含呋喃和叔芳胺的共轭丙烯腈衍生物的合成及发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分四章,第一章综述了有机电致发光材料的研究进展;第二章介绍了钯催化C-N偶联反应及C-C偶联反应的研究进展;第三章研究了呋喃类丙烯腈衍生物的合成及发光性质;第四章研究了联苯类丙烯腈叔芳胺衍生物的合成及发光性质。
     第一章首先概述了有机电致发光材料的发现和发展,介绍了有机发光材料的种类和应用,总结了近年来有机发光材料方面的研究进展。
     第二章概述了钯催化C-N偶联反应及C-C偶联反应的研究进展,从反应体系以及配体的发展对近年来Hartwig-Buchwald反应以及Suzuki偶联反应的研究进展进行了总结。
     第三章研究了利用Pd催化Suzuki偶联反应合成含呋喃类丙烯腈衍生物,并对其进行结构确证以及发光性质表征。
     第四章利用Pd催化Hartwig-Buchwald偶联反应以及Suzuki偶联反应合成含联苯类丙烯腈叔芳胺衍生物,通过核磁共振氢谱、碳谱、红外、质谱等确证其结构,并用紫外及荧光测定了其发光性质。
This dissertation includes four chapters. Chapter one reviewed the development of the organic light-emitting materials; Chapter two is mainly the progress in palladium-catalyzed C-N coupling reaction and C-C coupling reaction; Chapter three is the synthesis and photophysical properties of novel biphenyl derivatives containing a furanacrylonitrile moiety; Chapter four is the synthesis and photophysical properties of novel acrylonitrile derivatives containing a triphenylamine moiety.
     In chapter one, we made a summary of the discovery of organic electroluminescence. Then, we summed up their applications in the development of display technology. At last, we summarized the organic light-emmiting materials on the triarylamines from several important journals.
     In chapter two, we reviewed the progress of palladium-catalyzed Hartwig-Buchwald coupling reaction and Suzuki coupling reaction mainly from the reaction conditions and ligands.
     In chapter three, we reported the synthesis and photophysical properties of a series of novel furanacrylonitrile derivatives containing biphenyl groups.
     In chapter four, we used the Buchwald-Hartwig cross coupling reaction and Suzuki coupling reaction to promote the synthesis of novel acrylonitrile derivatives containing a triphenylamine moiety, and we also studied their light emitting properties. Structures of products were characterized by FT-IR,1H NMR,13C NMR, MS and elemental analyses. The UV-vis absorption and photoluminescent (PL) spectra of the compounds were investigated.
引文
[1]滕枫,侯延冰,印寿根.有机电致发光材料及应用[M].北京:化学工业出版社,2006年5月.
    [2]Kallmann P M. Electroluminescence in organic. Appl. Phys. Lett.,1963,38: 2042.
    [3]Tang C W, Vanslyke S A. Organic electroluminescent diodes. Appl. Phys. Lett., 1987,51 (12):913-915.
    [4]Adachi C, Tokito W, Tsutsui T. Three layer organic electroluminescent diodes.Appl. Phys. Lett.,1988,27:1269.
    [5]Tang C W, Vanslyke S A. Organic electroluminescence of organic thin film. Appl. Phys. Lett.,1989,65 (9):3610.
    [6]Burroughes J H, Bradley D C, Brown A R. Light-emitting diodes based on conjugated polymer.Nature,1990,347,539-541.
    [7]蒋智强,杨其,有机电致发光材料的研究进展及应用,工程塑料应用,2007,35(2):65-69.
    [8]Yang Y. Applied Physics Letters,1994,64 (10):1245-1247.
    [9]Hatalis. Proceedings of the SPIE-The International Society for Optical Engineering,1997,3057:277-286.
    [10]杨定宇,蒋孟衡,杨军,涂小强,有机电致发光材料研究进展,西南民族大学学报·自然科学版,2006,32(6):1231-1235.
    [11]Tong Q X, Lai S L, Chan M Y, Lai K H, Tang J X, Kwong H L, Lee C S, Lee S T. High Tg Triphenylamine-Based Starburst Hole-Transporting Material for Organic Light-Emitting Devices, Chem.Mater.2007,19,5851-5855.
    [12]Tao S, Zhou Y C, Lee C S, Lee S T, Huang D, Zhang X H. Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives. J. Phys. Chem. C,2008,112 (37):14603-14606.
    [13]Ge Z Y, Hayakawa T, Ando S J, Ueda M, Akiike T, Miyamoto H, Kajita T,and Kakimoto M.Solution-Processible Bipolar Triphenylamine-Benzimidazole Derivatives for Highly Efficient Single-Layer Organic Light-Emitting Diodes, Chem.Mater.2007,19,5851-5855.
    [14]Li J Y, Ma C W, Tang J X, Lee C S, Lee S T, Novel Starburst Molecule as a Hole Injecting and Transporting Material for Organic Light-Emitting Devices, Chem.Mater.2005,17,615-619.
    [15]Pron A, Baumgarten M, Mullen K. Phenylene Bridged Boron-Nitrogen Containing Dendrimers.Org. Lett.,2010,12(19):4236-4239.
    [16]Burroughes J H., Bradley D C C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers, Nature,1990,347:439-541.
    [17]Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett.,1991,58:1982-1984.
    [18]Cremer J, Briehn C A. Novel high fluorescent triphenylamine-based oligothiophenes. Chem. Mater.,2007,19 (17):4155-4165.
    [19]Holder E, Bea M W, Langeveld, Schubert U S. New trends in the use of transition Metal-ligand complex for application in electroluminescent device. Adv. Mater. 2005,17:1109-1121.
    [20]Reyes R, et al. Chemical Physics Letters,2004,396:54-58.
    [21]Yin S G, Hua Y L, Chen X H, et al. Improved efficiency of molecular organic EL devices based on supermolecular structure. Synth. Met.,2000,111:109-112.
    [22]Baldo M A, O'brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature,1998,395:151-154.
    [23]Zhou G J, Ho C L, Wong W Y, Wang Q, Ma D G, Wang L X, Lin Z Y, Marder T B, Beeby A, Manipulating Charge-Transfer Character withElectron-Withdrawing Main-Group Moieties forthe Color Tuning of Iridium Electrophosphors. Adv. Funct. Mater.2008,18:499-511.
    [24]Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H.A Highly Efficient Host/Dopant Combination for Blue Organic Electrophosphorescence Devices, Adv.Funct.Mater.2008,18,485-491.
    [25]Vonika K A, Keith W, Daniel T, Chan M Y, Zhu N Y, Vivian Y, High-Efficiency Green Organic Light-Emitting Devices Utilizing Phosphorescent Bis-cyclometalated Alkynylgold(Ⅲ) Complexes. J. Am. Chem. Soc.,2010,132: 14273-14278.
    [1]Hartwig J F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates:Scope and Mechanism, Angew. Chem. Int. Ed. Engl.,1998,37:2046-2067.
    [2]Yang B H, Buchwald S L. Palladium-catalyzed amination of aryl halides and sulfonates. J. Organomet. Chem.,1999,576:125-146.
    [3]Wolfe J P, Wagaw S, Marcous J F, Buchwald S L. Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation. Acc. Chem. Res.1998,31:805.
    [4]Hartwig J F. Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides. Acc. Chem. Res.,1998,31:852.
    [5]张贞发,周伟澄,钯等过渡金属催化的卤代芳烃和胺的偶联反应,有机化学,2002,22(10),685-693.
    [6]刘蒲,李三华,李利民,王向宇,钯催化卤代芳烃的胺化反应研究,化学进展,2005,17(2),286-292.
    [7]Jwanro H, Marc S, Christel G, Emmanuelle S, Marc Lemaire. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev. 2002,102:1359-1469.
    [8]Hartwig J F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates:Scope and Mechanism,Angew. Chem. Int. Ed. Engl.1998,37,2046-2067.
    [9]Guram A S, Rennels R A, Buchwald S L. A Simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines. Angew. Chem. Int. Ed. Engl.,1995, 34:1348-1350.
    [10]Louie J, Hartwig J F, Discrete High Molecular Weight Triarylamine Dendrimers Prepared by Palladium-Catalyzed Amination. J. Am. Chem. Soc.,1997,119: 11695-11696.
    [11]Hartwig J F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates:Scope and Mechanism, Angew. Chem., Int. Ed. Engl.1998,37:2046-2067.
    [12]Wolfe J P, Buchwald S L.Palladium-Catalyzed Amination of Aryl Triflates, J. Org. Chem.1997,62,1264-1267.
    [13]Marinetti A, Hubert P, Genrt J P. Enantioselective preparation of 2,4-disubstituted azetidines. Eur. J. Org. Chem.,2000,9:1815-1820.
    [14]Driver M S, Hartwig J F. A second-generation catalyst for aryl halide amination: Mixed secondary amines from aryl halides and primary amines catalyzed by (DPPF)PdCl2. J. Am. Chem. Soc.,1996,118:7217-7218.
    [15]Mann G, Hartwig J F, Michael S. Driver, and Carolina Ferna'ndez-Rivas Palladium-CatalyzedC-N(sp2) Bond Formation:N-Arylation of Aromatic and Unsaturated Nitrogenand the Reductive Elimination Chemistry of Palladium Azolyl and Methyleneamido Complexes, J. Am. Chem., Soc.1998,120:827-828.
    [16]Hartwig J F, Kawatsura M, Hauck S I, Shaughnessy K H, Luis M. Alcazar-Roman, Room-Temperature Palladium-Catalyzed Amination of Aryl Bromides and Chlorides and Extended Scope of Aromatic C-N Bond Formation with a Commercial Ligand. J. Org. Chem.1999,64:5575-5580.
    [17]Yu M X, Chang L C, Lin C H, Duan J P, Wu F I, Chen I C, Cheng C H.Luminescence Properties of minobenzanthrones and Their Application as Host Emitters in Organic Light-Emitting Devices, Adv. Funct. Mater.2007,17: 369-378.
    [18]Harris M C, Buchwald S L, One-Pot Synthesis of Unsymmetrical Triarylamines from Aniline Precursors. J. Org. Chem.2000,6:5327-5333.
    [19]Chen C, Li Y F, Yang L M. Efficient synthesis of triarylamines catalyzed by palladium/N-heterocyclic carbe. J. Mol. Catal. A:Chem.,2007,269:158-162.
    [20]Esposito O, Pedro M P, Gois A K, Lewis K, Stephen C, Geoffrey N F, Hitchcock P B. Alkylpalladium N-Heterocyclic Carbene Complexes:Synthesis, Reactivity, and Catalytic Properties. Organometallics,2008,27(24):6411-6418.
    [21]Fors B P, Buchwald S L. A Multiligand Based Pd Catalyst for C-N Cross-Coupling Reactions.J.Am. Chem. Soc.,2010,132:15914-15917.
    [22]Hartwig J F, Kawatsura M, Hauck S I. Room-Temperature Palladium-Catalyzed Amination of Aryl Bromides and Chlorides and Extended Scope of Aromatic C-N Bond Formation with a Commercial Ligand. J. Org. Chem.,1999,64:5575-5580.
    [23]Urgaonkar S, Nagarajian M, Verkand J G. P[N(i-Bu)CH2CH2]3N:A Versatile Ligand for the Pd-Catalyzed Amination of Aryl Chlorides. Org. Lett.,2003,5: 815-818.
    [24]Miyaura N, Yanagi T, Suzuki A. The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases. Synth. Commun.,1981,11:513.
    [25]Chen H S, Ma X P, Li Z M, Wang Q R. An effective synthesis of b-aryl substituted isotetronic acids via Suzuki coupling. Chin. Chem. Lett, 2008,19:1309-1311.
    [26]Takashi H, Ippei S, Taichi N. Biphenylene-Substituted Ruthenocenylphosphine for Suzuki-Miyaura Coupling of Sterically Hindered Aryl Bromides. J.Org. Chem.,2009,74:4013-4016.
    [27]Grushin V V, Alper H. Transformations of Chloroarenes, Catalyzed by Transition-Metal Complexes. Chem. Rev.,1994,94(4):1047-1062.
    [28]Gronowitz S, Hornfeldt A B,Yang Y H. Chem. Scripta,1986 26:311.
    [29]Moreno-Manas M, Pe'rez M. Palladium-Catalyzed Suzuki-Type Self-Coupling of Arylboronic Acids. A Mechanistic Study. J. Org. Chem.,1996,61(7): 2346-2351.
    [30]Sasaki M, Fuwa H S, Ishikawa M, Tachibana K. A General Method for Convergent Synthesis of Polycyclic Ethers Based on Suzuki Cross-Coupling: Concise Synthesis of the ABCD Ring System of Ciguatoxin. Org. Lett.,1999, 1(7):1075-1077.
    [31]Mathews C J, Smith P J, Welton T. Palladium Catalysed Suzuki Cross-coupling reactions in Ambient Temperature Ionic Liquids. Chem. Commun., 2000:1249-1250.
    [32]Kawada H, Iwamoto M, Utsugi M, Miyano M, Nakada M. Synthetic Studies on the Taxane Skeleton:Construction of Eight-Membered Carbocyclic Rings by the Intramolecular B-Alkyl Suzuki-Miyaura Cross-Coupling Reaction. Org. Lett., 2004,6(24):4491-4494.
    [33]Martin R, Buchwald S L. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts. Chem. Res., 2008,41(11):1461-1473.
    [34]Fujihara T, Yoshida S, Terao J, Tsuji Y A Triarylphosphine Ligand Bearing Dodeca(ethylene glycol) Chains:Enhanced Efficiency in the Palladium-Catalyzed Suzuki-Miyaura Coupling Reaction. Org. Lett.,2009, 11(10):2121-2124.
    [35]Li J H, Liu W J.Dabco as an Inexpensive and Highly Efficient Ligand for Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Org. Lett.,2004, 6(16):2809-2811.
    [36]Anderson J C, Namli H. Ambient Temperature Unsummetrical Biaryl Synthesis using Suzuki Methodology. Synlett.,1995:756-766..
    [37]Anderson J C, Namli H, Roerts C A. Investigations into Ambient Temperature Biaryl Coupling reactions. Tetrahedron.,1997,53(44):15123-15134.
    [38]Nerdinger S, Kendall C, Marchhart R, Riebel P, Johnson M R, Yin C F, Eltis L D, Snieckus V. Directed Ortho-metalation and Suzuki-Miyaura Cross-coupling Connections:Regiospecific Synthesis of all Isomeric Chlorodihydroxybiphenyls for Microbial Degradation Studies of PCBs. Chem. Commun.,1999:2259-2260.
    [39]Qiu W F, Chen S Y Sun X B Liu Y Q. Suzuki Coupling Reaction of 1,6,7,12-Tetrabromoperylene Bisimide.Org. Lett.,2006,8(5):867-870.
    [1]EUiott M A, McNeil D.Chem. Coal. Util.,1981,1003.
    [2]Barton D,Nakanishi K, MethCohn O. Compr. Nat. Prod. Chem.,1999.
    [3]Yu M X, Wang M J, Chen X H, Hong B B, Zhang X Y, Cheng C H. Synthesis of OLED materials of several triarylamines by palladium catalysts and their light emitting property. J. Chem. Res.,2005;9:558-560.
    [4]Yu MX, Chen XH, Cheng CH. Study on synthesis of organic light emitting diode materials of aminoanthrancenes and their light emitting property. Chin. J. Org. Chem.,2005;25:218-21.
    [5]Yue Y F, Kang J H, Yu M X. The synthesis and photophysical properties of novel triphenylamine derivatives containing a, β-diarylacrylonitrile. Dyes and Pigments 2009;83:72-80.
    [6]Iyoda M, Kondo T, Nakao K, Hara K, Kuwatani Y, Yoshida M, Matsuyama H A. Cyclic Oligophenylene Containing Two 1,8-Naphthalene Units Bridged by Two Face-to-Face Biphenyl Linkages Exhibiting Unusual Strain and p-p Interaction. Org. Lett.,2000,2(14):2081-2083.
    [7]Harada G, Yoshida M, Iyoda M. Synthesis of Biaryls Using the Coupling Reaction of Diaryldimethyltins with Copper(II) Nitrate. Chem. Lett.,2000,29(2):160.
    [8]Shi Y B, Qian H L, Li Y, Yue W, Wang Z H. Copper-Mediated Domino Process for the Synthesis of Tetraiodinated Di(perylene bisimide). Org. Lett.,2008,10(12): 2337-2340.
    [9]Hauser F M, Gauuan P J F. Total Synthesis of (i)-Biphyscion. Org. Lett.,1999, 1(4):671-672.
    [10]Howarth J, James P, Dai J. The coupling of aryl halides in the ionic liquid [bmim]PF6. Tetrahedron. Lett.,2000,41(52):10319-10321.
    [11]Chen C, Yang L M. Nickel (Ⅱ)-aryl Complexes as Catalysts for the Suzuki Crosscoupling Reaction of Chloroarenes and Arylboronic Acids. Tetrahedron. Lett0,2007,48 (13):2427-2430.
    [12]Percec V, Smidrkal J, Weichold O. NiCl2 (dppe) Catalyzed Cross-coupling of Aryl Mesylates, Arenesulfonates, and Halides with Arylboronic acids. J. Org. Chem.,2004,69(10):3447-3452.
    [13]Gosmini C, Ne'de'lec JY, Pe'richon J. Electrochemical Cross-coupling between Functionalized Aryl halides and 2-Chloropyrimidine or 2-Chloropyrazine Catalyzed by Nickel 2,20-bipyridine Complex. Tetrahedron. Lett.,2000, 41 (2):201-203.
    [1]Shirota Y, Kobata T, Noma N. Starburst molecules for amorphous molecular materials-4,4',4"-Tris(N,N-diphenylamino)triphenylamine and 4,4',4"-tris[N-(3-Methylphenyl)-N-phenylamino]Triphenylamine. Chem. Lett.,1989,7:1145-1148.
    [2]Tamaka H, Tokito S, Taga Y, et al. Novel hole-transporting materials based on triphenylamine for organic electroluminescent devices. Chem. Commun.,1996, 10:2175-2176.
    [3]Yasuhiro Y, Osaka-fu N S, Kazuyos shi K.Precess for preparing a triarylamine dimmer. EP:1018505(A2),2000-7-12.
    [4]Antilla J C, Baskin J M, Buchwald S L, et al. Copper-diamine-catalyzed N-arylation of pyrroles, pyrazoles, indazoles, imidazoles, and triazoles. J. Org. Chem.,2004,69:5578-5587.
    [5]薛金强,王世荣,李祥高,冯亚青,甲氧基取代三苯胺的合成及其性能研究,材科学与工程学报,2006,37:361-363.
    [6]Shafir A, Buchwald S L. Highly selective room-temperature copper-catalyzed C-N coupling reactions. J. Am. Chem. Soc.,2006,128:8742-8743.
    [7]Shafir A, Lichtor P A, Buchwald S L. N-versus O-arylation of aminoalcohols: orthogonal selectivity in Copper-based catalysts. J. Am. Chem. Soc.,2007,129:3 490-3491.
    [8]Sengupta S, Sadhukhan S K, Muhuri S. A tetraphenylmethane based starburst triarylamine cluster:spectroscopy, electrochemistry and morphological studies. Tetrahedron Lett.2002,43(19):3521-3524.
    [9]王美君,a,β-二芳基丙烯腈类发光材料的合成及发光性质的研究:[硕士学位论文].杭州:浙江大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700