中空纤维更新液膜传质机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空纤维更新液膜(HFRLM)是一种新型的液膜技术,其区别于其他传统液膜过程最主要的特点是:在中空纤维管内流动的是液-液两相混合物,分散相(液膜相)液滴在流场作用下,实现更新,强化传质。本文主要以Cr(Ⅵ)为实验体系,研究了HFRLM的传质机理。
     通过溶剂萃取实验,研究了磷酸三丁酯(TBP)对Cr(Ⅵ)的萃取效果,以及NaOH对络合物的反萃效果,确定了萃取、反萃过程的反应方程式。采用大块液膜(BLM)实验考察了TBP作为载体对Cr(Ⅵ)的迁移性能,并类比于一级不可逆连串反应,建立了BLM传质过程的动力学模型,分析了溶质在BLM过程中的传递情况,讨论了分配系数对传质过程的影响。
     借助显微摄像技术,研究了中空纤维管内液-液两相的流体流动情况,获得了最直观的视觉信息,考察了中空纤维管内液滴及流动液膜的存在形态,证实了HFRLM基本理论的正确性。通过分析、总结观测结果,将中空纤维管内的流体流型划分为6大类,绘制了液-液两相流型图,对HFRLM的操作参数选择进行指导。借鉴气体分子碰撞理论和液滴聚并、破碎的相关研究成果,建立了描述液滴与流动液膜碰撞、聚并的数学模型,为定量描述由液滴引起的传质强化,深入研究中空纤维更新液膜的传质机理提供了理论基础。
     以阻力串联模型为基本出发点,将溶质在中空纤维管内的传质步骤分解为流动液膜与液滴之间传质、滴内传质和滴外传质3个步骤。鉴于壳程非理想流动的复杂性,同时采用理论分析和实验检验两种方法,确定了适用于本文的壳程传质关联式。在中空纤维管内,采用“表面更新扩展模型”描述液滴与流动液膜之间碰撞引起的传质强化现象;采用Higbie溶质渗透模型计算滴外传质系数。HFRLM传质过程的模型化研究,有助于其传质机理的深入分析,对HFRLM技术的放大设计以及工业化应用具有一定的指导意义。
     采用示踪实验讨论了HFRLM的稳定性问题,结果表明HFRLM稳定性良好,泄漏率基本低于0.01%。以传质模型为指导,系统地研究了各种体系(如Cr(Ⅵ)、Cu(Ⅱ)、青霉素)在HFRLM过程中的传质行为。从传质阻力和传质推动力两个方面,分析了液膜过程的传质机理。萃取、反萃分配系数在液膜传质过程中具有重要地位,mm'不仅影响传质的类型、速率,甚至决定了传质过程能否发生。混合方式极大地影响着HFRLM过程中各分传质阻力对总阻力的贡献,其对传质速率的影响巨大。
     采用HFRLM技术处理含铬废水,具有处理速度快、效果好等优点,去处率高达99.8%,废水处理后Cr(Ⅵ)含量低于0.5 mg·L~(-1),满足国家排放标准。HFRLM技术在废水处理过程无二次污染产生,浓缩后废水可回收使用,是实现电镀废水闭路循环的有效手段之一。中空纤维更新液膜技术经济、环境效益显著,在电镀含铬废水处理方面有广阔的应用前景。
Hollow fiber renewal liquid membrane(HFRLM) is a novel liquid membrane process.The main characteristic of HFRLM,which different from other liquid membrane processes,is that the flow in the tube-side is a liquid-liquid two-phase.In the flow fields,the dispersion phase(liquid membrane phase) renews the flow liquid membrane and so enhances the transport rate.In this thesis,a study on the mechanism of HFRLM mass transfer process is investigated using Cr(Ⅵ) as the main experimental system.
     The extraction efficiency of Cr(Ⅵ) by tri-n-butyl phosphate(TBP) and the stripping efficiency of complex by NaOH were studied by means of solvent extraction experiments.The extractive and stripping reactions were confirmed.The transport performance of Cr(Ⅵ) through bulk liquid membrane(BLM) process using TBP as mobile carrier was evaluated.A kinetic model was developed assuming that the Cr(Ⅵ) transport through BLM can be explained by a irreversible first-order reaction.The mass transfer behavior of Cr(Ⅵ) in BLM process was analyzed and the effect of the distribution coefficient on the mass transfer process was discussed.
     With the help of digital microscope camera technique,the liquid-liquid two-phase flow in the hollow fiber was investigated and a large of visual information was obtained.The existence of the droplets and the flow liquid membrane in the hollow fiber was proved.The correctness of the HFRLM basic theory was confirmed.According to the video,the flow pattem of the two-phase in the hollow fiber was divided into 6 kinds and a flow pattern diagram was drawn,which would be help for the determination of the operation parameters.Make reference to the molecule collision theory as well as the study of the droplet coalescence/breakage behavior,a mathematic model was proposed to describe the collision and coalescence between the droplet and the flow liquid membrane.This model provides a theory basis for the quantitative calculation of the mass transfer intensification and the deep investigation of HFRLM mass transfer mechanism.
     On the basis of the resistance-in-series model,the mass transfer process in the tube-side was divided into 3 steps:(1) the transport between the flow liquid membrane and the droplet,(2) the transport in the droplet and(3) the transport out of the droplet.In view of the complexity of the non-ideality in the shell side,both theory analysis and experimental verification were used to determine the appropriate shell side mass transfer correlation.Inside of the hollow fiber,the surface-renewal-stretch model was used to describe the mass transfer intensification phenomena caused by the collision between the droplets and the flow liquid membrane.Higbie permeation theory was used to describe the mass transfer process out of the droplet.The modeling study of HFRLM,would be helpful for the deep analysis of the mass transfer mechanism,and also give guidance to the HFRLM scaling up design and industrial application.
     The stability of the HFRLM was studied by monitoring the leakage of the tracer.Results show that the stability of the HFRLM was good and the leakage is less than 0.01%.Under the guidance of the mathematical model,the mass transfer behavior of various systems(such as Cr(Ⅵ),Cu(Ⅱ) and PG) through the HFRLM was studied systematically.The mechanism of the liquid membrane mass transfer process was analyzed from the point of view of the resistance and the driving force.The extraction/stripping distribution coefficient play an important role in the liquid membrane process.They affect the type and the rate of the transport,and even determine whether it will take place or not.The contribution of the individual mass transfer resistance to the overall resistance was affected greatly by the mixing method.
     HFRLM was used for chromium(Ⅵ)-containing wastewater treatment, which had advantages of rapidness and excellent treatment.The removal efficiency of chromium(Ⅵ) is bigger than 99.8%,and the Cr(Ⅵ) concentration in the treated outlet wastewater is less than 0.5 mg·L-1,which is lower than national discharge standards.No second-pollution in the whole treatment process,and the concentrated solution could be reused.HFRLM and has obvious economic and environmental benefits.HFRLM can be widely used in treatment of chromium(Ⅵ)-containing industrial wastewater.
引文
[1] R. Bloch, A. Finkelstein, O. Kedem. Metal ion separation by dialysis through solvent membranes [J]. Ind. Eng. Chem. Process Des. Develop. 1967, 6(2): 231-237
    
    [2] N.N. Li. Somerset. Separating hydrocarbons with liquid membrane[P]. U.S. Pat: 3410794, 1968-11-12
    
    [3] N.N. Li. Permeation Through Liquid Surfactant Membranes[J]. J. AIChE. 1971,17(2): 459-463
    [4] N.N. Li, R.P. Cahn, A.L. Shrier. Removal of Organic Compounds by Liquid Membrane[P]. U.S. Pat: 3617546, November 2, 1971.
    [5] N.N. Li, R.P. Cahn. Liquid Membrane System for Separation of Components of Liquid Mixtures [P]. U.S. Pat: 3719590, March 6. 1973.
    [6] N.N. Li, R. P. Cahn, A. L. Shrier. Liquid Membrane Process for the Separation of Aqueous Mixtures[P]. U.S. Pat: 3779907, December 18, 1973.
    [7] E.L. Cussler, D.F. Evans, M.A. Matesich. Theoretical and Experimental Basis for a Specific Countertransport System in Membranes [J]. Science. 1971, 172(3981): 377-379
    [8] E.L. Cussler. Membranes Which Pump [J]. AIChE J. 1971,17(6): 1300-1303
    [9] D.K. Schiffer, A. Hochlauser, D.F. Evans, E.L. Cussler. Concentrating solutes with membranes containing carriers [J]. Nature. 1974,250: 484-486
    [10] A.H.P. Skelland, X. Meng. Non-Newtonian conversion solves problems of stability, permeability, and swelling in emulsion liquid membranes [J]. J. Membr. Sci. 1999, 158: 1-15
    
    [11] GR.M. Breembroek, G.J. Witkamp, G.M. Rosmalen. Extraction of cadmium with trilaurylamine- kerosine through a fist-sheet-supported liquid membrane [J]. J. Membr. Sci. 1998, 147: 195-206
    
    [12] W.S. Ho, T.K. Poddar. New membrane technology for removal and recovery of chromium from waste wateres[J]. Environ Progr. 2001,20(1): 44-52
    [13] I.M. Coelhoso, M.M. Cardoso, R.M.C. Viegas, J.P.S.G. Crespo. Transport mechanism and modelling in liquid membrane contactors[J]. Sep. Purifi. Tech. 2000,19(3): 183-197
    [14] M. Knutsson, G. Nilve, L. Mathiasson, J.A. Jonsson. Supported liquid membrane technique for time-integraing field sampling of acidic herbicides at sub parts per billion level in natural waters[J]. J. Agric. Food. Chem. 1992,40(12): 2413-2417
    [15] G. Audunsson. Aqueous/aqueous extraction by means of a liquid membrane for sample cleanup and preconcentration of amines in a flow system[J]. Anal. Chem. 1986, 58: 2714-2723
    [16] L. Chimuka, N. Megersa, J. Norberg, et. al. Incomplete Trapping in Supported Liquid Membrane Extraction with a Stagnant Acceptor for Weak Bases[J]. Anal. Chem. 1998, 70: 3906-3911
    [17] J.F. Liu, A.A. Jonsson, P. Mayer. Equilibrium Sampling through Membranes of Freely Dissolved Chlorophenols in Water Samples with Hollow Fiber Supported Liquid Membrane[J]. Anal. Chem. 2005, 77:4800-4809
    [18] L. Soko, L. Chimuka, E. Cukrowska, S. Pole. Extraction and preconcentration of manganese(II) from biological fluids (water, milk and blood serum) using supported liquid membrane and membrane probe methods[J]. Analytica Chimica Acta. 2003,485: 25-35
    [19] B. Lindegard, H. Bjork, J.A. Jonsson, et al. Automated column liquid chromato- graphic determination of a basic drug in blood plasma using the supported liquid membrane technique for sample pretreatment[J]. Anal. Chem. 1994,66: 4490-4497
    [20] M.P. Thien, T.A. Hatton, D.I.C. Wang. Liquid emulsion membrane process for the separation of amino acids[J]. Biotechnol. Bioeng. 1990,35:853-860
    [21] J.A. Adarkar, S.B. Sawant, J.B. Joshi, V.G. Pangarkar. Extraction Amino Acids Using an Immobilized Liquid Membrane[J]. Biothchnol. Prog. 1997,13: 193-196
    [22] R. Bsau, K.K. Sirkar. Hollow fiber contained liquid membrane separation of citric acid[J]. AIChE. J. 1999, 37: 383-393
    [23] X.P. Dai, Z.F. Yang, R.G. Duo, K.K. Sirkar. Lipase faciliated separation of organic acids in a hollow fiber contained liquid membrane module[J]. J. Membr. Sci. 2000, 171: 183-196
    [24] R. Chowdhury, P. Bhattacharya. Mathematical analysis of unsteady- state dynamics of a liquid membrane-encapsulated urease system[J]. Ind. Eng. Chem. Res. 1997, 36(12): 5467-5473
    [25] T. Li, F. Diederich. Carriers for liquid membrane transport of nucleotide 5- triphosphates[J]. J. Org. Chem. 1992, 57(12): 3449-3454
    [26] S. C. Lee. Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions[J]. Chem. Eng. J. 2000, 79(1): 61-67
    [27] W.S. Ho. Combined supported liquid membrane/strip dispersion process for the removal and recovery of penicillin and organic acids[P], US Pat: 6433163,2002-08-13
    [28] Y. Yamini, C. T.Reimann, A. Vatanara, et al. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier[J]. J. Chromatography. 2006, 1124: 57-67
    [29] R. Molinari, A. Caruso, P. Argurio, T. Poerio. Diclofenac Transport through Stagnant Sandwich and Supported Liquid Membrane Systems[J]. Ind. Eng. Chem. Res. 2006,45, 9115-9121
    [30] H. Sakamoto, K. Kimura, T. Shono. Lithium separation and enrichment by proto-driven cation transport through liquid membranes of liphphilic crown nitrophenols[J]. Anal. Chem. 1987, 59, 1513-1517
    [31] S. Deminl, S. Palmas, A.M. Poicaro. Extraction and transport of Na+ and K+ in a liquid membrane containing crown ethers: effect of the mixed solvent[J]. J. Chem. Eng. Data. 1992, 37(2): 281-284
    [32] S.G. Nair, S. Hwang. Selective transport of calcium ion from a mixed cation solution through an HDEHP/n-dodecane supported liquid membrane[J]. J. Membr. Sci. 1991, 64: 69
    [33] V.S. Kislik, A.M. Eyal. Hybrid liquid membrane (HLM) and supported liquid membrane (SLM) based transport of titanium(IV)[J]. J. Membr. Sci. 1996,111:273-281
    [34] R.S. Juang, R.H. Lo. Kinetic of the Coupled Transport of Vanadium(IV) form Sulfate Solutions through Supported Liquid Membranes[J]. Ind. Eng. Chem. Res. 1994, 33(4): 1011-1016
    [35] E. Salazar, M.I. Ortiz, A.M. Urtiaga. J.A. Irabien. Kinetics of the Separation-Concentration of Chromium(VI) with Emulsion Liquid Membranes[J]. Ind. Eng. Chem. Res. 1992, 31(6): 1523-1529
    [36] F.J. Alguacil. Facilitated transport and separation of manganese and cobalt by a supported liquid membrane using DP-8R as a mobile carrier[J]. Hydrometallurgy. 2002, 65: 9-14
    [37] FJ. Alguacil, M. Alonso. Iron(III) transport using a supported liquid membrane containing Cyanex 921[J]. Hydrometallurgy. 2000,58: 81-88
    [38] LA. Nemeh, A.P.V. Peteghem. Membrane Recycling in the Liquid Surfactant Membrne Process [J]. Ind. Eng. Chem. Res. 1993,32(7), 1431-1437
    [39] R.S. Juang, J.D. Jiang. Recovery of nickel from simulated electroplating rinse solution by solvent extraction and liquid surfactant membrane[J]. J. Membr. Sci. 1995, 100: 163-170
    [40] I. Komasawa, T. Otake, T. Yamashita. Mechanism and Kinetcs of Copper Permeation through a Supported Liquid Membrane Containing a Hydroxyoxime as a Mobile Carrier[J]. Ind. Eng. Chem. Fundam. 1983,22:127-131
    [41] O.N. Ata, A.V. Bese, S. Colak, B. Donmez, A. Cakici. Effect of parameters on the transport of zinc ion through supported liquid membrane[J]. Chem. Eng. Process. 2004,43: 895-903
    [42] F.F. Zha, A.G. Fane. C.J.D. Fell. Liquid Membrane Processes for Gallium Recovery form Alkaline Solutions[J]. Ind. Eng. Chem. Res. 1995,43(4): 1799-1809
    [43] M.E. Campderros, J. Marchese. Facilitated transport of niobium(V) and tantalum(V) with supported liquid membrane using TBP as carrier[J]. J. Membr. Sci. 2000, 164: 205-210
    [44] P.S. Kulkarni, V.V. Mahajani. Application of liquid emulsion membrane (LEM) process for enrichment of molybdenum from aqueous solutions[J]. J. Membr. Sci. 2002,201: 123-135
    [45] C. Fontas, C. Palet, V. Salvado, M. Hidalgo. A hollow fiber supported liquid membrane based on Aliquat 336 as a carrier for rhodium(III) transport and preconcentration[J]. J. Membr. Sci. 2000, 178: 131-139
    [46] A. Uheida, Y. Zhang, M. Muhammed. Transport of palladium(II) through hollow fiber supported liquid membrane facilitated by nonylthiourea[J]. J. Membr. Sci. 2004, 241: 289-295
    [47] N. Othman, H. Mat, M. Goto. Separation of Silver from Photographic Wastes by Emulsion Liquid Membrane System[J]. J. Membr. Sci. 2006,282: 171-177
    [48] M. Alonso, A.L. Delgado, A.M. Sastre, F.J. Alguacil.. Kinetic modelling of the facilitated transport of cadmium(II) using Cyanex 923 as ionnphore[J]. Chem. Eng. J. 2006, 118: 213-219
    [49] K. Kondo, M. Matsumoto. Separation and concentration of indium(III) by an emulsion liquid membrane containing diisostearylphosphoric acid as a mobile carrier[J]. Sep. Purif. Tech. 1998, 13: 109-115
    [50] P.K. Mohapatra, D.S. Lakshmi, D. Mohan, V.K. Manchanda. Selective transport of cesium using a supported liquid membrane containing di-t-butyl benzo 18-crown-6 as the carrier[J]. J. Membr. Sci. 2004, 232: 133-139
    [51] K. Uezu, S. Irie, O. Yoshimura, M. Goto, F. Nakashio. Extraction of rate earth metals using liquid surfactant membranes in a mixco extractor[J]. IChemE. 1997, 75: 513-518
    [52] S.S. Fu, H. Mastuyama, M. Teramoto. Ce(III) recovery by supported liquid membrane using polyethylene hollow fiber prepared via thermally induced phase separation[J]. Sep. Purif. Tech. 2004, 36: 17-22
    [53] C.J. Lee, B.R. Yang. Extraction of trivalent europium via a supported liquid membrane containing PC-88A as a mobile carrier[J]. Chem. Eng. J. 1995, 57: 253-260
    [54] C. Fontas, V. Salvado, M. Hidalgo. Separation and concentration of Pd, Pt, and Rh form automotive catalytic converters by combining two hollow-fiber liquid membrane systems[J]. Ind. Eng. Chem. Res. 2002,41(6): 1616-1620
    [55] F.J. Alguacil, M. Alonso, A.M. Sastre. Facilitated supported liquid membrane transport of gold(I) and gold(III) using Cyanex 921[J]. J. Membr. Sci. 2005,252: 237-244
    [56] Q.M. Li, Q. Liu, X.J. Wei. Separation study of mercury through an emulsion liquid membrane[J]. Talanta. 1996,43, 1837-1842
    [57] T. Hayashita, R.A.Bartsch. Selective concentration of Lead(II) chloride complex with liquid Anion-exchange membranes[J]. Anal. Chem. 1991,63,1023-1027
    [58] Y. Yamini, M. Chaloosi, H. Ebrahimzadeh. Highly selective and efficient transport of bismuth in bulk liquid membranes containing Cyanex 301[J]. Sep. Purifi. Tech. 2002,28: 43-51
    [59] P.K. Mohapatra, D.S. Lakshmi, D. Mohan, V.K. Manchanda. Uranium Pertraction across a PTFE Flatsheet Membrane Containing Aliquat 336 as the Carrier[J]. Sep. Purif. Tech. 2006,51:24-30
    [60] C.S. Kedari, S.S. Pandit, A. Ramanujam. Selective permeation of plutonium(IV) through supported liquid membrane containging 2-ethylhexyl 2-ethylhexyl phosphonic acid as ion carrier[J]. J. Membr. Sci. 1999,156: 187-196
    [61] S.A. Ansari, P.K. Mohapatra, D.R. Prabhu, V.K. Manchanda. Transprot of Americium(III) Through a Supported Liquid Membrane Containing N,N,N',N"-tetraoctyl-3-oxapentane diamide (TODGA) in n-dodecane as the carrier[J]. J. Membr. Sci. 2006,282: 133-141
    [62] A. Bhattacharyya, P.K. Mohaatra, V.K. Manchanda. Separation of Trivalent Actinides and Lanthanides using a Flst Sheet Supported Liquid Membrane Containing Cyanex-301 as the Carrier[J]. Sep. Purifi. Tech. 2006, 50: 278-281
    [63] W.Q. Hou, K.D. Papadopoulos. Stability of water-in-oil-in-water type globules [J]. Chemical Engineering Science. 1996,22(15): 5043-5051
    
    [64] A.H.P. Skelland, X. Meng. New solution to emulsion liquid membrane pro- blems by non- Newtonian conversion [J]. AIChE. J. 1996,42(2): 547-561
    [65]Y.Park,L.J.Forney,J.H.Kim,A.H.P.Skelland.Optimum emulsion liquid membrane stabilized by non-Newtonian conversion in Taylor-Couette flow.Chem.Eng.Sci.2004,59(24):5725-5734
    [66]P.R.Danesi,Y.L.Reichley,P.G.Rickert.Lifetime of supported liquid membranes:the influence of interfacial properties,chemical composition and water transport on the long-term stability of the membranes[J].J.Membr Sci.1987,31(2-3):117-145
    [67]A.M.N.Lenbroek,D.Bargeman,C.A.Smolders.Mechanism of Supported Liquid Membrane Degradation:Emulsion Format ion[J].J.Member.Sci.1992,67:133-148
    [68]F.F.Zha,A.G.Fane,C.J.D.Fell.Instability Membranes of Supported Liquid Membranes in Phenol Transport Model[J].J.Membr.Sci.1995,107:59
    [69]N.M.Kocherginsky,Q.Yang.Big carrousel mechanism of copper removal from ammoniacal wastewater through supported liquid membrane[J].Sep.Purifi.Tech.2007,54:104-116
    [70]C.Tondre,A.Xenakis.Use of microemulsions as liquid membranes[J].Faraday Discussion of the Chemical Socity.1984,77:115-126
    [71]A.Sengupta,R.Basu,K.K.Sirkar.Separation of solutes from aqueous solutions by contained liquid membranes[J].AIChE.J.1988,34:1689-1708
    [72]顾忠茂,周庆江,金兰瑞.静电式准液膜分离方法及其装置[P].中国专利:CN 86101730,1988-04-13
    [73]M.Teramoto,N.Tohno,N.Ohnishi.Development of a spiral-type flowing liquid membrane module with high stability and its application to the recovery of chromium and zinc[J].Sep.Sci.Tech.1989,24(12-13):981-999
    [74]M.Teramoto,H.Matsuyama,T.Yamashiro,S.Okamoto.Separation of ethylene from ethane by a flowing liquid membraneusing silver nitrate as a carrier[J].J.Membr.Sci.1989,45(1-2):115-136
    [75]B.J.Raghuraman,J.Wiencek.Extraction with emulsion liquid membranes in a Hollow-fiber contactor[J].AIChE J.1993,39(11):1885-1889
    [76]W.S.Ho.Combined supported liqued membrane/strip dispersion process for the removal and recovery of redionuclides and metals[P],U.S.Pat:6328782,2001-12-11
    [77]蔡卫滨,王玉军,朱慎林.纤维膜萃取器的传质特性[J].清华大学学报(自然科学版),2003,43(6):738-741.
    [78]张卫东,李爱民,李雪梅,任钟旗.液膜技术原理及中空纤维更新液膜[J].现代化工.2005,25(4):66-68
    [79]J.D.Thornton,B.A.Bouyatiotis.Liquid extraction operations in stirred vessels.Ind.Chemit[J].1963,39:298
    [80]R.B.Keey,J.B.Glen.Area-free mass transfer coefficients for liquid extraction in a continuously worked mixer[J].AIChE J.1969,15:942
    [81]F.B.Sprow.Distribution of drop sizes produced in turbulent liquid-liquid dispersion[J].Chem.Eng.Sci.1967,22:435
    [82] Y. Mlynek, W. Resnick Drop size in an agitated liquid -liquid system [J]. AIChE J. 1972, 18: 122
    [83] C.A. Coulaloglou, L.L. Tavlarides. Drop size distributions and coalescence frequencies of liquid-liquid dispersions in flow vessels [J]. AIChE J. 1976: 22: 289
    [84] H. Hulburt, S. Katz. Some problems in particles technology: A statistical mechanical formulation [J]. Chem. Eng. Sci. 1964, 19: 555-574
    [85] A.N. Kolmogoroff. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. C. R. Acad. Sci. U. S. S. R. 1941,30: 301-305
    [86] A.N. Kolmogoroff. On the disintegration of drops in turbulent flow [J]. Doke. Acad. Nauk SSSR. 1949, 66: 825-829
    [87] O. J. Hinze. Fundamentals of the hydrodynamic mechanism of splitting up in dispersion process. AIChE. J. 1955,1(3): 289-295
    [88] R. Shinnar. On the behavior of liquid dispersion in mixing vessels [J]. J. Fluid. Mech. 1961,10(1): 259-275
    [89] C. Tsouris, L.L. Tavlarides. Breakage and coalescence model for drops in turbulent dispersions. AIChE. J. 1994,40(3): 395-406
    
    [90] S. Liu, D. Li, Chem. Drop coalescence in turbulent dispersions [J]. Eng. Sci. 54 (1999) 5667-5675
    [91] S. Ceylan, G. Kelbaliyev, K. Ceylan. Estimation of the maximum stable drop sizes, coalescence frequencies and the size distributions in isotropic turbulent dispersions [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2003,212:285-295
    [92] P.G. Saffman, J.S. Turner. On the collision of drops in turbulent clouds [J]. J. Fluid. Mech. 1956,1: 16-30
    
    [93] V.G. Levich. Physicochemical hydrodynamics. Englewood, Cliffs N J: Prentice Hall Inc., 1962
    [94] R. Kuboi, I. Komasawa, T. Otake. Collision and coalescence of dispersed drops in turbulent liquid flow [J]. J. Chem. Eng. Japan. 1972, 5: 423-424
    [95] R. Kuboi, I. Komasawa, T. Otake. Behavior of dispersed particles in turbulent liquid flow [J]. J. Chem. Eng. Japan. 1972, 5: 349-355
    
    [96] O. Reynolds. On drops floating on the surface of water [J]. Chem. News. 1886,44:211
    [97] A.K. Chesters. The applicability of dynamic- similarity criteria to isothermal, liquid- gas, two-phase flows without mass transfer [J]. Int. J. Multiphase Flow. 1975,2: 191-212
    [98] S. Abid, A.K. Chesters. The drainage and rupture of partially-mobiale films between colliding drops at constant approach velocity [J]. Int. J. Multiphase Flow. 1994,20: 613-619
    [99] A. Saboni, C. Gourdon, A.K. Chesters. Drainage and rupture of partially mobile films during coalescence in liquid- liquid systems under a constant interaction force [J].
    [100] C.A. Coulalogou, L.L Tavlarides. Description of interaction processes in agitated liquid- liquid dispersion [J]. Chem. Eng. Sci. 1977, 32: 1289-1297
    
    [101] V.G. Levich. Physicochemical hydrodynamics. Prince hall. Englewood Cliffs, NJ. 1962
    [102] R. Prasad, K.K. Sirkar. Dispersion-free Solvent Extraction with Microporous Hollow-Fiber Modules[J],AIChE J.1988,34(2):177-188
    [103]R.M.C.Viegas,M.Rogriguez,S.Luque,J.R.Alvarez,I.M.Coelhoso,J.P.S.G.Crespo.Mass transfer correlations in membrane extraction:Analysis of Wilson-plot methodology[J].J.Membr.Sci.1998,145:129-142
    [104]S.Koo,A.S.Sangani.Mass transfer coefficient for laminar longitudinal flow in hollow fiber contactors[J].J.Fluid Mech.2003,484:255-282
    [105]Yang M.C,E.L.Cussler,Designing Hollow-fiber Contactors[J],AIChE J,1986,32(11):1910-1919
    [106]S.R.Wichramasinghe,M.J.Semmens,E.L.Cussler.Mass transfer in various hollow fiber geometries[J].J.Membr.Sci.1992,69:235-250
    [107]M.J.Costello,A.G.Fane,P.A.Hogan,R.W.Schofield.The effect of shell side hydrodynamics on the performance of axial flow hollow fiber modules[J].J.Membr.Sci.1993,80:1-11
    [108]V.Chem,M.Hlavacek.Application of voronoi tessellation for modeling randomly packed hollow-fiber bundles[J].AIChE J.1994,40:606-612
    [109]J.Wu,V.Chen.Shell-side mass transfer performance of randomly packed hollow fiber modules[J].J.Membr.Sci.2000,172:59-74
    [110]王玉军.中空纤维膜萃取器的流动与传质[博士][D].北京:清华大学.2001.
    [111]Y.Wang,F.Chen,Y.Wang,G.Luo,Y.Dai.Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function[J].J.Membr.Sci.2003,216:81-93
    [112]王玉军,骆广生,王岩,等.中空纤维膜萃取器内流动特性[J].清华大学学报,2001,41(12):56-58
    [113]R.Higbie.The rate of absorption of a pure gas into a still liquid during short-periods of exposure [J].Trans.AIChE.1935:31:365-388
    [114]P.V.Danckwerts.Significance of Liquid-Film Coefficients in Gas Absorption[J].Ind.Eng.Chem.1951,43:1460-1467
    [115]沈自求,徐维勤,丁洁.相际传质(Ⅰ):一个修正的表面膜更新模型[J].化工学报.1980,4:319-331
    [116]J.B.Angelo,E.N.Lightfoot,D.W.Howard.Generalization of the penetration theory for surface stretch:Application to forming and oscillating drops[J].AIChE J.1966,12(4):751-760
    [117]B.Jajuee,A.Margaritis,D.Karamaney,M.A.Bergougnou.Application of surface-renewal-stetch model for interface mass transfer[J].Chem.Eng.Sci.2006,61:3917-3929
    [118]R.Kronig,J.C.Brink.On the Theory of Extraction from Falling Drops[J].Appl.Sci.Res.1950,A2:142-154
    [119]A.H.P.Skelland,R.M.Wellek.Resistance to mass transfer inside droplets[J].AIChE.J.1964,10:491-496
    [120]Y.Park,A.H.P.Skelland,L.J.Forney,J.H.Kim.Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process[J].Water Research.2006,40,1763-1772
    [121]P.S.Kulkami,V.V.Mahajani.Application of liquid emulsion membrane(LEM) process for enrichment of molybdenum from aqueous solutions[J].J.Membr.Sci.2002,201:123-135
    [122]R.Molinari,A.Caruso,P.Argurio,T.Poerio.Diclofenac Transport through Stagnant Sandwich and Supported Liquid Membrane Systems[J].Ind.Eng.Chem.Res.2006,45,9115-9121
    [123]J.A.Adarkar,S.B.Sawant,J.B.Joshi,V.G.Pangarkar.Extraction Amino Acids Using an Immobilized Liquid Membrane[J].Biothchnol.Prog.1997,13:193-196
    [124]A.Kumar,A.M.Sastre.Hollow fiber supported liquid membrane for the separation/concentration of gold(Ⅰ) from aqueous cyanide media:Modeling and mass transfer evaluation[J].Ind.Eng.Chem.Res.2000,39(1):146-154
    [125]R.S.Juang,S.H.Lee.Analysis of the transport rates of europium(Ⅲ) across an organophosphinic acid supported liquid membrane[J].J.Membr.Sic.1996,110:13-23
    [126]王琪,晋丽丽.二苯碳酰二肼光度法测定水中六价铬方法的改进[J].化工环保.2004,24:389-390
    [127]金中华.二苯碳酰二肼测定水中六价铬的改进[J].污染防治技术.1994,7(1):51-52
    [128]王琪,王刚.关于使用含混合酸显色剂测定水中六价铬的问题探讨[J].干旱环境检测.2002,16(3):184-185
    [129]杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1992
    [130]申泮文,车云霞,罗裕基等.无机化学丛书(第八卷)[M].北京:北京师范大学出版社.1996
    [131]P.Venkateswaran,K.Palanivelu.Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution.Sep.Purif.Techno.2004,40(3),279-284
    [132]V.M.Rao,S.K.Prasad.Some investigations on the solvent extraction of chromium(Ⅵ) by bis-(2,4,4-trimethylpentyl)-phosphinic acid(Cyanex 272).In:Internation Solvent Extraction Conference(ISEC 88),Moscow,pp.338-340
    [133]D.G.Tuck,R.M.Waiters.The extraction of chromium(Ⅵ) from aqueous solution by tributyl phosphate,J.Chem.Soc.1963,1111
    [134]H.H.Someda,E.A.El-shazly,R.R.Sheha.The role of some compounds on extraction of chromium(Ⅵ) by amine extractants,J Hazard.Mater.2005,117(2-3),213-219
    [135]M.S.Uddin,M.Kathiresan.Extraction of metal ions by emulsion liquid membrane using bi-functional surfactant:equilibrium and kinetic studies[J].Sep.Purifi.Technol.2000,19:3-9
    [136]T.B.Stolwijk,P.D.J.Grootenhuis,P.D.Wal,et al.Crown Ether Mediated Transport of Guanidinium Thiocyanate through a Bulk Liquid Membrane and the Correlation with the Complex Stability Constants[J].J.Org.Chem.1986,51:4891-4898
    [137]A.R.Fakhari,A.R.Khorrami,M.Shamsipur.Selective uphill Zn2+ transport via a bulk liquid membrane using an azacrown ether carrier[J].Sep.Purif.Technol.2006,50(1):77-81
    [138]R.M.Izatt,G.A.Clark,J.S.Bradshaw,J.D.Lamb,J.J.Christensen.Macrocycle-facilitated transport of ions in liquid membrane systems[J].Separation and Purification Methods.1986,15(1):21-72
    [139]M.Szpakowska,O.B.Nagy.Chemical kinetic approach to the mechanism of coupled transport of Cu(Ⅱ) ions through bulk liquid membrane[J].J.Phys.Chem.A.1999,103(11),1553-1559
    [140]S.Alpaydin,M.Yilmaz,M.Ersoz,Kinetic study of Hg(Ⅱ) transport through a bulk liquid membrane containing ester derivative of bis-calix[4]arene[J].Sep.Sci.Technol.2004,39(9):2189-2206
    [141]D.S.He,M.Ma,Kinetics of cadmium(Ⅱ) transport through a liquid membrane containing tricapryl amine in xylene[J].Sep.Sci.Technol.2000,35(10):1573-1585
    [142]A.Yilmaz,A.Kaya,H.K.Alpoguz,M.Ersoz,M.Yilmaz.Kinetic analysis of chromium(Ⅵ) ions transport through a bulk liquid membrane containing p-tert-butylcalix[4]arene dioxanctylamide derivative[J].Sep.Purif.Technol.2008,59(1):1-8
    [143]M.J.H.Simmons,B.J.Azzopardi.Drop size distribution in dispersed liquid-liquid pipe flow[J].International Journal of Multiphase Flow.2001,27:843-859
    [144]A.H.P.Skelland,J.M.Lee.Drop size and continuous-phase mass transfer in agitated vessels[J].AIChE J.1981,27(1):99-111
    [145]H.T.Chem,S.Middleman.Drop size distribution in agitated liquid-liquid systems[J].AIChE.J.1967,13:989-995
    [146]C.A.Sleicher Jr.Maximum stable drop size in turbulent flow[J].AIChE J.1962,8(4):471-477.
    [147]R.Kuboi,I.Komasawa,T.Otake.Collision and coalescence of dispersed drops in turbulent liquid flow[J].J.Chem.Eng.Japan.1972,5:423-424
    [148]R.Kuboi,I.Komasawa,T.Otake.Behavior of dispersed particles in turbulent liquid flow[J].J.Chem.Eng.Japan.1972,5:349-355
    [149]过增元.热流体学[M].北京:清华大学出版社,1992
    [150]V.R.Withers,R.T.L.Mowll.How to predict flow of viscous crude[J].Pipeline Industry,1982,(7):45-46
    [151]H.Luo,H.F.Svendsen.Modeling and simulation of binary of approach by energy conservation analysis[J].Chem.Eng.Comm.1996,145:145-153
    [152]A.K.Chesters.Modelling of coalescence processes in fluid-liquid dispersion.A review of current understanding.Trans.Chem.E.1991,69(A):259-270
    [153]王铁锋.气液(浆)反应器流体力学行为的实验研究和数值模拟[D].清华大学.2004
    [154]R.P.Cahn,N.N.Li,Sep Sci,Separation of phenol from waste water by the liquid membrane technique[J].1974,9(6):505-519
    [155]W.S.Ho,T.A.Hatton,E.N.Lightfoot,N.N.Li.Batch Extraction with Liquid Surfactant Membranes:A Diffusion Controlled Model[J].AIChE J.1982,7:662-670.
    [156]Matulevicius E S,Li N N,Facilitated transport through liquid membranes[J].Sep.Pur.Methods,1975,4(1):73-96.
    [157]Teramoto M,Sakuramo to T,et al,Sep Sci Technol,1986,21(3):229
    [158]Jasmin Wu,Vicki Chen.Shell-side mass transfer performance of randomly packed hollow fiber modules[J].J.Membr.Sci.2000,172:59-74
    [159]C.R,Wilke,P.Chang.Correlation of diffusion coefficient in dilute solutions[J].AIChE.J.1955,1:264-269
    [160]F.J.Alguacil,M.Alonso.Description of Transport Mechanism during the Elimination of Copper(Ⅱ)from Wastewater using Supported Liquid Membrane and Acorga M5640 as Carrier[J].Environ.Sci.Technol.2005,39:2389-2393
    [161]徐建鸿.微分散体系尺度调控与传质性能研究[D].清华大学.2007
    [162]S.B.Hu,J.M.Wiencek.Emulsion-liquid membrane extraction of copper using a hollow fiber contactor[J].AICHE.1998,44(3):570-581
    [163]T.Papadopoulos,K.K.Sirkar.Separation of a 2-Propanol/n-Heptane Mixture by Liquid Membrane Perstraction[J].Ind.Eng.Chem.Res.1993,32(4):663-673
    [164]林畅,贺高红等.石油醚W/O乳状液及其液膜稳定性[J].高校化学工程学报.2004,18(2):224-230
    [165]Raghuraman B,Wiencek J,Extraction with emulsion liquid membranes in a Hollow - fiber contactor[J],AIChE J,1993,39(11):1885-1889
    [166]P.S.Kulkarni,S.Mukhopadhyay,M.P.Bellary,S.K.Ghosh.Studies on membrane stability and recovery of uranium(Ⅵ) from aqueous solutions using a liquid emulsion membrane process[J].Hydrometallurgy.2002,64:49-58
    [167]Alonso,M.;Delgado,A.L.;Sastre,A.M.;Alguacil,F.J.Kinetic modelling of the facilitated transport of cadmium(Ⅱ) using Cyanex 923 as ionnphore.Chem.Eng.J.2006,118(3),213-219
    [168]Babcock,W.C.;Baker,R.W.;Lachapelle,E.D.;Smith,K.L.Coupled transport membranes Ⅱ:The mechanism of uranium transport with a tertiary amine.J.Membr.Sci.1980,7(1),71-87
    [169]Alguacil,F.J.;Alonso,M.Separation of zinc(Ⅱ) from cobalt(Ⅱ) solutions using supported liquid membrane with DP-8R(di(2-ethylhexyl) phosphoric acid) as a carrier.Sep.Purif.Tech.2005,41(2),179-184
    [170]唐兆民,张景书.电镀废水的处理现状与发展趋势[J].国土与自然资源研究.2004,(2):69-71
    [171]Hochhauser A M,Cussler E L.Concentrating chromium with liquid surfactant membranes[J].AICHE Symposium Series,1975,71(152):136-142
    [172]张仲甫,张瑞华,汪德先,等.用液膜技术分离铬[J].膜科学与技术,1982,2(1):55-60
    [173]严忠,孙文东.乳液液膜分离原理及应用[M].北京:化学工业出版社,2005
    [174]Chan C C,Lee C J.Mass transfer model for the extraction of weak acids/bases in emulsion liquid membrane systems[J].Chem Eng Sci,1987,42(1):83-95
    [175]Zha F F,Fane A G,Fell C J D.Instability Membranes of Supported Liquid Membranes in Phenol Transport Model[J].J Membr Sci,1995,107(1):59-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700