钯钛氧化物介孔材料的制备以及催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过一种温和可重复的溶胶凝胶法,以钛酸四丁酯和乙酰丙酮钯作为金属源,制备出两种不同钛钯比例的复合金属材料。通过氮气吸附脱附进行全孔分析,发现两种材料均呈现独特的介孔特性和相当集中的孔径分布,平均孔径在11nm左右。X射线粉末衍射图和高分辨透射电镜共同证明了氧化钯晶体(四方晶相)的存在,能谱分析得到了材料中钯钛的比例。
     通过C-C偶联反应评价两种材料的催化性能,其中包括Suzuki、Hec、Hiyama反应。在Suzuki反应中,材料显示了广泛的底物适用性和较高的催化活性,其中TP-2(钛钯比为77.6:1的催化剂)的活性更高,优于商品化的钯碳催化剂;TP-1(钛钯比为14:1的催化剂)在碘苯和苯基硼酸的偶联反应中可以重复使用十次,转化率仍然保持在90%以上;而在Hiyama反应中,尽管存在强碱TBAF(四丁基氟化铵),仍然可以循环使用十二次。
     通过催化氢化和氢解反应评价材料,包括脱溴、脱苄基、和酮的还原。在脱溴反应中,通过循环使用测试分别考察材料在酸碱中的稳定性;并发现在溴代苯甲醛、溴代苯乙酮的还原中,三乙胺可以有效调节反应的活性,选择性得到目标产物。
Different Ti/Pd ratio mesoporous TiO2-PdO have been easily synthesized by a sol-gel method using Pd(acac)2 and Ti(OBu)4 as precursors. Both of the two N2 adsorption-desorption isotherms exhibit typical type IV isothermal curves with the characteristic mesoporous structures. The pore size distribution displayed sharp peaks in the mesoporous region, and average pore size diameters are about 11 nm. The existence of tetragonal PdO is confirmed by XRD and TEM, and the Ti/Pd ratio can be known from the result of energy dispersive spectrometer (EDS).
     The materials'catalytic properties were evaluated by C-C coupling reaction, including Suzuki, Heck and Hiyama reaction. In the Suzuki reaction, they show wide functional group tolerance and high activity, especially the activity of TP-2 is higher than Pd/C. While the stability of TP-1 is better than TP-2, and could be reused ten times, with a conversion above 90%. In the Hiyama reaction, TP-1 could also be reused twelve times, even when the strong base (TBAF) exists.
     The materials'catalytic properties were also evaluated by catalytic hydrogenation and hydrogenolysis, including debromination, debenzylation and reduction of ketone. In the debromination reaction, we test the stability of materials in the acid and base enviroment. It was found that in the reduction of Bromoacetophenone and Bromobenzaldehyde, the activity of substrate could be adjusted effectively by triethylamine, and transform in to the specific product selectively.
引文
[1]Kochi, J.K., Organometallic Mechanisms and Catalysis.1978, New York.
    [2]Heck, R.F., Palladium Reagents in Organic Syntheses.1985, New York.
    [3]Patai, F.R.H.S. The Chemistry of Metal-Carbon Bond. Wiley,1985.3.
    [4]Stephenson, F.J.M.D.G.P.G.R., Transition Metal Organometallics for Organic Synthesis. 1991:Cambridge.
    [5]Tamao, K., Comprehensive Organic Synthesis.1991, New York.
    [6]Hegedus, L.S., Organometallics in Organic Synthesis.1994, New York.
    [7]Brown, J.M. and K.K. Hii. Characterization of Reactive Intermediates in Palladium-Catalyzed Arylation of Methyl Acrylate (Heck Reaction). Angewandte Chemie International Edition in English,1996.35(6):657-659.
    [8]Zapf, A. and M. Beller. The development of efficient catalysts for palladium-catalyzed coupling reactions of aryl halides. Chemical Communications,2005(4):431-440.
    [9]Grushin, V.V. and H. Alper. An Exceptionally Simple Biphasic Method For The Metal-Catalyzed Carbonylation of Chloroarenes. Journal of the Chemical Society-Chemical Communications,1992(8):611-612.
    [10]Shen, W. Palladium catalyzed coupling of aryl chlorides with arylboronic acids. Tetrahedron Letters,1997.38(32):5575-5578.
    [11]Kirchhoff, J.H., C.Y. Dai, and G.C. Fu. A method for palladium-catalyzed cross-couplings of simple alkyl chlorides:Suzuki reactions catalyzed by [Pd-2(dba)(3)]/PCY3. Angewandte Chemie-International Edition,2002.41(11):1945-+.
    [12]Littke, A.F. and G.C. Fu. A convenient and general method for Pd-catalyzed Suzuki cross-couplings of aryl chlorides and arylboronic acids. Angewandte Chemie-International Edition,1998.37(24):3387-3388.
    [13]Old, D.W., J.P. Wolfe, and S.L. Buchwald. A highly active catalyst for palladium-catalyzed cross-coupling reactions:Room-temperature Suzuki couplings and amination of unactivated aryl chlorides. Journal of the American Chemical Society, 1998.120(37):9722-9723.
    [14]Zapf, A., A. Ehrentraut, and M. Beller. A new highly efficient catalyst system for the coupling of nonactivated and deactivated aryl chlorides with arylboronic acids. Angewandte Chemie-International Edition,2000.39(22):4153-4155.
    [15]Andreu, M.G., A. Zapf, and M. Beller. Molecularly defined palladium(0) monophosphine complexes as catalysts for efficient cross-coupling of aryl chlorides and phenylboronic acid. Chemical Communications,2000(24):2475-2476.
    [16]Zapf, A., et al. Practical synthesis of new and highly efficient ligands for the Suzuki reaction of aryl chlorides (Jan, pg 38,2004). Chemical Communications, 2004(11):1340-1340.
    [17]Harkal, S., et al. Dialkylphosphinoimidazoles as new ligands for palladium-catalyzed coupling reactions of aryl chlorides. Advanced Synthesis & Catalysis,2004. 346(13-15):1742-1748.
    [18]Liu, S.Y., M.J. Choi, and G.C. Fu. A surprisingly mild and versatile method for palladium-catalyzed Suzuki cross-couplings of aryl chlorides in the presence of a triarylphosphine. Chemical Communications,2001(23):2408-2409.
    [19]Stambuli, J.P., et al. Screening of homogeneous catalysts by fluorescence resonance energy transfer. Identification of catalysts for room-temperature Heck reactions. Journal of the American Chemical Society,2001.123(11):2677-2678.
    [20]Pickett, T.E. and C.J. Richards. Synthesis of a C-3-symmetric ferrocenylphosphine and its application to the Suzuki reaction of aryl chlorides. Tetrahedron Letters,2001. 42(22):3767-3769.
    [21]Pickett, T.E., F.X. Roca, and C.J. Richards. Synthesis of monodentate ferrocenylphosphines and their application to the palladium-catalyzed Suzuki reaction of aryl chlorides. Journal of Organic Chemistry,2003.68(7):2592-2599.
    [22]Feuerstein, M., H. Doucet, and M. Santelli. Efficient coupling of heteroaryl bromides with arylboronic acids in the presence of a palladium-tetraphosphine catalyst. Tetrahedron Letters,2001.42(33):5659-5662.
    [23]Sjovall, S., M.H. Johansson, and C. Andersson. A new highly active diphosphane-palladium(II) complex as a catalyst precursor for the Heck reaction. European Journal of Inorganic Chemistry,2001(11):2907-2912.
    [24]Doherty, S., et al. Synthesis of a new class of 1,4-bis(diphenylphosphino)-1,3-butadiene bridged diphosphine, NUPHOS, via zirconium-mediated reductive coupling of alkynes and diynes:Applications in palladium-catalyzed cross-coupling reactions. organometallics,2002.21(7):1383-1399.
    [25]Shaughnessy, K.H. and R.S. Booth. Sterically demanding, water-soluble alkylphosphines as ligands for high activity Suzuki coupling of aryl bromides in aqueous solvents. Organic Letters,2001.3(17):2757-2759.
    [26]Moore, L.R. and K.H. Shaughnessy. Efficient aqueous-phase Heck and Suzuki couplings of aryl bromides using tri(4,6-dimethyl-3-sulfonatophenyl)phosphine trisodium salt(TXPTS). Organic Letters,2004.6(2):225-228.
    [27]DeVasher, R.B., L.R. Moore, and K.H. Shaughnessy. Aqueous-phase, palladium-catalyzed cross-coupling of aryl bromides under mild conditions, using water-soluble, sterically demanding alkylphosphines. Journal of Organic Chemistry, 2004.69(23):7919-7927.
    [28]Garrett, C.E. and K. Prasad. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Advanced Synthesis & Catalysis,2004.346(8):889-900.
    [29]Welch, C.J., et al. Adsorbent screening for metal impurity removal in pharmaceutical process research. Organic Process Research & Development,2005.9(2):198-205.
    [30]Biffis, A., M. Zecca, and M. Basato. Palladium metal catalysts in Heck C-C coupling reactions. Journal of Molecular Catalysis a-Chemical,2001.173(1-2):249-274.
    [31]Blaser, H.U., et al. Supported palladium catalysts for fine chemicals synthesis. Journal of Molecular Catalysis a-Chemical,2001.173(1-2):3-18.
    [32]Fengyu Zhao, B.M.B., Masayuki Shirai, and Masahiko Arai. Heck Reactions of Iodobenzene and Methyl Acrylate with Conventional Supported Palladium Catalysts in the Presence of Organic and/or Inorganic Bases without Ligands. chem.Eur.J,2000. 6(5):843-848.
    [33]Hagiwara, H., et al. Heterogeneous Heck reaction catalyzed by Pd/C in ionic liquid. Tetrahedron Letters,2001.42(26):4349-4351.
    [34]Ying, C.P.M.D.W.W.a.J.Y. Heterogeneous Heck Catalysis with Palladium-Grafted Molecular Sieves. Journal of the American Chemical Society,1998.120:12289-12296.
    [35]Djakovitch, L. and K. Koehler. Heterogeneously catalysed Heck reaction using palladium modified zeolites. Journal of Molecular Catalysis a-Chemical,1999. 142(2):275-284.
    [36]L.Djakovitch, K.K. Heck Reaction Catalyzed by Pd-Modified Zeolites. Journal of the American Chemical Society,2001.123:5990-5999.
    [37]Kohler, K., M. Wagner, and L. Djakovitch. Supported palladium as catalyst for carbon-carbon bond construction (Heck reaction) in organic synthesis. Catalysis Today, 2001.66(1):105-114.
    [38]Varma, R.S., K.P. Naicker, and P.J. Liesen. Palladium chloride and tetraphenylphosphonium bromide intercalated clay as a new catalyst for the Heck reaction. Tetrahedron Letters,1999.40(11):2075-2078.
    [39]Ramchandani, R.K., et al. Pd-Cu-exchanged montmorillonite K10 clay:an efficient and reusable heterogeneous catalyst for vinylation of aryl halides. Chemical Communications,1997(21):2071-2072.
    [40]Heidenreich, R.G., et al. Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon. Journal of Molecular Catalysis a-Chemical,2002.182(1):499-509.
    [41]Ennis, D.S., et al. Multikilogram-scale synthesis at a biphenyl carboxylic acid derivative using a Pd/C-mediated Suzuki coupling approach. Organic Process Research & Development,1999.3(4):248-252.
    [42]Marck, G, A. Villiger, and R. Buchecker. Aryl Couplings With Heterogeneous Palladium Catalysts. Tetrahedron Letters,1994.35(20):3277-3280.
    [43]Tagata, T. and M. Nishida. Palladium charcoal-catalyzed Suzuki-Miyaura coupling to obtain arylpyridines and arylquinolines. Journal of Organic Chemistry,2003. 68(24):9412-9415.
    [44]LeBlond, C.R., et al. Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium. Organic Letters,2001.3(10):1555-1557.
    [45]Heidenreich, R.G., et al. Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions, synlett,2002(7):1118-1122.
    [46]Igor Yuranov, P.M., Elena Suvorova, Philippe Buffat, Lioubov Kiwi-Minsker, Albert Renken,. Pd/SiO2 catalysts:synthesis of Pd nanoparticles with the controlled size in mesoporous silicas, j.mol.catal.a,2003(192):239-251.
    [47]Du, F.L., et al. Preparation and characterization of Pd/Si-MCM-41 with high hydrogenation activity. Journal of Porous Materials,2008.15(6):613-617.
    [48]Banerjee, S., et al. Pd-MCM-48:a novel recyclable heterogeneous catalyst for chemo-and regioselective hydrogenation of olefins and coupling reactions. Organic & Biomolecular Chemistry.8(19):4316-4321.
    [49]Nagaveni, K., M.S. Hegde, and G. Madras. Structure and photocatalytic activity of Ti1-xMxO2+/-delta (M=W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. Journal of Physical Chemistry B,2004.108(52):20204-20212.
    [50]Wang, Y.Q., et al. Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles. Journal of Materials Science,1999. 34(15):3721-3729.
    [51]Wang, Y.Q., et al. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes. Thin Solid Films,1999.349(1-2):120-125.
    [52]Anpo, M., et al. The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Research on Chemical Intermediates,2001.27(4-5):459-467.
    [53]Anpo, M. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure and Applied Chemistry,2000.72(9):1787-1792.
    [54]Anpo, M. Utilization of TiO2 photocatalysts in green chemistry. Pure and Applied Chemistry,2000.72(7):1265-1270.
    [55]Liang-Shu Zhong, J.-S.H., Zhi-Min Cui, Li-Jun Wan, and Wei-Guo Song,. In-Situ Loading of Noble Metal Nanoparticles on Hydroxyl-Group-Rich Titania Precursor and Their Catalytic Applications. Chemistry of Materials,2007.19:4557-4562.
    [56]Formo, E., et al. Functionalization of electrospun ceramic nanofibre membranes with noble-metal nanostructures for catalytic applications. Journal of Materials Chemistry, 2009.19(23):3878-3882.
    [57]Neal, L.M., D. Hernandez, and H.E. Hagelin-Weaver. Effects of nanoparticle and porous metal oxide supports on the activity of palladium catalysts in the oxidative coupling of 4-methylpyridine. Journal of Molecular Catalysis a-Chemical,2009.307(1-2):29-36.
    [58]Kang, J.H., et al. Selective hydrogenation of acetylene on TiO2-added Pd catalysts. journal of catalysis,2002.208(2):310-320.
    [59]Li, Y.Z., et al. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2. Chemical Physics Letters,2003. 372(1-2):160-165.
    [60]Hong, J.P., et al. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catalysis Communications,2007.8(3):593-597.
    [61]Sikhwivhilu, L.M., et al. Nanotubular titanate supported palladium catalysts:The influence of structure and morphology on phenol hydrogenation activity. Applied Catalysis a-General,2007.324:52-61.
    [62]Weerachawanasak, P., et al. A comparative study of strong metal-support interaction and catalytic behavior of Pd catalysts supported on micron- and nano-sized TiO2 in liquid-phase selective hydrogenation of phenylacetylene. Journal of Molecular Catalysis a-Chemical,2008.279(1):133-139.
    [63]Babu, N.S., et al. Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics:Studies on Pd/TiO2 catalysts in chlorobenzene conversion. Catalysis Today,2009.141(1-2):120-124.
    [64]Nam T. S. Phan, M.V.D.S., Christopher W. Jones. On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings - Homogeneous or Heterogeneous Catalysis, A Critical Review. adv.Synth.Catal.,2006.348:609-679.
    [65]Sreyashi Jana, B.D., Rajesh Bera, and Subratanath Koner,. Immobilization of Palladium in Mesoporous Silica Matrix:Preparation, Characterization, and Its Catalytic Efficacy in Carbon-Carbon Coupling Reactions. Inorg.Chem.,2008.47:5512-5520.
    [66]Clark, S.P.J.H. A highly active and reusable heterogeneous catalyst for the Suzuki reaction:synthesis of biaryls and polyaryls. Green Chemistry,2003.5:635-638.
    [67]Blanca Ins, R.S., Ftima Churruca, Esther Domnguez, Miren Karmele Urtiaga and Mara Isabel Arriortua. ANonsymmetric Pincer-Type Palladium Catalyst In Suzuki, Sonogashira, and Hiyama Couplings in Neat Water. Organometallics,2008. 27(12):2833-2839.
    [68]Ian J. S. Fairlamb, A.R.K., and Adam F. Lee. e2-dba Complexes of Pd(0):The Substituent Effect in Suzuki-Miyaura Coupling. Organic Letters,2004.6:4435-4438.
    [69]Chau Ming So, H.W.L., Chak Po Lau, and Fuk Yee Kwong. Palladium-Indolylphosphine-Catalyzed Hiyama Cross-Coupling of Aryl Mesylates. Organic Letters,2009.11:317-320.
    [70]Emilio Alacid, C.N.j. Solvent-less and fluoride-free Hiyama reaction of arylsiloxanes with aryl bromides and chlorides promoted by sodium hydroxide:a useful protocol for palladium recycling and product isolation.. Adv. Synth. Catal,2006. 348:945-952.
    [71]Carine Thiot, M.S., Alain Wagner, and Charles Mioskowski. A One-Pot Synthesis of (E)-Disubstituted Alkenes by a Bimetallic [Rh-Pd]-Catalyzed Hydrosilylation/Hiyama Cross-Coupling Sequence. CHEMISTRY-A EUROPEAN JOURNAL,2007. 13:8971-8978.
    [72]Brindaban C. Ranu, R.D., Kalicharan Chattopadhyay. A one-pot efficient and fast Hiyama coupling using palladium nanoparticles in water under fluoride-free conditions. Tetrahedron Lett.,2008.49:3430-3432.
    [73]Changduo Pan, M.L., Li Zhao, Huayue Wu, Jinchang Ding, Jiang Cheng. Palladium chloride catalyzed Hiyama cross-coupling reaction using phenyltrimethoxysilane. Catalysis Communications,2008.9:1685-1687.
    [74]Steven M. Raders, J.V.K., and John G. Verkade. Advantageous Use of tBu2P-NdP(iBuNCH2CH2)3N in the Hiyama Coupling of Aryl Bromides and Chlorides. J.Org.Chem.,2009.75:1744-1747.
    [75]Ga Ram Yang, G.B., Jaehoon Choe, Sunwoo Lee, and Kwang Ho Song. Silica-Supported Palladium-Catalyzed Hiyama Cross-Coupling Reactions Using Continuous Flow System. Bull. Korean Chem. Soc.,2010.31:250-252.
    [76]Brett P. Fors, D.A.W., Mark R. Biscoe and Stephen L. Buchwald. A Highly Active Catalyst for Pd-Catalyzed Amination Reactions:Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides. Journal of the American Chemical Society,2008.130(41):13552-13554.
    [77]Frederic Paul, J.P., and John F.Hartwig. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Ary halides and Tin Amides Journal of the American Chemical Society,1994.116:5969-5970.
    [78]L.Buchwald, A.S.Ga.S. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. Journal of the American Chemical Society,1994.116:7901-7902.
    [79]Hartwig, Q.S.a.J.F. [(CyPF-tBu)PdCl2]:An Air-Stable,One-Component, Highly Efficient Catalyst for Aminationof Heteroaryl and Aryl Halides. Organic Letters,2008. 10(18):4109-4112.
    [80]Carlos H. Burgos, T.E.B., Xiaohua Huang, and Stephen L. Buchwald. Significantly Improved Method for the Pd-Catalyzed Coupling of Phenols with Aryl Halides: Understanding Ligand Effects. Angewandte Chemie International Edition,2006. 45(26):4321-4326.
    [81]Yin, L.X. and J. Liebscher. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chemical Reviews,2007.107(1):133-173.
    [82]Kohler, K., et al. Highly active palladium/activated carbon catalysts for Heck reactions: Correlation of activity, catalyst properties, and Pd leaching. CHEMISTRY-A EUROPEAN JOURNAL,2002.8(3):622-631.
    [83]Shimizu, K., et al. Structural investigations of functionalized mesoporous silica-supported palladium catalyst for Heck and Suzuki coupling reactions. journal of catalysis,2004.228(1):141-151.
    [84]Panpranot, J.P., K.; Goodwin, J. G., Jr.; Praserthdam, P. Catal. Commun.,2004.5:583.
    [85]Ken-ichi Shimizu, T.K.-n., Tatsuya Kodama, Hisahiro Hagiwaraa and Yoshie Kitayama. Suzuki cross-coupling reaction catalyzed by palladium-supported sepiolite. Tetrahedron Lett.,2002.43:5653-5655.
    [86]E.Mas-Marza, A.M.S. Improved Sonogashira C-C coupling through clay supported palladium complexes with tridentate pincer bis-carbene ligands. Tetrahedron Lett.,2003. 44:6595-6599.
    [87]Mekasuwandumrong, O., et al. Liquid-Phase Selective Hydrogenation of 1-Heptyne over Pd/TiO2 Catalyst Synthesized by One-Step Flame Spray Pyrolysis. Catalysis Letters, 2010.136(1-2):164-170.
    [88]Weerachawanasak, P., et al. Effect of strong metal-support interaction on the catalytic performance of Pd/TiO2 in the liquid-phase semi hydrogenation of phenylacetylene. journal of catalysis,2009.262(2):199-205.
    [89]Li, Y., et al. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes. Journal of Molecular Catalysis A:Chemical,2004. 216(1):107-114.
    [90]Chan, C.C., et al. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal,2009.152(2-3):492-497.
    [91]Ismail, A.A., et al. Palladium Doped Porous Titania Photocatalysts:Impact of Mesoporous Order and Crystallinity. CHEMISTRY OF MATERIALS,2010. 22(1):108-116.
    [92]Binder, A., et al. Kinetics and particle size effects in ethene hydrogenation over supported palladium catalysts at atmospheric pressure. journal of catalysis,2009. 268(1):150-155.
    [93]Liu, R.X., et al. Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2. journal of catalysis,2010.269(1):191-200.
    [94]Carlos A. Gonza'lez, M.B., Andreas Martin, and Consuelo Montes de Correa. Hydrodechlorination of Light Organochlorinated Compounds and Their Mixtures over Pd/TiO2-Washcoated Minimonoliths. Ind.Eng.Chem.Res.,2009.48:2826-2835.
    [95]Correa, C.A.G.l.a.C.M.d. Catalytic Hydrodechlorination of Tetrachloroethylene over Pd/TiO2 Minimonoliths. ind.Eng.Chem.Res.,2010.49:490-497.
    [96]Yamanaka, I., et al., Complete hydrodechlorination of chloro-aromatics catalyzed by Pd/TiO2 with H-2, in Science and Technology in Catalysis 2002, M. Anpo, M. Onaka, and H. Yamashita, Editors.2003.383-386.
    [97]David, A. and M.A. Vannice. Control of catalytic debenzylation and dehalogenation reactions during liquid-phase reduction by H-2. journal of catalysis,2006. 237(2):349-358.
    [98]Ukisu, Y. Highly enhanced hydrogen-transfer hydrodechlorination and hydrogenation reactions in alkaline 2-propanol/methanol over supported palladium catalysts. Applied Catalysis a-General,2008.349(1-2):229-232.
    [99]Chen, X.C., et al. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. Journal of Physical Chemistry C,2008.112(22):8172-8176.
    [100]Peter Claus, A.B.c., Christian Mohr, and Herbert Hofmeister. Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale:Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups. Journal of the American Chemical Society,2000.122:11430-11439.
    [101]Alexander I. Kozlov, A.P.K., Kiyotaka Asakura, Yoshio Matsui, Toshihiro Kogure, Takafumi Shido, and Yasuhiro Iwasawa,. Supported Gold Catalysts Prepared from a Gold Phosphine Precursor and As-Precipitated Metal-Hydroxide Precursors:Effect of Preparation Conditions on the Catalytic performance. journal of catalysis,2000. 196:56-65.
    [102]Dalai, A.J.A.R.O.I.a.A.K. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. applied catalysis A:general,2005.287.
    [103]Jingyu Yan, X.L., Sanyan Cheng, Yanxiong Ke and Xinmiao Liang. Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Chemical Communications,2009:2929-2931.
    [104]Alon Seri-Levy, a.D.A. The Brunauer-Emmett-Teller equation and the eff ects of lateral interactions:A simulation study. Langmuir,1993.9:2523-2529.
    [105]Heck, R.F.N., Jr., J. P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem.,1972.37(14):2320-2322.
    [106]Mizoroki, T.M., K.; Ozaki, A. Arylation of Olefin with Aryl Iodide Catalyzed by Palladium. Bull. Chem. Soc. Jap.,1971.44:581.
    [107]Hagiwara, H.S., Yoshitaka; Hoshi, Takashi; Suzuki, Toshio Sustainable Mizoroki-Heck reaction in water:remarkably high activity of Pd(OAc)2 immobilized on reversed phase silica gel with the aid of an ionic liquid. Chem. Commun.,2005.23:2942-2944.
    [108]J.-Y. Lee, G.C.F. Room-Temperature Hiyama Cross-Couplings of Arylsilanes with Alkyl Bromides and Iodides. J. Am. Chem. Soc.,2003.125:5616-5617.
    [109]Thathagar, M.B., J.E. ten Elshof, and G Rothenberg. Pd nanoclusters in C-C coupling reactions:Proof of leaching. Angewandte Chemie-International Edition,2006. 45(18):2886-2890.
    [110]Gladysz, J.A. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. Pure Appl.Chem.,2001.73:1319-1324.
    [111]Augustine, R.L., Catalytic Hydrogenation.1965, New York:Marcel Dekker.
    [112]Rylander, P.N., Catalytic Hydrogenation over Platinum Metals.1967, New York: Academic Press.
    [113]Freifelder, M., Practical Catalytic Hydrogenation.1971, New York:Wiley/Interscience.
    [114]Freifelder, M., Catalytic Hydrogenation in Organic Synthesis.1978, New York: Wiley/Interscience.
    [115]Rylander, P.N., Hydrogenation Methods.1985, New York:Academic Press.
    [116]Yang, C., et al. Asymmetric hydrogenation of acetophenone catalyzed by cinchonidine stabilized Ir/SiO2. Journal of Molecular Catalysis A:Chemical,2009.300(1-2):98-102.
    [117]Ryu Nakao, H.R., and Yasuhiro Uozumi. Hydrogenation and Dehalogenation under Aqueous Conditions with an Amphiphilic-Polymer-Supported Nanopalladium Catalyst. Organic Letters,2005.7:163-165.
    [118]Yasunari Monguchi, Y.F., Koichi Endo, Shinobu Takao, Masatoshi Yoshimura, Yukio Takagi,Tomohiro Maegawa, Hironao Sajiki. A Highly Active Heterogeneous Palladium Catalyst Supported on a Synthetic Adsorbent. Chemistry-A European Journal,2009. 15:834-837.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700