Assessment of Chemicals used in Agriculture. Report No. 2. Publ., Wiley-VCH, DFG, 1998
    287.Wevers M., de Fre R., van Cleuvenbergen R., Rymen T. Concentrations of PCDDs and PCDFs in ambient air at selected locations in flanders. Organohalogen Compd. 1993, 12, 123-126
    288.Xie H., Guetzloff T. F., Rice J. A. Fractionation of pesticides bound to humin. Soil Science, 1997, 162 (6), 421-429
    289.Xing B., Pignatello J. J. Dual-mode sorption of low-polarity compounds in glass poly (vinylchloride) and soil organic matter. Environmental Science and Technology, 1997,31, 792-799
    290.Xing B., Pignatello J. J. Time-dependent isotherm shape of organic compounds in soil organic matter: implications for sorption mechanism. Environmental Toxicology and Chemistry, 1996, 15, 1282-1288
    291.Ye Q F, Sun J H, Wu J M, 2003. Cause of phytotoxicity of metsulfuron-methyl bound residues in soil. Environmental pollution, 126, 417-423
    292.Zhang J., Kirkham M.B., Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species, Plant Cell Physiol. 1994, 35, 785-791
    293.Zhou, J.; Bruns, M. A.; Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 1996, 62, 316-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700