紫外照射后p53与septin2的相互调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p53是一种非常重要的抑癌基因,在化学药物、电离辐射等作用下,p53通过应激通路,可诱导细胞生长阻滞,细胞凋亡,细胞分化以及DNA修复。在p53缺失或者失活时,细胞周期无法停滞,无法启动细胞凋亡,细胞会出现癌变。
     肿瘤抑制基因p53基因突变是人类癌症中最常见的基因组改变。野生型p53基因的控制中发挥重要作用细胞周期和诱导细胞凋亡。将野生型p53基因或p53蛋白介导入到肿瘤细胞是一种有效的用于人类癌症治疗策略。本文回顾了p53的特点,研究阶段,作用机制和p53肿瘤抑制因子在人类癌症中的研究进展。
     septin是一个广泛存在于除植物以外所有真核生物中的基因家族。最初认为septin家族是与酵母细胞胞质分裂相关的基因家族。近年来,这一家族的—些成员与肿瘤发生、神经功能障碍和病原微生物感染的过程直接相关。septin家族的功能研究正逐步成为细胞生物学及病理学研究的新热点。
     在本课题的研究中,我们观察到,p53能够通过对紫外照射的应激通路,最终影响septin 2磷酸化的水平,而septin 2磷酸化水平的升高,能够增加septin 2、6、7复合物的稳定性,进而增加肌动蛋白微丝的稳定性,使得胞质分裂能够顺利进行。而让我们惊奇的发现,同样在紫外照射下,septin 2磷酸化水平的改变,能够影响p53 ser15位点的磷酸化水平,进而达到抑制p53蛋白活性和稳定性的结果。这种p53磷酸化septin 2及septin 2对于p53的负反馈作用的环状调节关系,对于影响有丝分裂的胞质分裂和p53的活性及稳定性有着重要意义。
     综上所述,本文研究了p53对septin 2的磷酸化作用,并探讨了septin 2对p53的负反馈调节,为深入研究p53的下游信号通路和septin 2蛋白家族的功能作用提供了理论基础。
The tumor suppressor gene p53 is a transcription factor which mediates several cellular processes including growth arrest,apoptosis,differentiation, and DNA damage repair. In the absence or inactivation of p53, the cell cycle can not be stagnant and unable to prepare for apoptosis, so the cells appear cancerous. Mutation in the tumor suppressor gene p53 has been turned out to be the most common genomic variation in human cancer.
     Wild-type p53 gene play an important role in the control of cell cycle and induction of apoptosis. Introducting exogenous wild-type p53 gene or p53 protein into tumor cell is a potent therapeutic strategy for human cancer. The present paper reviews the characteristic, research progress and mechanism of tumor suppressor gene p53 in human cancer.
     The septins are a family of proteins which are broadly distributed in almost all of eukaryotes except plants. Septin was first identified in yeast as a protein that played a role in cytokinesis. Recently, some septin family members participate in the pathogenesis of different diseases including neoplasia, neurodegeneration and infections. These make the research of septins a hallmark in cell biology and pathology.
     In our research, we observed p53 affect the level of phosphorylation of septin 2 after UV radiation through the stress pathway. The stability of septin2,6,7 complex is enhancive as septin 2 phosphorylation increased, thus increasing the stability of actin filaments, making cytokinesis division successfully. We're interested in finding that septin 2 phosphorylation level changing can influence p53 ser15 phosphorylation site after UV irradiation, and then to inhibit p53 protein activity and reduce its stability. This reaction between p53 and septin2 is important to the regulation of cytokinesis through changing activity and stability of p53.
     Taken together, it is one of the mechanisms for septin 2 being regulated by p53 and involving in the process of cytokinesis. Through the research work, we hope to provide some theoretical principle to intensively explain the process between the signaling pathways of p53 downstream and the function of septin 2 protein.
引文
1. Beumer, T.L., et al., The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ,1998.5(8):p.669-77.
    2. Elledge, R.M., et al., p53 mutation and tamoxifen resistance in breast cancer. Clin Cancer Res,1995.1(10):p.1203-8.
    3. Hsu, I.C., et al., p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis,1993.14(5):p. 987-92.
    4. Du, C.H., J. Xu, and N.S. Zhong, [Roles of mutant p53 gene in malignant phenotypes and resistance to drugs in anti-7,8-dihydrodiol-9,10-epoxide benzo(a)pyrene-induced lung cancer cells]. Zhonghua Jie He He Hu Xi Za Zhi,2005.28(3):p.176-9.
    5. Cleaver, J.E., et al., Polymerase eta and p53 jointly regulate cell survival, apoptosis and Mrell recombination during S phase checkpoint arrest after UVirradiation. DNA Repair (Amst),2002.1(1):p.41-57.
    6. Adachi, J., et al., Induction of apoptosis but not G1 arrest by expression of the wild-type p53 gene in small cell lung carcinoma. Cell Growth Differ, 1996.7(7):p.879-86.
    7. Adimoolam, S., C.X. Lin, and J.M. Ford. The p53-regulated cyclin-dependent kinase inhibitor, p21 (cipl, wafl, sdil), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J Biol Chem,2001.276(28):p.25813-22.
    8. Maeda, T., et al., UV induces GADD45 in a p53-dependent and-independent manner in human keratinocytes. J Cutan Med Surg,2003.7(2):p.119-23.
    9. Stasikowska-Kanicka, O., M. Wagrowska-Danilewicz, and M. Danilewicz, Effect of human papillomavirus on cell cycle-related proteins p16INK4A, p21wafl/cipl, p53 and cyclin D1 in sinonasal inverted papilloma and laryngeal carcinoma. An in situ hybridization study. Folia Histochem Cytobiol,2011.49(1):p.34-40.
    10. Wu. L. and A.J. Levine, Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation:p53-dependent and p53-independent regulation of the mdm2 gene. Mol Med,1997.3(7):p.441-51.
    11. Kato, K., et al., Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma:correlation with clinicopathological features and prognosis. J Oral Pathol Med,2011.
    12. Hsu, Y.L., et al., Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A 549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther,2006.318(2):p. 484-94.
    13. Hermeking, H., et al.,14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell,1997.1(1):p.3-11.
    14. Hildesheim, J., et al., Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res,2002.62(24):p.7305-15.
    15. Chen, C.Y., et al., Kotomolide A arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Food Chem Toxicol,2008.46(7):p.2476-84.
    16. Dong, Y.B., et al., Increased mdm-2 expression in a p53-independent manner blocks UV-induced cell cycle arrest and apoptosis in human osteosarcoma cells. Tumour Biol,2003.24(3):p.130-9.
    17. Schmidt, M.K., et al., Combined effects of single nucleotide polymorphisms TP53 R72P and MDM2 SNP309, and p53 expression on survival of breast cancer patients. Breast Cancer Res,2009.11(6):p. R89.
    18. Michael, D. and M. Oren, The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol,2003.13(1):p.49-58.
    19. Thompson, T., et al., Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem,2004.279(51):p. 53015-22.
    20. O'Leary, K.A., et al., Mdm2 regulates p53 independently of p19(ARF) in homeostatic tissues. Mol Cell Biol,2004.24(1):p.186-91.
    21. Khan, A. and H. Lu, Inhibition of MDM2-p53 feedback loop by various small molecules for potential cancer chemotherapy. Cancer Biol Ther,2008.7(6):p. 853-5.
    22. Boehme, K.A., R. Kulikov, and C. Blattner, p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc Natl Acad Sci U S A, 2008.105(22):p.7785-90.
    23. Al-Anati, L., J. Hogberg, and U. Stenius, Non-dioxin-like-PCBs phosphorylate Mdm2 at Ser166 and attenuate the p53 response in HepG2 cells. Chem Biol Interact,2009.182(2-3):p.191-8.
    24. Clegg, H.V., K. Itahana, and Y. Zhang, Unlocking the Mdm2-p53 loop: ubiquitin is the key. Cell Cycle,2008.7(3):p.287-92.
    25. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene,2001.20(15):p.1803-15.
    26. Pineau, P., et al., Chromosome instability in human hepatocellular carcinoma depends on p53 status and aflatoxin exposure. Mutat Res,2008.653(1-2):p. 6-13.
    27. Niemantsverdriet, M., W. Jongmans, and C. Backendorf. Radiation response and cell cycle regulation of p53 rescued malignant keratinocytes. Exp Cell Res,2005.310(1):p.237-47.
    28. Adam, J.C., J.R. Pringle, and M. Peifer, Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol Biol Cell,2000.11(9):p.3123-35.
    29. Amir, S., et al., MSF-A interacts with hypoxia-inducible factor-lalpha and augments hypoxia-inducible factor transcriptional activation to affect tumorigenicity and angiogenesis. Cancer Res,2006.66(2):p.856-66.
    30. Barral, Y., et al., Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell,2000.5(5):p. 841-51.
    31. Beites, C.L., et al., The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci,1999.2(5):p.434-9.
    32. Berlin, A., A. Paoletti, and F. Chang, Mid2p stabilizes septin rings during cytokinesis in fission yeast. J Cell Biol,2003.160(7):p.1083-92.
    33. Bourne, H.R., D.A. Sanders, and F. McCormick, The GTPase superfamily: conserved structure and molecular mechanism. Nature,1991.349(6305):p. 117-27.
    34. Kinoshita, M., Assembly of mammalian septins. J Biochem,2003.134(4):p. 491-6.
    35. Low, C. and I.G. Macara, Structural analysis of septin 2,6, and 7 complexes. J Biol Chem,2006.281(41):p.30697-706.
    36. Hartwell, L.H., Genetic control of the cell division cycle in yeast. Ⅳ. Genes controlling bud emergence and cytokinesis. Exp Cell Res,1971.69(2):p. 265-76.
    37. Chant, J., Septin scaffolds and cleavage planes in Saccharomyces. Cell,1996. 84(2):p.187-90.
    38. Cooper. J.A. and D.P. Kiehart, Septins may form a ubiquitous family of cytoskeletalfilaments. J Cell Biol,1996.134(6):p.1345-8.
    39. Longtine. M.S., et al., The septins:roles in cytokinesis and other processes. CurrOpin Cell Biol,1996.8(1):p.106-19.
    40. Byers, B. and L. Goetsch, A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol,1976.69(3):p.717-21.
    41. Gladfelter, A.S., J.R. Pringle, and D.J. Lew, The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol,2001.4(6):p.681-9.
    42. Faty, M., M. Fink, and Y. Barral, Septins:a ring to part mother and daughter. Curr Genet.2002.41(3):p.123-31.
    43. Kammerer, D., L. Stevermann. and D. Liakopoulos, Ubiquitylation regulates interactions of astral microtubules with the cleavage apparatus. Curr Biol, 2010.20(14):p.1233-43.
    44. Kartmann, B. and D. Roth, Novel roles for mammalian septins:from vesicle trafficking to oncogenesis. J Cell Sci,2001.114(Pt 5):p.839-44.
    45. Longtine. M.S. and E. Bi. Regulation of septin organization and function in yeast. Trends Cell Biol,2003.13(8):p.403-9.
    46. Field, C.M. and D. Kellogg, Septins:cytoskeletal polymers or signalling GTPases? Trends Cell Biol,1999.9(10):p.387-94.
    47. Versele, M. and J. Thorner, Some assembly required:yeast septins provide the instruction manual. Trends Cell Biol,2005.15(8):p.414-24.
    48. Szkotnicki, L., et al., The checkpoint kinase Hsllp is activated by Elmlp-dependent phosphorylation. Mol Biol Cell,2008.19(11):p.4675-86.
    49. Caudron, F. and Y. Barral, Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell,2009.16(4):p.493-506.
    50. Tang, C.S. and S.I. Reed, Phosphorylation of the septin cdc3 in g1 by the cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle, 2002.1(1):p.42-9.
    51. Giot, L. and J.B. Konopka, Functional analysis of the interaction between Afrlp and the Cdcl2p septin, two proteins involved in pheromone-induced morphogenesis. Mol Biol Cell,1997.8(6):p.987-98.
    52. Versele, M. and J. Thorner, Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol,2004. 164(5):p.701-15.
    53. McIlhatton, M.A., et al., Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene,2001. 20(41):p.5930-9.
    54. Sirajuddin, M., et al., Structural insight into filament formation by mammalian septins. Nature,2007.449(7160):p.311-5.
    55. Kinoshita, M., The septins. Genome Biol,2003.4(11):p.236.
    56. Hanai, N., et al., Biochemical and cell biological characterization of a mammalian septin, Septll. FEBS Lett,2004.568(1-3):p.83-8.
    57. Vega, I.E. and S.C. Hsu, The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC 12 cells. Neuroreport,2003.14(1): p.31-7.
    58. Martin-Cuadrado, A.B., et al., Role of septins and the exocyst complex in the function of hydrolytic enzymes responsible for fission yeast cell separation. Mol Biol Cell,2005.16(10):p.4867-81.
    59. Schardt, A., et al., The SNARE protein SNAP-29 interacts with the GTPase Rab3A:Implications for membrane trafficking in myelinating glia. J Neurosci Res,2009.87(15):p.3465-79.
    60. Beites, C.L., K.A. Campbell, and W.S. Trimble, The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J, 2005.385(Pt 2):p.347-53.
    61. Asada, A., et al., Neuronal expression of two isoforms of mouse Septin 5. J Neurosci Res.2010.88(6):p.1309-16.
    62. Park, H.J., et al., Ankyrin repeat-rich membrane spanning/Kidins220protein interacts with mammalian Septin 5. Mol Cells,2010.30(2):p.143-8.
    63. Dent. J., et al., A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci U S A.2002.99(5):p.3064-9.
    64. Garcia, W., et al., An intermediate structure in the thermal unfolding of the GTPase domain of human septin 4 (SEPT4/Bradeion-beta) forms amyloid-like filaments in vitro. Biochemistry,2007.46(39):p.11101-9.
    65. Shehadeh, L., et al., Expression of Leny body protein septin 4 in postmortem brain of Parkinson's disease and control subjects. Mov Disord,2009.24(2): p.204-10.
    66. Dobbelaere, J., et al., Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev Cell,2003.4(3):p.345-57.
    67. Osaka, M., J.D. Rowley, and N.J. Zeleznik-Le, MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci U S A,1999.96(11):p. 6428-33.
    68. Slater, D.J., et al., MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(Ⅹ;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene,2002.21(30):p.4706-14.
    69. Kim, H.J., et al., MLL/SEPTIN6 chimeric transcript from inv ins(Ⅹ;11)(q24;q23q13) in acute monocytic leukemia:report of a case and review of the literature. Genes Chromosomes Cancer,2003.38(1):p.8-12.
    70. Larisch, S., et al., A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol,2000.2(12):p. 915-21.
    71. Montagna, C., et al., The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res,2003.63(9):p.2179-87.
    72. Toth, K., et al., The Influence of Methylated Septin 9 Gene on RNA and Protein Level in Colorectal Cancer. Pathol Oncol Res,2011.
    73. Kakehashi, A., et al., Mitochondrial prohibitins and septin 9 are implicated in the onset of rat hepatocarcinogenesis. Toxicol Sci,2011.119(1):p.61-72.
    74. Takehashi, M., et al., Septin 3 gene polymorphism in Alzheimer's disease. Gene Expr,2004.11(5-6):p.263-70.
    75. Xue, J., et al., Septin 3 (G-septin) is a development ally regulated phosphoprotein enriched in presynaptic nerve terminals. J Neurochem,2004. 91(3):p.579-90.
    76. Tanaka, M., et al., Rapid and quantitative detection of human septin family Bradeion as a practical diagnostic method of colorectal and urologic cancers. Med Sci Monit,2003.9(7):p. MT61-8.
    77. Tanaka, M., et al., Impaired expression of a human septin family gene Bradeion inhibits the growth and tumorigenesis of colorectal cancer in vitro and in vivo. Cancer Gene Ther,2002.9(6):p.483-8.
    78. Yu, W., et al., The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol Cell Biochem,2009. 325(1-2):p.61-7.
    79. Kinoshita. M., et al., Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev,1997.11(12): p.1535-47.
    80. Sakai, K., et al., Expression of Nedd5, a mammalian septin, in human brain tumors. J Neurooncol,2002.57(3):p.169-77.
    81. Craven, R.A., et al., Proteomic identification of a role for the von Hippel Lindan tumour suppressor in changes in the expression of mitochondrial proteins and septin 2 in renal cell carcinoma. Proteomics,2006.6(13):p. 3880-93.
    82. Kinoshita, M., et al., Self- and actin-templated assembly of Mammalian septins. Dev Cell,2002.3(6):p.791-802.
    83. Joberty, G., et al., Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol,2001.3(10):p.861-6.
    84. Kremer, B.E., L.A. Adang, and I.G. Macara, Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell,2007.130(5):p.837-50.
    85. Paajarvi, G., et al., Anti-diol epoxide of benzo[a]pyrene induces transient Mdm2 and p53 Serl5 phosphorylation, while anti-diol epoxide of dibenzo[a,l]pyrene induces a nontransient p53 Serl5 phosphorylation. Mol Carcinog,2008.47(4):p.301-9.
    86. Meulmeester, E., et al., ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle,2005.4(9):p. 1166-70.
    87. Wagner, J., et al., p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. Syst Biol (Stevenage),2005.152(3):p.109-18.
    88. Cheng, Q., et al., ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J,2009.28(24):p.3857-67.
    89. Squatrito, M., et al., Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell,2010.18(6):p.619-29.
    90. Kojima, K., et al., Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood,2006.108(3):p.993-1000.
    91. Horie, K., et al., Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J Proteome Res,2008.7(5):p.1819-35.
    92. Balasis, M.E., et al., Combination of Farnesyltransferase and Akt Inhibitors Is Synergistic in Breast Cancer Cells and Causes Significant Breast Tumor Regression in ErbB2 Transgenic Mice. Clin Cancer Res,2011.17(9):p. 2852-62.
    93. Thompson, T.C., et al., Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene,1995.10(5):p.869-79.
    94. Savchenko, A., et al., Study on the spatial architecture of p53, MDM2, and p14ARF containing complexes. Mol Biotechnol, 2009.41(3):p.270-7.
    95. Cheng, T.H., et al., Correlation of p53, MDM2 and p14(ARF) protein expression in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol,2009.135(11):p.1577-82.
    96. Ta, V.B., et al., Malignant transformation of Slp65-deficient pre-B cells involves disruption of the Arf-Mdm2-p53 tumor suppressor pathway. Blood, 2010.115(7):p.1385-93.
    97. Eymin, B., et al., p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol,2006. 26(11):p.4339-50.
    98. Reaper, P.M., et al., Selective killing of ATM-or p53-deficient cancer cells through inhibition ofATR. Nat Chem Biol,2011.
    99. Keller, D.M. and H. Lu, p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem,2002.277(51):p.50206-13.
    100. Chen, J., et al., Polo-like kinase 1 regulates mitotic arrest after UV irradiation through dephosphorylation of p53 and inducing p53 degradation. FEBS Lett,2006.580(15):p.3624-30.
    101. Bulavin, D.V., et al., Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J,1999.18(23):p.6845-54.
    102. Huart, A.S., et al., CK1alpha plays a central role in mediating MDM2 control ofp53 and E2F-1 protein stability. J Biol Chem,2009.284(47):p.32384-94.
    103. Chen, L., et al., ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J,2005.24(19):p. 3411-22.
    104. Sangster-Guity, N., et al.. ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene,2011.
    105. Gan. L., et al., Resistance to docetaxel-induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. Prostate,2011.
    106. Ajay, A.K., et al., Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression. Mol Cancer,2010.9:p.204.
    107. Lin, L., Y. Ye, and Z. Zakeri, p53, Apaf-1, caspase-3, and-9 are dispensable for Cdk5 activation during cell death. Cell Death Differ,2006.13(1):p. 141-50.
    108. Zhang, J., P.K. Krishnamurthy. and G.V. Johnson, Cdk5 phosphorylates p53 and regulates its activity. J Neurochem,2002.81(2):p.307-13.
    109. Lee, C.W., et al., Structure of the p53 trans activation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry,2010.49(46):p.9964-71.
    110. Liu, G.. T. Xia, and X. Chen, The activation domains, the proline-rich domain, and the C-terminal basic domain in p53 are necessaiy for acetylation of histones on the proximal p21 promoter and interaction with p300/CREB-bindingprotein. J Biol Chem,2003.278(19):p.17557-65.
    111. Chang, N.S., et al., WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem,2005.280(52):p.43100-8.
    112. Cui, Y.X., et al., NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood,2009.113(21):p.5217-27.
    113. Ghosh, J., et al., The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials,2011.
    114. Reyes-Zurita, F.J., et al., The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer,2011.11(1):p.154.
    115. Bean, L.J. and G.R. Stark, Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene, 2001.20(9):p.1076-84.
    116. Melnikova, V.O., et al., Mutant p53 is constitutively phosphorylated at Serine 15 in UV-induced mouse skin tumors:involvement of ERK1/2 MAP kinase. Oncogene,2003.22(38):p.5958-66.
    117. Won, J., et al., Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly(ADP-ribosyl)ation. Mol Cells, 2006.21(2):p.218-23.
    118. Benjamin, C.L., et al., p53 tumor suppressor gene:a critical molecular target for UV induction and prevention of skin cancer. Photochem Photobiol,2008. 84(1):p.55-62.
    119. Dong, W., et al., Loss of p53 or p73 in human papillomavirus type 38 E6 and E7 transgenic mice partially restores the UV-activated cell cycle checkpoints. Oncogene,2008.27(20):p.2923-8.
    120. Fukunaga-Takenaka, R., et al., Nitric oxide prevents UV-induced phosphorylation of the p53 tumor-suppressor protein at serine 46:a possible role in inhibition of apoptosis. Biochem Biophys Res Commun,2003.308(4): p.966-74.
    121. Ichwan, S.J., et al., Defect in serine 46 phosphorylation ofp53 contributes to acquisition of p53 resistance in oral squamous cell carcinoma cells. Oncogene,2006.25(8):p.1216-24.
    122. Jin, Y.. et al., MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem,2002.277(34):p.30838-43.
    123. Borger, D.R. and J.A. DeCaprio. Targeting of p300/CREB binding protein coactivators by simian virus 40 is mediated through p53. J Virol,2006.80(9): p.4292-303.
    1. Lane, D.P. and L.V. Crawford, T antigen is bound to a host protein in SV40-transformed cells. Nature,1979.278(5701):p.261-3.
    2. Linzer, D.I. and A.J. Levine, Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell,1979. 17(1):p.43-52.
    3. Storey, A., et al., Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature,1998.393(6682):p.229-34.
    4. Park, U.S., et al., Mutations in the p53 tumor suppressor gene in tree shrew hepatocellular carcinoma associated with hepatitis B virus infection and intake of aflatoxin B1. Gene,2000. 251(1):p.73-80.
    5. Batista, L.F., et al., p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal. Mol Cancer Res,2009.7(2):p. 237-46.
    6. Khanna, K.K. and M.F. Lavin, Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene,1993.8(12):p.3307-12.
    7. Findley, H.W., et al., Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood,1997. 89(8):p.2986-93.
    8. Nurse,P.,A long twentieth century of the cell cycle and beyond. Cell,2000.100(1):p.71-8.
    9. Maeda, T., et al., UV induces GADD45 in a p53-dependent and-independent manner in human keratinocytes. J Cutan Med Surg,2003.7(2):p.119-23.
    10. Wu, L. and A.J. Levine, Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation:p53-dependent and p53-independent regulation of the mdm2 gene. Mol Med,1997.3(7):p.441-51.
    11. Kato, K., et al., Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma:correlation with clinicopathological features and prognosis. J Oral Pathol Med, 2011.
    12. Hsu, Y.L., et al., Plumbagin (5-hydroxy-2-methyl-l,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther, 2006.318(2):p.484-94.
    13. Hermeking, H., et al.,14-3-3 sigma is a p53-regulated inhibitor of G2/Mprogression. Mol Cell,1997.1(1):p.3-11.
    14. Hildesheim, J., et al., Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res,2002.62(24):p. 7305-15.
    15. Chen, C.Y., et al., Kotomolide A arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Food Chem Toxicol,2008.46(7):p.2476-84.
    16. Sabah. M., et al., Immunoreactivity ofp53, Mdm2, p21(WAFl/CIP1) Bcl-2, and Bax in soft tissue sarcomas:correlation with histologic grade. Appl Immunohistochem Mol Morphol, 2007.15(1):p.64-9.
    17. Baltaziak, M., et al., Expression of Bcl-xL, Bax, andp53 in primary tumors and lymph node metastases in oral squamous cell carcinoma. Ann N Y Acad Sci,2006.1090:p.18-25.
    18. Zhang, X., et al., Cleavage of Bcl-2 Protein by Activated Caspase-3 Is Associated with Inactivation of Lyn(p53/56) Kinase Activity in Human M-07e Leukemic Cells during Apoptosis. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2000.8(3):p.166-175.
    19. Sjostrom-Mattson, J., et al., The expression of p53, bcl-2, bax, fas and fas L in the primary tumour and lymph node metastases of breast cancer. Acta Oncol,2009.48(8):p.1137-43.
    20. Lindstrom, M.S. and K.G. Wiman, Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene,2003.22(32):p.4993-5005.
    21. den Besten, W., et al., Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle, 2005.4(11):p.1593-8.
    22. O'Leary, K.A., et al., Mdm2 regulates p53 independently ofpl9(ARF) in homeostatic tissues. Mol Cell Biol,2004.24(1):p.186-91.
    23. Khan, A. and H. Lu, Inhibition of MDM2-p53 feedback loop by various small molecules for potential cancer chemotherapy. Cancer Biol Ther,2008.7(6):p.853-5.
    24. Boehme, K.A., R. Kulikov, and C. Blattner, p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc Natl Acad Sci U S A,2008.105(22):p.7785-90.
    25. Al-Anati, L., J. Hogberg, and U. Stenius, Non-dioxin-like-PCBs phosphorylate Mdm2 at Ser166 and attenuate thep53 response in HepG2 cells. Chem Biol Interact,2009.182(2-3): p.191-8.
    26. Clegg, H.V., K. Itahana, and Y. Zhang, Unlocking the Mdm2-p53 loop:ubiquitin is the key. Cell Cycle,2008.7(3):p.287-92.
    27. Dong, Y.B., et al., Increased mdm-2 expression in a p53-independent manner blocks UV-induced cell cycle arrest and apoptosis in human osteosarcoma cells. Tumour Biol,2003. 24(3):p.130-9.
    28. Schmidt, M.K., et al., Combined effects of single nucleotide polymorphisms TP53 R72P and MDM2 SNP309, and p53 expression on survival of breast cancer patients. Breast Cancer Res,2009.11(6):p. R89.
    29. Michael, D. and M. Oren, The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol,2003.13(1):p.49-58.
    30. Thompson, T., et al., Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem,2004.279(51):p.53015-22.
    31. Eymin, B., et al., p14ARFactivates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol,2006.26(11):p.4339-50.
    32. Lossaint, G., et al., Chkl is dispensable for G2 arrest in response to sustained DNA damage when the A TM/p53/p21 pathway is functional. Oncogene.2011.
    33. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene,2001. 20(15):p.1803-15.
    34. Lunn, R.M., et al.,p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res,1997.57(16):p.3471-7.
    35. Joerger, A.C., et al., Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem,2005.280(16):p.16030-7.
    36. Qin, L.L., et al., Expression of IGF-II, p53, p21 and HBxAg in precancerous events of hepatocarcinogenesis induced by AFB1 and/or HBV in tree shrews. World J Gastroenterol, 2000.6(1):p.138-139.
    37. Harada, T., et al., Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers. Cancer Sci,2003. 94(4):p.394-9.
    38. Paik, K.H., et al., Prognostic value of immunohistochemical staining of p53, bcl-2, and Ki-67 in small cell lung cancer. J Korean Med Sci,2006.21(1):p.35-9.
    39. Hussain, S.P., et al., p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res,2004.64(7):p.2350-6.
    40. Zalcenstein, A., et al., Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene,2006.25(3):p.359-69.
    41. Mendilcioglu, I., et al., Apoptosis and expression of Bcl-2, Box, p53, caspase-3, and Fas, Fas ligand in placentas complicated by preeclampsia. Clin Exp Obstet Gynecol,2011.38(1):p. 38-42.
    42. Cosse, J.P., et al., Hypoxia-induced decrease in p53 protein level and increase in c-jun DNA binding activity results in cancer cell resistance to etoposide. Neoplasia,2009.11(10):p. 976-86.
    43. Munoz-Fontela, C., et al., Resistance to viral infection of super p53 mice. Oncogene,2005. 24(18):p.3059-62.
    44. Sak, A., et al., Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21(WAF1/CIP1). Cancer Gene Ther,2003.10(12):p.926-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700