轿车发动机变工作排量技术与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对发动机停缸技术存在的气缸偏磨、温度变化大和停缸前后冲击的缺点,提出了变工作排量(VPD)的新思路,研究了变工作排量的控制与应用问题。设计了“循环”、“交替”、“均匀”地停缸的VPD模式。应用模糊识别与控制理论,研究了汽车行驶工况模糊判断、驾驶员意图模糊识别,以及模糊控制策略设计等方法与技术。以英飞凌XC164CM单片机为核心,设计制作了变工作排量控制器样品,并安装在捷达轿车上进行了实车道路试验。
     主要研究内容如下:
     (1)研究了发动机VPD模式设计问题,提出VPD模式的设计原则和设计方法,以及VPD模式的磨损均匀性,操作灵敏性,运转平稳性等评价原则。根据发动机气缸布量形式,分别设计了直列4缸、直列6缸、V型6缸和V型8缸发动机的工作排量变化模式。
     (2)研究了发动机输出特性的热力学仿真方法。利用热力学仿真的零维模型和Adams/Engine模块,对发动机稳定运转工况下的动力输出进行了模拟计算。将这种方法应用于捷达轿车,用仿真方法计算了发动机输出转矩和功率随转速和节气门开度变化的MAP图。
     (3)利用模糊推理与控制理论,研究了识别汽车行驶工况的模糊判断方法。将复杂的汽车行驶工况按照动力学特征整合成7种相互独立的工况,将汽车传感器输出参数模糊化后,建立了判断汽车行驶工况的模糊模型和推理规则,给出了行驶工况判断方法。
     (4)将模糊识别与控制理论应用于驾驶员意图识别。将驾驶员意图归结为5种量化的加速意图。将相对节气门开度和节气门开度变化率模糊化后,建立了模糊推理模型和模糊推理规则库。为检验其正确性,利用MATLAB/Fuzzy Logic工具箱对驾驶员意图识别进行了仿真。结果证明,所建立的模糊模型和推理规则能够准确识别驾驶员意图。
     (5)设计了选择VPD模式的模糊控制策略。将车速、档位、汽车行驶工况和驾驶员意图作为选择VPD模式的依据,提出了模糊控制原则,设计了各种行驶工况下,不同车速、档位和驾驶员意图的控制策略。
     (6)利用VPD理论和行驶工况判断、驾驶员意图识别、控制策略设计等技术,设计并制作了以英飞凌XC164CM为核心的VPD控制器样品,编制了软件程序,并在厂家提供的开发平台中完成调试和编译。
     (7)将研究的理论和控制技术应用于捷达轿车。进行了发动机变工作排量台架试验和整车节油效果道路试验。台架试验验证了所设计的VPD模式的可行性和有效性;道路试验对比了全排量与变排量运转的燃油消耗。试验表明,在汽车上应用VPD理论和控制技术,不仅具有明显的节油效果,而且有效地避免了行驶冲击、气缸偏磨和温度变化大等缺点。
     本文所研究的变工作排量理论、应用模糊理论判定汽车行驶工况、识别驾驶员意图的方法、以及VPD模糊控制策略等技术,对研究汽车节油技术具有较强的理论指导意义和工程实用价值。
To overcome the defaults of offset wearing, cylinder temperature varying and shock at varying cylinder of engine, the author raises a new idea about variable power displacement (VPD) engine and has done much studying work on the control technology and application of VPD. The varying cylinder models have been designed which pause cylinder power circulated, alternately, and regularly. With the theory of fuzzy identification and fuzzy control, the author has studied the judging method of car running state, the technologies of fuzzy identifying driver’s intention and the fuzzy control strategies. Taking the Infineon XC164CM microprocessor as key component, samples of VPD controller have been designed and made. One of a sample was installed on Jetta car, and many tests have been done on road to detect its function.
     Main contents of this paper are as follows:
     (1)Theoretical problems of engine VPD model have been studied. The design rules and design methods of VPD model are given. The wear homogenization, operating flexibility and rotating stability are used to assess the VPD model. According to the arrangement of cylinders, VPD models of L4, L6, V6 and V8 engine have been designed respectively.
     (2)The method of thermodynamic simulation about engine output properties has been studied. Using the zero-dimension simulation model of thermodynamics and Adams/Engine module, the power output under stable rotating condition of engine has been simulated and calculated. Taking an example of Jetta car, the output torque MAP and power MAP are calculated with the simulation method. The MAPs change with engine rotating speed and throttle opening degree.
     (3)Using fuzzy reasoning and control theory, the fuzzy judging method for running states of motorcar have been studied. According to the dynamic characteristics, classified the complicated running states of motorcar into 7 kinds of independent conditions. After fuzzification of parameters from car sensors, fuzzy model and rules are created to identify running states of motorcar. The judging method for identifying the running state of motorcar is given.
     (4)Apply the fuzzy identification and control theory into identifying driver's intention. Classify the driver's intention into 5 numerical accelerating intentions. Fuzzificationing the relative throttle percentage and the change rate of throttle opening, fuzzy inference model and rules are created. Using Matlab/Fuzzy Logic workbox, simulation of identifying driver's intention is done to detecting correctness of the method. The simulating result indicates that the fuzzy model and inference rules can reflect driver's intention accurately.
     (5) The fuzzy control strategies have been designed for choosing VDP model. The car speed, gearshift, running state and driver's intention have been taken as basis for choosing VDP model. Fuzzy control rules and control strategies under different running condition, speed, gearshift and driver's intention have been designed.
     (6) The VPD controller samples has been designed and made using the VPD theory and the technologies of judging car running states, the recognizing driver’s intention and control strategies. Which is centered-XC164CM microprocessor. The programming software is completed on the developing platform which was provided by the OEM of XC164CM.
     (7)The theory and technique are applied into the Jetta car. The indoor tests of engine and road tests of car with VPD controller sample were done. The engine test result validates the feasibility and validity of VPD. The road tests compare the fuel consumption of different power displacement. The test results show that a car applied VPD technology not only consumes less fuel obviously, but also reduces cylinder offset wear and cylinder temperature changing.
     The VPD theory and techniques of using fuzzy theory to judge car running state and to identify driver’s intention are very useful. All of the techniques have theoretical significance and practical value in engineering.
引文
1王建昕.高效车用汽油机的技术进步.内燃机学报,2008, 26(suppl):83-89
    2刘峥,王建昕.汽车发动机原理教程.北京:清华大学出版社,2001. 35-78
    3杨妙梁.可变排量发动机技术与停阀机构的发展动向(上).汽车与配件,2003,38:33-36
    4杨妙梁.可变排量发动机技术的发展.汽车与配件,2008. 10:32-35
    5杨妙梁.可变排量发动机技术与停阀机构的发展动向(下).汽车与配件,2003,39:33-34
    6 V. W. Wong, M. Stewart, G. Lundholm, A. Hoglund. Increased Power Density Via Variable Compression/Displacement and Turbo charging Using the Alva-cycle Engine. SAE Special Publications, 1998, 36(2): 252-256
    7张海涛.发动机停缸控制及其标定. [吉林大学工学硕士论文]. 2002:8 - 54
    8 Kiyoshi Hatano, Kazumasa Lida, Hirohumi Higashi.多种工作方式的可变气门定时发动机,国外内燃机,2005, 3:68-71
    9何忠波,白鸿柏,孔庆春,等.基于驾驶员意图的AMT车辆控制研究.军械工程学院学报, 2005,17(3):27-31
    10罗玉涛,胡红斐,沈继军.混合动力电动汽车行驶工况分析与识别.华南理工大学学报(自然科学版),2007,35(6):8-13
    11张泰,葛安林,唐春学,等.越野汽车液力变矩器和机械自动变速器换挡规律研究.汽车工程,2007,29(3):226-229
    12杨财.汽车驱动防滑控制方法及动力学稳定性控制策略研究. [清华大学工学博士论文]. 2009:40-67
    13王玉海.拟人式自动变速系统控制方法研究与控制器开发. [清华大学工学博士论文]. 2005:35-60
    14王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究.公路交通科技,2005,22(12):116 -121
    15王玉海,宋健,李兴坤.驾驶员意图与行驶环境的统一识别及实时算法.机械工程学报,2006,42(4):210-216
    16周龙保.内燃机学.北京:机械工业出版社,1999. 268-284
    17蒋德明.高等内燃机原理.西安:西安交通大学出版社,2002. 26-87.
    18朱防君.内燃机工作工程数值计算及其优化.北京:国防工业出版社,1997. 56 -121
    19 H. Heisler. Advanced Engine Technology. SAE International, 1995, 38(9): 56-60
    20刘福才.非线性系统的模糊模型辨识及其应用.北京:国防工业出版社,2006. 1-36
    21李亮,宋健,韩宗奇,等.用于电子稳定程序(ESP)在线控制的液压模型和反模型.机械工程学报,2008,44(2):139-144
    22司利增.汽车计算机控制.北京:电子工业出版社,2007. 48-76
    23 Tyler. Vibration Reduction in a Variable Displacement Engine Using Pendulum Absorbers, 2003, 41(11): 98-105
    24王展.捷达GiX发动机多输入参数变工作排量控制研究.[燕山大学工学硕士论文]. 2007: 15-34
    25 Ashley, Steven.Firing on Half-Cylinders. Scientific American, 2004, 291(6): 63-89
    26曹谢东.模糊信息处理及应用.北京:科学出版社,2003. 57-58
    27刘永长.内燃机原理.武汉:华中理工大学出版社,1992. 37-73
    28刘志忠,韩宗奇,马玉环,等.电喷发动机闭缸循环工作排放与经济性试验研究.汽车工程,2007,29(6):479-481
    29邸立明,韩宗奇,夏怀成,等.电控喷油器流量特性的仿真研究.汽车工程,2009,31(5):451-456
    30李育学,张静秋,欧阳光耀.电控喷油器的优化设计.内燃机学报, 2006, 24(3):270-275
    31林铁坚,汪洋,苏万华,等.高压共轨喷油器设计参数对性能影响的研究.内燃机学报, 2001, 19 (4) : 289-294
    32杨胜兵.线控转向系统控制策略研究. [武汉理工大学工学博士论文]. 2008:60-68
    33谭德荣.小排量汽油机燃油喷射控制系统及其优化技术研究. [武汉理工大学工学博士论文]. 2006:15-22
    34刘振军.基于人-车-路环境下的汽车电控机械自动变速智能控制研究. [重庆大学工学博士论文]. 2005:75-80
    35董大伟.基于曲轴角振动诊断内燃机各缸工作状况的研究. [西南交通大学工学博士论文]. 2002:8-18
    36高斯.车辆动力学稳定系统仿真及优化. [华中科技大学工学硕士论文]. 2006:44-49
    37 Osman Akin Kutlar, Hikmet Arslan, Alper T. Calik. Skip Cycle System for Spark Ignition Engines. An Experimental investigation of a new type working strategy,Energy Conversion and Management, 2007, 48: 370-379
    38 Heather. L. MacLean, Lester. B. Lave. Evaluating automobile fuel and propulsion system technologies, Progress in Energy and Combustion Science, 2003 , 29 : 169-175
    39张登攀,袁银南,崔勇.车用汽油机的停缸节油技术.小型内燃机与摩托车, 2007, 06:96-100
    40 Mingfa Yao, Zhaolei Zheng, Haifeng Liu. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 2009, 35(5): 398-437
    41 Osman Akin Kutlar , Hikmet Arslan, Alper T. Calik. Skip Cycle System for Spark Ignition Engines: An Experimental Investigation of a New Type Working Strategy. Automotive Division, Istanbul Technical University, 2006.9
    42杨洪敏,苏万华,汪洋,等.高压共轨式喷油器的无量纲几何参数对喷油规律和喷油特性一致性影响的研究.内燃机学报, 2000, 18(3):244-249.
    43 J. B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill Inc, 1988: 88-98
    44 D. G. Thombare, S. K. Verma. Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 2008, 12(1): 1-38
    45 Deepa R, Ryan M ,Shiva S ,et al. A Case Study in Hardware-in-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle. SAE Paper, 2004: 97-110
    46蒋德明.内燃机的涡轮增压.北京:机械工业出版社,1986. 59-141
    47 J. B. Heywood. The Future of the Internal Combustion Engine. International Internal Combustion Engine Symposium. Seoul, 1999
    48 Dale R. Tree, Kenth I. Svensson. Soot processes in compression ignition engines. Progress in Energy and Combustion Science, 2007, 33(3): 272-309
    49何学良,李疏松.内燃机燃烧学.北京:机械工业出版社, 1990. 147-181
    50 S. R. Turns. An Introduction to Combustion-Concepts and Application. McGraw-Hill Inc, 1996
    51 SAE J1829. Stoichionmetric Air-Fuel Rations of Automotive Fuels. SAE International, 1997
    52 Wang Huiyi , Xue Chunyu. Modeling and Simulation of Electric Stability Program for the Passenger Car. SAE Paper , 2004, 39(6): 97-126
    53林杰伦.内燃机工作过程的数值计算.西安:西安交通大学出版社,1988. 12-95
    54顾宏中.涡轮增压柴油机热力过程模拟计算.上海:上海交通大学出版社,1985. 40 -147
    55 Bancha Kongtragool, Somchai Wongwises. Performance of low-temperature differential Stirling engines. Renewable Energy, 2007, 32(4): 547-566
    56 Elkholy A.H. Variable Displacement Mechanism for Internal Combustion Engines. Transactions of the Canadian Society for Mechanical Engineering, 1994, 48(21): 97-126
    57 B. Bates, J.M. Dosdall, D. H. Smith .Variable Displacement Engine By Valve Control, 1978, 19(9): 156-169
    58 S. Arzanpour, M. F. Golnaraghi. A Novel Semi-active Magnet archeological Bushing Design for Variable Displacement Engines. Journal of Intelligent Material Systems and Structures, 2008, 19(9): 169-190
    59 A. H. Elkholy. Variable Displacement Mechanism for Internal Combustion Engines. Transactions of the Canadian Society for Mechanical Engineering, 1994,18(4): 251-269
    60 ?hsan Batmaz, Süleymanüstün. Design and manufacturing of a V-type Stirling engine with double heaters. Applied Energy, 2008, 85(11): 1041-1049
    61 H. W. Welsh, Riley CT.Variable- Displacement Engine. An Advanced Concept Power plant. SAE Paper, 1971,21(9): 123-156
    62 Anon. Approach To Variable Displacement. Automotive Engineering, 1997,85(5): 126-137
    63 Shin, Kwang-Keun. Active Vibration Control of Active Fuel Management Engines Using Active Engine Mounts, ASME International Mechanical Engineering Congress and Exposition, Proceedings, v 16, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE 2007,2008:123-156
    64 C.D. Rakopoulos, E.G. Giakoumis. Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 2006, 32(1): 2-47
    65 Kimberley, William. Footprints for the Future, Automotive Engineer, 2004, 29(2): 100-123
    66 C Arcoumains. Internal Combustion Engines. London: Academic Press, 1988:147-159
    67 S X Shi. Recent Development of Combustion Systems for Spark Ignition Automotive Engines. Wuhan: Proc. of ICICE’97, 1997: 36-69
    68 S. C. Sorenson. Performance and Emission of a 0.273 Liter Diesel Engine Fuelled with Neat Dim ethyl Ether. SAE paper, 1995: 69-96
    69 Paul Kapus, Hewing Ofner. Development of Fuel Injection Equipment and Combustion System for DI Diesel on Dimethyl Ether. SAE paper, 1995: 97-101
    70 Brent Bailey, et al. Diethyl Ether(DEE)as a Renewable Diesel Fuel. SAE paper, 1997: 96-102
    71 A. and F. Pischigner. Gemischbildung and Verbrennug in Diesel motor. List Reihe band 7.Vienna: Springer-Verlag, 1957: 123-198
    72 H. Bauer(Bosch). Diesel Engine Management. SAE International, 1999: 23-69
    73 Klaus Mollenhauer. Diesel Handbuch. Berlin: Springer-Verlag, 2002: 56-76
    74 Gao Zongying, Su Ping, Mei Deqing. Fuel Injection System to Meet Future Requirements for Diesel Engines. Pohang: ICAE-2003: 58-68
    75刘启华,高宗英.二冲程汽油机电控燃油喷射系统的实验研究.内燃机工程, 1997, 18(1):41~ 46
    76 J H Johnson. A Review of Diesel Particulate Control Technology and Emissions Effects. SAE Paper 940233, 1994: 65-98
    77 Liu Xunjun. Exhaust Emission Standards and Regulations for Automotive Diesel Engines in China and Necessary Technical Progresses. Proceedings of the International Conference on Internal Combustion Engines. Beijing: International Academic Publishers, 1997.114-120
    78 F Pischinger. Verbrennungsmotoren(BandⅡ). Aachen: RWTH Aachen, 1993: 69-98
    79 K Mori. Worldwide Trends in Heavy-Duty Diesel Engine Exhaust Emission Legislation and Compliance Technologies. SAE Paper970753, 1997: 59-85
    80 P Degobert. Automobiles and Pollution. Warrendale: SAE Inc., 1995: 56-69
    81杨连生.内燃机性能及其与传动装置的优化匹配.北京:学术期刊出版社,1988. 244-256
    82 C.D. Rakopoulos, K.A. Antonopoulos, D.C. Rakopoulos, etc. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol–diesel fuel blends. Energy Conversion and Management, 2008, 49(4): 625-643
    83 Can Ha?imo?lu, Murat Ciniviz, ?brahim ?zsert, etc. Performance characteristics of a low heat rejection diesel engine operating with biodiesel. Renewable Energy, 2008, 33(7): 1709-1715
    84刘晗辉,金惟惟,靳东明.一种用于发动机怠速控制的模糊控制器.微电子学,2007,5(2):25-31
    85曹利民.捷达王轿车发动机电控系统原理与检修.汽车维修, 2001, (9):12-13
    86 Zeng Ke, Liu Bing, Huang Zuohua. Design of Electronic Control Unit(ECU)for Gasoline Engines. Chinese Internal Combustion Engine Engineering, 2005, 26(10): 27-31
    87刘扬,左建,刘建民.汽车发动机电控系统的使用与故障诊断.实用汽车技术, 2003,(7):6-8
    88 Shen Shuiwen, Bas Vroemen, Frans Veldpaus. Idle Stop and Go: A Way to Improve Fuel Economy. Vehicle System Dynamics, 2006, 44(6): 449-476
    89 Wegener Ulrich. Industrial Engines with Advanced Electronic Control. Diesel ProgressInternational Edition, 2006, 25(3): 40-42
    90赵策伟. BJQ-Ⅲ微机自控汽车局部闭缸技术.节能技术, 1990, 5: 25-26
    91文舟.捷达前卫发动机电控系统电路图.汽车维修技师, 2001,6: 30-31
    92张海涛.发动机停缸控制及其标定. [吉林大学工学硕士论文]. 2002:14-22
    93 Chunde Yao, C.S. Cheung, Chuanhui Cheng, etc. Effect of Diesel/methanol compound combustion on Diesel engine combustion and emissions. Energy Conversion and Management, 2008, 49(6): 1696-1704
    94 Eric Schueler. Way to Improve Fuel Economy. Sulzer Technical Review, 2006, 88: 19 ~ 21
    95 DaeEun Kim, Jaehong Park. Application of adaptive control to the fluctuation of engine speed at idle. Information Sciences, 2007, 177(16): 3341-3355
    96 Thomas D. Gillespie.车辆动力学基础.北京:清华大学出版社,2006:17
    97 Z. H. Zhang, C. S. Cheung, T. L. Chan, etc. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst. Science of the Total Environment, 2009, 407(15): 4497-4505
    98 Chen Chibin. Applying Fuzzy Logic Control to Inventory Decision in a Supply Chain. WSEAS, 2006,18(8): 15-20
    99 Wang Zhi, Wang Jianxin, Shuai Shijin, etc. Study of Spark Ignition on Gasoline HCCI Combustion.Journal of Automobile Engineering, 2006, 220(D6): 817-825.
    100 Mohamed Y.E. Selim. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines. Fuel, 2005, 84(7-8): 961-971
    101肖琼,颜伏伍,邹华,等.电控喷油器流量特性试验台的开发与试验分析.中国机械工程, 2005,16(16):1419-1422.
    102林铁坚,汪洋,苏万华.高压共轨喷油器设计参数对性能影响的研究.内燃机学报,2001,19 (4): 289-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700