岩溶洞穴系统稳定碳同位素演化的地球化学过程及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定碳同位素作为环境替代指标已经在不同的载体上得到了广泛运用,例如树轮、泥炭、碳酸盐岩等。目前岩溶学者也逐渐开始运用洞穴次生化学沉积物中的稳定碳同位素探讨古气候环境的变迁史,例如植被的更替、大气CO_2的浓度变化等。然而由于缺乏该指标在岩溶洞穴系统中形成机理的研究,使得该环境替代指标的运用非常有限。本论文在贵州岩溶地区选择了上覆植被分别为原始森林、灌丛草坡、草坡和石漠化的凉风洞、七星洞、犀牛洞、将军洞作为研究对象,对岩溶洞穴系统稳定碳同位素的时空演化规律进行了详细的分析,得出以下几点认识:
     一.洞穴系统稳定碳同位素对地表气候环境的响应
     通过对4个不同生境洞穴系统的研究,认为洞穴系统稳定碳同位素可以很好地将原始森林植被同其它植被类型区分开;但是不能很好地区分植被退化的过渡类型如灌丛、草坡以及石漠化等。表明石笋的δ~(13)C值在一定情况下可以用来探讨地表植被的变化。但要做更精确的反演需要在加深机理方面的研究。
     通过同一洞穴不同滴水点的对比研究,发现不同滴水点沉积物的稳定碳同位素存在差异,并且差异还比较大,表明用石笋的δ~(13)C值对古气候环境进行重建时需要慎重考虑滴水点的详细情况。在这种情况下,应该对稳定碳同位素的地球化学过程进行详细研究,尤其应该结合水化学数据对水的运移途径进行深入研究,才能合理地运用稳定碳同位素对洞顶的植被情况进行正确的反演。
     洞穴滴水和塘中水DIC δ~(13)C值和月累积降雨量成相反的变化趋势;地表泉水、土壤水DIC δ~(13)C值、土壤CO_2、土壤呼吸δ~(13)C值和月累积降雨量的变化在多数时候具有一致的变化趋势。
     总体而言,洞穴系统水样DIC δ~(13)C值对月平均气温的响应不是很明显。只有洞穴塘中水DIC δ~(13)C值和月平均气温成相反的变化规律;土壤呼吸CO_2 δ~(13)C值对月均温响应较为明显:月平均温度越高,土壤呼吸CO_2 δ~(13)C值越偏轻,反映了温度较高的时候土壤层中的生物活动较强烈。
     二. 岩溶洞穴系统稳定碳同位素的时间演化
     犀牛洞、将军洞、七星洞10月份植被δ~(13)C值样品的δ~(13)C值比7月份样品
    
    中国科学院研究生院博士学位论文
    的6’3e值偏重。
     犀牛洞和将军洞土壤空气co:的6‘3c值在8月份出现了一个峰值,以前在
    清镇红枫湖生态站草地土壤剖面所作的工作8月份的值也同样偏重。在6月份时,
    凉风洞和七星洞存在一个较为明显的低值,与微生物和植物的强烈呼吸作用有
    关。土壤呼吸气coZ的6’3c值在6月份出现了明显的低值,和土壤co:的变化
    趋势一致。
     4个洞穴空气coZ的6‘3c值在8、9月份有一个低值口七星洞和外界的连通
    性最好,其洞穴空气co:6‘3c值随时间的变化最不明显,而凉风洞与外界的连
    通性最差,洞穴空气Co:6’3C值的变化幅度最大。
     土壤水Dlc的6’3c值8月份存在一个峰值,在9月份的时候存在一个低值。
     七星洞地表泉水Dlc的6 13c值自6月份开始有逐渐偏重的趋势,到8月份
    达到一个不甚明显的峰,这个峰值在凉风洞的表层泉中也略有体现。和土壤水比
    较,地表泉水的不同点在于低值不出现在9月份,而是出现在10月份,相对而
    言滞后1个月。原因可能是表层泉水所到达的深度比土壤水深,土壤强烈呼吸作
    用的响应要比土壤水慢。
     各个洞穴的滴水Dlc6‘3c值随时间退推移出现了不同的变化规律,可能与
    滴水的来源和途径不同有关。
     4个洞穴塘中水Dlc的6’3c值统一在7月份达到了最低值,之后Dlc的6
    ,3c值逐渐偏重。
    三.岩溶洞穴系统稳定碳同位素的空间演化
     植被样不同部位的6’3c值总体上逐渐偏重的顺序是皮~叶一枝、根~干,
    说明植物不同部位的稳定碳同位素存在差异。随着凉风洞~七星洞~犀牛洞~将
    军洞的顺序,植被6‘’c值逐渐变重,反映了地表植被由C3植物向c3十C4植物的
    过渡,指示了生态环境由原始森林~石漠化方向的退化。
     土壤有机碳的6 13c值基本继承地表植物6 I3c值的特征。没有发生植被更
    替土壤剖面上有机碳的6‘3c值随着深度的增加逐渐偏重;植被发生了变化的土
    壤剖面则可能出现与正常规律相反的变化情况。
     土壤剖面上co:的6 13c值自地表向下逐渐变轻,在一定深度后大致趋于稳
    定;土壤呼吸co:6’3c值位于土壤co:6’3c值的变化范围;土壤呼吸co26’3c
    
    岩溶洞穴系统稳定碳同位素演化的地球化学过程及其环境意义
    值的变化规律和植被6’3C值的变化在空间上具有一致性。
     土壤水Dle的6’3e值比土壤eoZ值偏重;泉水Dxe的6’3e值比土壤水oxe
    的6’3C值偏重,原因是泉水可能已经渗入到基岩层之后再出露到地表,已经混
    入了部分基岩无机碳的成分。
     四个研究洞穴系统盖板基岩的6’3c值变化范围大约在2一3编之间。
     凉风洞和犀牛洞不同滴水点滴水的6’七值相对比较稳定,七星洞和将军洞
    的变化比较大。洞穴塘中水 Dlc的6‘3c值和洞穴滴水相比明显偏重,原因为洞
    穴塘中水经历了强烈的蒸发作用;滴后水比滴前水整体偏重。
     从洞口往内洞穴空气co:的6’3c值逐渐偏轻,并且洞穴空气co:6”c值
    继承了洞穴水样Dlc6‘3c值的变化趋势。
     洞穴化学次生沉积
As substitute index of environment, stable carbon isotope has been used broadly in different records, such as tree rings, peat and carbonate rock. Nowadays scholars have gradually used stable carbon isotope of speleothem in karst caves to discuss the changing history of palaeoclimate and palaeoenvironment, such as vegetation subrogation and the change of atmospheric CO2 concentration. However, the application of index is limited owning to lack of the study about formation mechanism in karst cave system. Taking cave systems under different vegetation in guizhou karst area as study objects, this paper analyzes the spatio-temporal evolution of stable carbon isotope in karst cave system. Vegetation of Liangfeng cave, Qixing cave, Xiniu cave and Jiangjun cave are respectively origin forest, bosk, grassplot and rocky desertification. Several results have been achieved as folio wings:
    1.The response of stable carbon isotope in karst cave system to surface climate and environment.
    This index can distinguish origin forest from other vegetation, but cannot distinguish transitional eco-environment such as bosk, grassplot and rocky desertification. It is showed that the 13C values of stalagmite can be used to discuss the changes of vegetation to some extent and more work should be done to the study of reconstruct-mechanism.
    The 13C values of speleothem under different drip in same cave are different. It showed that the detail situation of drip water should be taken into account using the 13C values of stalagmite to reconstruct palaeoclimate and palaeoenvironment. In this condition, the geochemical process of stable carbon should be studied in detail especially combined the chemical data of water. Thus the vegetation above cave can be reconstructed correctly by stable carbon isotope.
    The DIC 13C values of cave drip and pond become light with precipitation increasing. The 13C values of spring water, soil water, soil CO2 and soil respired CO2 become mostly heavy with precipitation increasing.
    
    
    
    The 13C values of cave pond and soil respired CO2 become light with air temperature increasing, because organism activity is more intensive when temperature increase.
    2. The temporal evolution of stable carbon isotope in karst cave system The 13C values of plants in October are heavier than those in July.
    The 8 C values of soil CO2 in Xiniu cave system and Jiangjun cave system show a peak in August. In our previous study in grassland soil profiles of Qingzhen Hongfeng Lake karst ecotope experimental station, the values are also heavier in August. In June, it is obvious lighter than other month's results in Liangfeng cave and Qixing cave, the reason is that the respiration of microorganism and plant's root is most stronger. The values of soil respired CO2 in June are lower than other month's results due to strong respiration of microorganism and plant's root.
    The 13C values of cave CO2 become low in August or September. The monthly change in Qixing cave is not obvious as other caves due to better connectivity with outside and the amplitude change is the largest in Liangfeng cave because of bad connectivity with outside.
    The DIC 13C values of soil water in September are lighter than other month's results and there is a peak in August in Liangfeng cave and jiangjun cave systems.
    The DIC 13C values of spring in Qixing cave have become gradually heavy from June, reach a peak in August and this peak also appears in Liangfeng cave in August. Compared with soil water, the light value of spring water does not appear in September but in October. The reason maybe is that spring water has already reached deep-level, its response to soil respiration is slower than soil water.
    The DIC 13C values of cave drip in different cave show different changing patterns, might be relative to different sources and different routes of drip water.
    The DIC 13C values of cave pond water reach minimum in July. Later the values gradually become heavy.
    3.The spatial evolution of stable carbon isotope in karst cave system.
    Different part of plants
引文
1. A.M. Marfia, R.V. Krishnamurthy, E.A. Atekwana, et al.. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America. Applied Geochemistry (Article in Press, Available online at www. sciencedirect. com)
    2. Andrews-JE Riding-R Dennis-PF., The Stable-Isotope Record of Environmental and Climatic Signals in Modern Terrestrial Microbial Carbonates from Europe. Palaeogeography Palaeoclimatology Palaeoecology, 1997,129(1-2):171-189.
    3. Baker A. Smart P. L. Edwards R.L. et al., Annual growth banding in a cave stalagmite. Nature, 1993, 364: 518-520.
    4. Baker-A Barnes-WL Smart-PL., Speleothem Luminescence Intensity and Spectral Characteristics - Signal Calibration and a Record of Palaeovegetation Change, Chemical Geology, 1996, 130(1-2): 65-76
    5. Baker-A Caseldine-CJ Gilmour-MA Charman-D Proctor-CJ Hawkesworth-CJ Phillips-N., Stalagmite Luminescence and Peat Humifieation Records of Palaeomoisture for the Last 2500 Years, Earth and Planetary Science Letters 1999, 165(1): 157-162
    6. Baker-A Genty-D., Fluorescence Wavelength and Intensity Variations of Cave Waters, Journal of Hydrology, 1999, 217(1-2): 19-34
    7. Baker-A Ito-E Smart-PL Mcewan-RF., Elevated and Variable Values of C-13 in Speleothems in a British Cave System, Chemical Geology, 1997, 136(3-4): 263-270.
    8. Baker-A, genty-D and Smart-P. L., High-resolution records of soil humification and palaeoclimate change from variations in speleothem luminescence excitation and emission wavelengths, Geology, 1998, 26:903-906.
    9. Banner-J-L, Musgrove-M., Asmerom-Y., Edwards R-L and Hoff J-L., High-resolution temporal record of Holocene ground-water chemistry: Tracing links between climate and hydrology, Geology, 1996, 24(11): 1049-1053
    10. Bar-matthews M. Avalon A., Late Quaternary paleoclimate in the Eastern Mediterranean Region from Botwana. Quaternary Research, 1997,47:155-168.
    11. Berner R.A., Morse W.M.. Dissolution kinetics of calcium carbonate in sea water Ⅳ. Theory of calcite dissolution. Am. J. Sci., 1974, 274:108-134
    12. Berrien Moore, Ⅲ, B.H. Braswell. The lifetime of excess atmospheric carbon dioxide. Global biogeochemical cycles, 1994, 8(1): 23-38
    13. Beynen, P.V., et al., Causes of color and fluorescence in speleothems, Chemical Geology, 2001, 175:319-341
    14. Brian G. Katz, John S. Catches, Thomas D. Bullen, Robert L. Michel. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream. Journal of Hydrology, 1998, 211:178-207
    15. Brook G.A. Burney L.A. Cowart J.B., Desert palaeoenvironmental data from cave speleothem with example from Chihuahaum, Somali-Chalbi and Kalahari deserts. Palaeogeography Palaeoclimatology Palaeoecology, 1990, 76:311-329.
    16. Burke Hales, Steve Emerson. Calcite dissolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water O_2 and pH. Global biogeochemical cycles, 1996, 10(3): 527-541
    
    
    17. Buyanovsky G.A, G.H. Wagner. Annual cycles of carbon dioxide level in soil air. Soil Sci. Soc. Am., 1983, 47: 1139-1145
    18. C. Emblanch, G.M. Zuppi, J. Mudry, et al.. Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France). Journal of Hydrology, 2003, 279:262-274
    19. Callendar G.S.. The artificial production of carbon dioxide and its influence on temperature. Q.J.R. Meteorol. Soc., 64: 223-240
    20. Calvin, M, and Bassham, J A. The photosynthesis of carbon compounds[M]. Benjamin, New York, N Y, 1962.
    21. Cao jianhua, Wang Fuxing. Characteristics of biokarst erosional agent inside forest community in Langgang Natural Forest Reserve, Guangxi, China. Carsologica Sinica, 1996, 15(1-2): 66-73
    22. Coplen T.B. Winograd I.J. Landwehr J.M. Riggs A.C., 500, O00-years stable carbon isotopic record from Devils Hole, Nevada. Nature, 1994, 263:361-365.
    23. Craig T. Rightmire, Bruce B. Hanshaw. Relationship between the carbon isotope composition of soil CO_2 and Dissolved carbonate species in ground water. Water Resources Research, 1973,9(4): 958-967
    24. D. Kip Solomon, Thure E. Cerling. The annual carbon dioxide cycle in a montane soil: Observations, Modeling, and Implications for weathering. Water Resources Research, 1987, 23(12):2257-2265
    25. Daoxian Yuan, Hai Cheng, R. Lawrence Edwards, et al.. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science 2004, 304(23):575-578
    26. David Archer, Haroon Kheshgi, Ernst Maier-Reimer. Dynamics of fossil fuel CO_2 neutralization by marine CaCO_3. Global biogeochemical cycles, 1998, 12(2): 259-276
    27. DC Thorstenson, EP Weeks, Herbert Haas, et al. Distribution of gaseous ~(12)CO_2, ~(13)CO_2, and ~(14)CO_2 in the sub-soil unsaturated zone of the western US Great Plain. Radiocarbon, 1983, 25(2): 315-346
    28. Dreybrodt W., Buhmann D.. A mass transfer model for dissolution and pricipitation of calcite from solutions in turbulent motion. Chemical geology, 1991, 90: 107-122
    29. Duplessey J.C. Labeyric J. Lalou C. Nguyen H.V., Continental climatic variations between 130,000 and 90,000 years B.P. Nature, 1970, 226:631-633.
    30. Epstein S. Buchsbaum R. Lowenstarn H.A. et al., Revised carbonate - water isotopic temperature scale. Bull. Geol. Soc. Amer. 1953, 64:1315-1326.
    31. Eung Seok Lee, Noel C. Krothe. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chemical Geology, 2001, 179: 129-143
    32. Fairchild I.J., Baker A., Borsato A., et al., Annual to sub-annual resolution of multiple trace-element trends in speleothems, Journal of the Geological Society(London), 2001, 158:831-841
    33. Fairchild-IJ Borsato-A Tooth-AF Frisia-S Hawkesworth-CJ Huang-YM Mcdermott-F Spiro-B., Controls on Trace-Element (Sr-Mg) Compositions of Carbonate Cave
    
    Waters - Implications forSpeleothem Climatic Records, CHEMICAL GEOLOGY 2000, Vol 166, Iss 3-4, pp 255-269
    34. Finch A.A., Shaw P.A., Weedon G.P. et al., Trace element variation in speleothem aragonite: potential for palaeoenvironmental reconstruction, Earth and Planetary Letters, 2001, 186:255-267
    35. Francis H. Chapelle, LeRoy L. Knobel. Stable carbon isotopes of HCO_3 in the aquia aquifer, Maryland: Evidence for an isotopically heavy source of CO_2. Ground Water, 1986, 23(5): 592-599
    36. Frank J. Millero. Thermodynamics of the carbon dioxide system in the ocean. Geochimica et Cosmochimica Acta, 1995, 59(4) : 661-677
    37. G. Chiodini, R. Cioni, M. Guidi, et al. Soil CO_2 flux measurements in volcanic and geothermal areas. Geochimica et Cosmochimica Acta, 1998, 62(4): 543-552
    38. G. Slen, R.V. Tyson, M.R. Talbot, et al. Evidence of recycling of isotopically light CO_2 in stratified black shale basins: Contrasts between the whitby mudstone and kimmeridge clay formations, United Kingdom. Geology, 1998, 26(8): 747-750
    39. G.M. Marrison, D.S. Introne, K. Vancleve. The stable isotope geochemistry of CaCO_3 on the Tanana River floodplain of interion Alaska, U.S.A: Composition and mechanisms of formation. Chemical Geology (Iso. Geo. Sec), 1991, 86:97-110
    40. Gascoyne M., Trace - element partition coefficients in the calcite - water system and their paleoclimatic significance in cave studies. Journal of Hydrology, 1983,61:213-222.
    41. Genty D. Baker A. Massault M. et al., Dead carbon in stalagmites: Carbonate bedrock palaeodissolution vs. aging of soil organic matter: Implication for 13C variations in speleothems, Geochim. et Cosmochim. Acta, 2001, 65(20):3443-3457
    42. Genty-D Massault-M., Carbon Transfer Dynamics from Bomb-C-14 and Delta-C-13 Time-Series of a Laminated Stalagmite from SW France - Modeling and Comparison with Other Stalagmite Records, Geochim. et Cosmochim. Acta, 1999, 63(10): 1537-1548
    43. Genty-D Vokal-B Obelic-B Massault-M, Bomb ~(14)C time history recorded in two modern stalagmites-importance for soil organic matter dynamics and bomb ~(14)C distribution over continents, Earth and Planetary Science Letters, 1998,160:795-809
    44. Goede A. Vogel J.C. Trace element variation and dating of a Late Pleistocene Tasmanian speleothem. Palaeogeography Palaeoclimatology Palaeoecology, 1991,88:121-131.
    45. Gregg R. Davidson. The stable isotopic composition and measurement of carbon in soil CO_2. Geochimica et Cosmochimica Acta, 1995, 59(12): 2485-2489
    46. Hagit P. Affek, Daniel Romen, Dan Yakir. Production of CO_2 in the capillary fringe of a deep phreatic aquifer. Water Resources Research, 1998, 34(5): 989-996
    47. He shiyi. Field study methods in karst geochemistry and some examples. Carsologica Sinica, 1996, 15(1-2): 200-206
    48. Hellstrom J. McCulloch M. and Stone J., A detailed 31000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems, Quaternary Research, 1998,50:167-178
    
    
    49. Hellstrom-JC Mcculloch-MT., Multi-Proxy Constraints on the Climatic Significance of Trace-Element Records from a New-Zealand Speleothem, EARTH AND PLANETARY SCIENCE LETTERS 2000, Yol 179, Iss 2, pp 287-297.
    50. Hendy C.H. Wilson A.T., Paleoclimate data from speleothem. Nature, 1968,219:45-51.
    51. Herbert Haas, DW Fisher, DC Thorstenson, et al. ~(13)CO_2 and ~(14)CO_2 measurements on soil atmosphere samled in the sub-surface unsaturated zone in the western Great Plain of the US. Radiocarbon, 1983, 25(2): 301-314
    52. Holmgren-K Karlen-W Shaw-PA., Paleoclimatic Significance of the Stable Isotopic Composition and Petrology of a Late Pleistocene Stalagmite from Botswana, Quaternary Research, 1995, Vol 43, Iss 3, pp 320-328.
    53. Huang YiMing and Fairchild I. J., Partitioning of Sr and Mg into calcite under karst-analogue experimental conditions, Geochim. et Cosmochim. Acta, 2001, 65(1):47-62
    54. Huang YiMing, Fairchild I.J., Borsato A., et al., Seasonal variations in Sr, Mg and P in morden speleothems, Chemical Geology, 2001,175:429-448
    55. J. Balesdent, A. Mariotti, D. Boisgontier. Effect of tillage on soil organic carbon mineralization estimated from ~(13)C abundance in maize fields. Journal of soil science, 1990, 41: 587-596
    56. J. Boutin, J. Etcheto. Long-term variability of the air-sea CO_2 exchange coefficient: Consequences for the CO_2 fluxes in the equatorial Pacific Ocean. Global biogeochemical cycles, 1997, 11(3): 453-470
    57. J. M. Lynch. Sources and fate of soil organic Matter. Advances in soil organic matter research: The impact on agriculture & the environment, edited by W. S. Wilson. The Royal Society of chemistry, 1991, Thomas Graham House, Science Park, Cambridge, 231-237
    58. J. Quade, Thure E. Cerling, John R. Bowman. Systematicvariations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the Southern Great Basin, United States. Geological Society of America Bulletin, 1989, 101:464-475
    59. J. S. Singh, S. R. Gupta. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 1977, 43(4): 449-528
    60. James T. Randerson, Matthew V. Thompson, Thomas J. Conway, et al. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global biogeochemical cycles, 1997, 11(4): 535-560
    61. James W. Raich, Christopher S. Potter. Global patterns of carbon dioxide emissions from soils. Global biogeochemical cycles, 1995, 9(1): 23-36
    62. Janina Szaran, Carbon isotope fractionation between dissolved and gaseous carbon dioxide, Chemical Geology, 1998(150): 331-337
    63. Jean C.C Hsieh, Crayton J. Yapp. Stable carbon isotope budget of CO_2 in a wet, modern soil as inferred from Fe(CO_3)OH in pedogenic goethite: Possible role of calcite dissolution. Geochim et Cosmochim Acta, 1999, 63(6): 767-783
    64. Jean-loup Boeglin, Jean-luc Probst. Physical and chemical weathering rates and
    
    CO_2 consumption in a tropical lateritic environment: the upper Niger basin. Chemical Geology, 1998, 148:137-156
    65. Jeffrey V. Turner, Kinetic fractionation of carbon-13 during calcium carbonate precipitation, Geochimica et Cosmochimica Acta, 1982, 46:1183-1191
    66. Jerry M. Melillo. Warm, Warm on the Range. Science, 1999, 283:183-184
    67. Jiri Simunek and Donald L. Suarez. Modeling of carbon dioxide transport and production in soil: 1. Model development. Water Resources Research, 1993, 29(2): 487-497
    68. John B. Miller, Dan Yakir, James W.C. White, et al. Measurement of ~(18)O/~(16)O in the soil-atmosphere CO_2 flux. Global biogeochemical cycles, 1999, 13(3): 761-774
    69. Jong E.D., H.J.V. Schappert. Calculation of soil respiration and activity from CO_2 profiles in the soil. Soil Sci., 1972, 109: 358-365
    70. Juan Carlos Cerón, Antonio Pulido-Bosch, Carlos Sanz de Galdeano. Isotopic identification of CO_2 from a deep drigin in thermomineral waters of southeastern Spain. Chemical Geology, 1998, 149: 251-258
    71. K. Yoshimura, S. Nakao, M, Noto, et al.. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—chemical weathering of carbonate rocks by deep source CO_2 and sulfuric acid. Chemical Geology, 2001, 177: 415-430
    72. Kathryn S. Brown. Taking global warming to the people. Science, 1999, 283:1440-1441
    73. L.W. Parker, J. Miller, Y. Steinberger, W.G. Whitford. Soil respiration in a chihuahuan desert rangeland. Soil Biol. Biochem. 1983, 15(3): 303-309
    74. Lauritzen S.E. Lovely R. Moe D. et al., Paleoclimate deduced from a multidisciplinary study of a half-million-year-old-stalagmite from Rana, Northern Norway. Quaternary Research, 1990,34:306-316.
    75. Lawrence B. Flanagan, Renee Brooks, Gregory T. Varney, et al. Discrimination against C~(18)O~(16)O during photosynthesis and the oxygen isotope ratio of respired CO_2 in boreal forest ecosystems. Global biogeochemical cycles, 1997, 11(1): 83-98
    76. Lewis A. Molot, Peter J. Dillon. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmospgere. Global biogeochemical cycles, 1996, 10(3): 483-492
    77. Li Bin, Yuan Daoxian. Relationship between carbon cycle in karst areas and CO_2 source-sink ofatmosphere-Case of Guizhou karst. Carsologica Sinica, 1996, 15(1-2): 41-49
    78. Li W.X. Lundberg J. Dickin A.P. Ford D.C. et al., High precision mass-spectrometric uranium-series dating of cave deposits and implications for paleoclimate studies. Nature, 1989,339:534-536.
    79. Libby Stern, W. Troy Baisden, Roonald Amundson. Processes controlling the oxygen isotope ratio of soil CO_2: Analytic and numerical modeling. Geochimica et Cosmochimica Acta, 1999, 63(6): 799-814
    80. Linge H., Lauritzen S.E., Lundberg J., et al., Stable isotope stratigraphy of Holocene speleothem: examples from a cave system in Rena, northern Norway.
    
    Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167: 209-224
    81. Liu Z.H., Svensson U., Dreybrodt W., et al.. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction rates. Geochimica et Cosmochimica Acta, 1995, 59(15): 3087-3097
    82. Liu Zaihua, He Dianbin. Special speleothems in cement-grouting tunnels and their implications of the atmospheric CO_2 sink. Environmental geology, 1998, 35(4): 258-262
    83. Ludwig K.P. Simmon K.P. Szabo et al., Mass-spectrometric ~(230)Th-~(234)U-~(238)U dating of the Devils Hole calcite vein. Science, 1992,258:284-287.
    84. M.I. Bird, P. Pousai. Variations of δ ~(13)C in the surface soil organic carbon pool. Global biogeochemical cycles, 1997, 11(3): 313-322
    85. M.I. Bird, S.G. Haberle, A.R. Chivas. Effect of altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea. Global biogeochemical cycles, 1994, 8(1): 13-22
    86. M.I. Bird, W.S. Fyfe, D. Pinheiro-Dick, et al. Carbon isotope indicators of catchment vegetation in the Brazilian Amazon. Global biogeochemical cycles, 1992, 6(3): 293-306
    87. Marc Javoy, Francoise Pineau, Claude J. Allegre. Carbon geodynamic cycle. Nature, 1982, 300(11): 171-173
    88. Mark Poth, Iris Cofman Anderson, Heloisa Sinatora Miranda, et al. The magnitude and persistence of soil NO, N_2O, CH_4, and CO_2 fluxes from burned tropical savanna in Brazil. Global biogeochemical cycles, 1995, 9(4): 503-513
    89. Martin Heimann, Ernst Maier-Reimer. On the relationship between the oceanic uptake of CO_2 and its carbon isotopes. Global biogeochemical cycles, 1996, 10(1): 89-110
    90. Martin Witkamp. Cycles of temperature and carbon dioxide evolution from litter and soil. Ecology, 1969, 50:922-924
    91. Marwan Alkattan, Eric H. Oelkers, Jean-Louis Dandurand, Jacques Schott. An experimental study of calcite and limestone dissolution rates as a function of pH from - 1 to 3 and temperature from 25 to 80℃. Chemical Geology, 1998, 151: 199-214
    92. McDermott-F. et al., Holocene Climate Variability in Europe -Evidence from Delta-0-18, Textural and Extension-Rate Variations in 3 Speleothems, Quaternary Science Review ,1999, Vol 18, Iss 8-9, pp 1021-1038.
    93. McGarry S.F. and Baker A., Organic acid fluorescence: application to speleothem palaeoenvironmental reconstruction, Quaternary Science Review, 2000, 19:1087-1101
    94. McMahon P.B., William D.F., Morris J.T.. Production and carbon isotope composition of bacterial CO_2 in deep coastal plain sediments of south Carolina. Ground Water, 1991, 28: 693-702
    95. Michel Bakalowicz. Comments on "Carbon isotope exchange rate of DIC in karst groundwater by R. Gonfiantini and G.M. Zuppi". Chemical Geology, 2004, in press
    96. Ming-kuo Lee, Craig M. Bethke. A model of isotope fractionation in reacting
    
    geochemical systems. American Journal of Science, 1996, 296: 965-988
    97. Montero M.E., Aspiazu J., Pajon J., et al., PIXE study of Cuban quaternary palaeoclimate geological samples and speleothems, Applied Radiation and isotopes, 2000, 52:289-297
    98. Nikolaas J. Van Der Merwe, Ernesto Medina. Photosynthesis and ~(13)C/~(12)C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta, 1989, 53: 1091-1094
    99. O'Leary, MH. Carbon isotopes in thephotosynthesis[J]. Bioscience, 1988,38 (5) : 8-336.
    100. O'Neil J.R. Clayton R.N. Mayeda T.K., Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 1969,51:5547-5558.
    101. P. Deine. The isotope composition of reduced organic carbon. In: Handbook of Environment. A.P. Fritz and J. Ch. Fontes, Amsterdam, Elsevier, 1980, 329-406
    102. P.M. Lesniak, H. Sakai. Carbon isotope fractionation between dissolved carbonate (CO_3~(2-)) and CO_2(g) at 25℃ and 40℃
    103. P.M. Lesniak, H. Sakai. Carbon isotope fraction between dissolved carbonate (CO_3~(2-)) and CO_2(g) at 25℃ and 40℃. Earth and planetary Science Letters, 1989, 95: 297-301
    104. Paul Carroll, Patrick Crill. Carbon balance of a temperate poor fen. Global biogeochemical cycles, 1997, 11(3): 349-356
    105. Perrette Y. et al., Characterisation of speleothem crystalline fabric by spectroscopic and digital image processing methods. Proc. 12th Int. Cong. Speleol. La Chux-de-Fonds, 1997, vol 1,257-260.
    106. Pieter P. Tans, Inez Y. Fung, Taro Takahashi. Observational constraints on the global atmospheric CO_2 budget. Science, 1990, 247: 1431-1438
    107. Pieter P. Tans, Joseph A. Berry, Ralph F. Keeling. Oceanic ~(13)C/~(12)C observations: A new window on ocean CO_2, uptake. Global biogeochemical cycle, 1993, 7(2): 353-368
    108. Pieter P. Tans, Peter S. Bakwin. 气候变化与二氧化碳永恒(郑斯中译). Ambio, 1995, 24(6): 375-377
    109. Plummer L.N., Parkhurst, D.L., Wigley T.L.M.. The kinetics of calcite dissolution in CO_2-water systems at 5-60℃ and 0.0-1.0 atm CO_2. Am. J. Sci., 1978, 278: 179-216
    110. Popp B.N., Anderson T.F., Sandberg P. A.. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. GSA Bull,1986,97:1262~1269.
    111. Pradeep K. Aggarwal, M.A. Dillon. Stable isotope composition of molecular oxygen in soil gas and groundwater: A potentially robust tracer for diffusion and oxygen consumption process. Geochimica et Cosmochimica Acta, 1998, 62(4): 577-584
    112. R.A. Houghton. Is carbon accumulation in the northern temperate zone? Global Biogeochemical Cycles, 1993, 7(3): 611-617
    113. R.F. Follett, E.A. Paul, S.W. Leavitt, et al. Carbon Isotope Ratios of great plains soils and in wheat-fallow systems. Soil Sci. Soc. Am. J, 1997, 611068-1077
    114. Robert A. Berner, Antonio C. Lasaga, Robert M. Garrels. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science. 1983. 283: 641-683
    
    
    115. Robert J. M. Hudson, Steven A. Gherini, Robert A. Goldstein. Modeling the global carbon cycle: Nitrogen fertilization of the terrestrial biosphere and the "missing" CO_2 sink. Global Biogeochemical Cycles, 1994, 8(3) : 307-333
    116. Roberto Gonfiantini, Gian Maria Zuppi. Carbon isotope exchange rate of DIC in karst groundwater. Chemical Geology, 2003, 197: 319-336
    117. Roberts M.S., Smart P.L., Hawkesworth C.J., et al., Trace element variations in coeval Holocene speleothems from GB cave, southwest England, The Holocene, 1999, 9(6):707-713
    118. Roberts-MS Smart-PL Baker-A., Annual Trace-Element Variations in a Holocene Speleothem, Earth and Planetary Science Letters, 1998, Vol 154, Iss 1-4, pp 237-246.
    119. S.G. Craig, K.J. Holmen. Uncertainties in future CO_2 projection. Global Biogeochemical Cycles, 1995, 9(1): 139-152
    120. Sarmiento J. L., Sundquist E.T.. Revised budget for the ocean uptake of anthropogenic carbon dioxide. Nature, 1992, 356:589-593
    121. Schwarcz H.P. Harmon R.S. Thompson P. et al., Stable isotope studies of fluid inclusions in speleothens and their paleoclimatic significance: Geochim. et Cosmochim. Acta, 1976, 40:657-665.
    122. Shopov-YY Ford-DC Schwarcz-HP., Luminescent Microbanding in Speleothems-High-Resolution Chronology and Paleoclimate, GEOLOGY 1994, Vol 22, Iss 5, pp 407-410.
    123. Solomon D.K., T.E. Cerling. The annual carbon dioxide cycle in a montane soil: observation, modeling and implications for weathering. Water Resources Research, 1987, 23: 2257-1145
    124. T.E. Cerling. The isotope composition of modern soil carbonate and its relationship to climate. Earth and Planet Sci. Lett., 1984, 71: 229-240
    125. Thure E. Cerling, D. Kip Solommon, Jay Quade, et al. On the istope composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 1991, 55: 3403-3405
    126. Tieszen L L and Boutton T W. 1989. Stable carbon isotopes in terrestrial ecosystem research. In : Rundel P W, Ehleringer J R and Nagy KA. eds. Stable Isotopes in Ecological Research. New York : Springer-Verlag. 167—195.
    127. Veizer J., Fritz P., Jones B. Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochim Cosmochim Acta, 1986,40:1679~1696.
    128. Veizer J., Hoefs J. The nature of O~(18)/O~(16) and C~(13)/C~(12) secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta, 1976,40:1387~1395.
    129. W. Dreybrodt, J. Lauckner, Liu Zaihua, et al. The kinetics of the reaction CO_2 +H_2O→H~++HCO_3 as one of the rate limiting steps for the dissolution of calcite in the sysytem H_2O-CO_2-CaCO_3. Geochimica et Cosmochimica Acta, 1996, 60(18): 3375-3381
    130. Wallace S. Broecker, AbhijitSanyal. Does atmosphere CO_2 police the rate of chemical weathering?. Global Biogeochemical Cycles, 1998, 12(3): 307-333
    131. Walter C. Oechel, George Vourlitis, Steven J. Hastings. Cold season CO_2 emission
    
    from arctic soils. Global Biogeochemical Cycles, 1997, 11(2): 163-172
    132. Wang shijie, Ji hongbing, Ouyang ziyuan, Zhou dequan, Zheng leping, Li tingyu. Preliminary study on weathering and pedogenesis of carbonate rock. Science in China, 1999, 42(6): 572-581
    133. Wei-Jun Cai, Clare E. Reimers, Timothy Shaw. Microelectrode studies of organic carbon degradation and calcite dissolution at a California Continental rise site. Geochimica et Cosmochimica Acta, 1995, 50(4): 497-510
    134. Wilfred M. Post, Anthony W. King, Stain D. Wullschleger. Historical variations in terrestrial biospheric carbon storage. Global Biogeochemical Cycles, 1997, 11(1): 99-109
    135. Xu Shengyou, He Shiyi. The CO_2 regime of soil profile and its drive to dissolution of carbonate rock. Carsologica Sinica, 1996, 15(1-2): 51-57
    136. Y. Bottinga. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. The Journal of Physical Chemistry, 1968, 72(3): 800-808
    137. Y. Dong, D. Scharffe, J.M. Lobert, P.J. Crutzen and E. Sanhueza. Fluxes of CO_2, CH_4 and N_2O from a temperate forest soil: the effects of leaves and humus layers. Tellus, 1998, 50B: 243-252
    138. Y. J. Wang, H. Cheng, R. L. Edwards, at al.. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294: 2345-2348
    139. Yang Wang, Ronald Amundson, Susan Trumbore. A model for soil ~(14)CO_2 and its implications for using ~(14)C to date pedogenic carbonate
    140. Yonge C.J., Fluid inclusions in speleothens as paleoclimate indicators. Proc. 8th Int. Cong. Speleol. Bowling Green, 1981, vol 1,301-303.
    141. Yoshimura K., Inokura Y.. The geochemical cycle of carbon dioxide in carbonate rock area, Akiyoshi-dai Plateau, Yamaguchi, Southwestern Japan. In: Proc. 30th Int. Geol. 1997, 24:114-126
    142. Yuan Daoxian. Sensitivity of karst process to environmental change along the PEP Ⅱ Transect. Quaternary International, 1997, 37:105-113
    143. Yul Kwon, Jerald L. Schnoor. Simple global carbon model: The atmosphere-terrestrial biosphere-ocean interaction. Global biogeochemical cycles, 1994, 8(3): 295-305
    144. Z. Liu, M. Zhang, Q. Li, S. You. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleoenvironmental reconstruction. Environmental Geology, 2003, 44: 698-704
    145. Zheng leping, Li tingyu, Wan guojiang, et al. Stable carbon isotopic composition of soil organic carbon in karst area in Central Guizhou, China. Chinese Science Bulletin, 1999, 44(Supp.): 87-88
    146. Zheng leping, Li tingyu, Wan guojiang, et al. The seasonal and daily CO_2 concentration variance in karst meadow soil profile with depth in Central Guizhou, China. Chinese Science Bulletin, 1999, 44(Supp.): 93-94
    147.蔡演军,彭子成,安芷生,张兆峰,曹蕴宁,贵州七星洞全新世石笋的氧同位素记录及
    
    其指示的季风气候变化,科学通报,2001,46(16):1398-1402.
    148.曹建华,袁道先,潘根兴,等.岩溶动力系统中的生物作用机理初探.地学前缘,2001,8(1):203—209
    149.曹建华,王福星.广西弄岗自然保护区森林群落内环境生物岩溶侵蚀营力之特征.中国岩溶,1996,15(1-2):66-73
    150.单正军,蔡道基,任阵海.土壤有机质矿化与温室气体释放初探.环境科学学报,1996,16(2):150-154
    151.方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化.环境科学学报,1998,18(2):113-121
    152.冯虎元,安黎哲,王勋陵,环境条件对植物稳定碳同位素组成的影响.植物学通报,2000,17(4):312~318
    153.韩贵琳.喀斯特环境质量变化地自然与人文过程特征——贵州喀斯特河流地地球化学特征.中国科学院研究生院博士学位论文,2002,贵阳
    154.何师意,徐胜友,张美良.岩溶土壤中CO_2浓度、水化学观测及其与岩溶作用关系.中国岩溶,1997,16(4):319-323
    155.蓝俊康.模拟酸雨对灰岩的侵蚀过程的模拟计算.桂林工学院学报,1997,17(4):372-376
    156.蓝俊康.模拟酸雨对灰岩的侵蚀性研究.桂林工学院学报,1997,17(2):164-169
    157.黎廷宇,贵州岩溶地区土壤CO_2的分布特征及其稳定同位素组成,中国科学院地球化学研究所硕士论文,2000,贵阳
    158.李彬,袁道先,林玉石,等.洞穴次生化学沉积物中Mg、Sr、Ca、及其比值的环境指代意义.中国岩溶,2000,19(2),115-122.
    159.李彬,袁道先,林玉石,等.桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义.中国科学(D),2000,30(1):81—87.
    160.李彬,Frank Hauge,Reidar Lovlie,等.桂林水南洞洞穴沉积物的古地磁记录及其古环境意义.地质力学学报,1998,4(4):50-57
    161.李彬,洞穴化学沉积物中δ~(13)C、δ~(18)O对环境变迁的示踪意义.中国岩溶,1994,13:17-24.
    162.李彬,袁道先,林玉石,等.桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义.中国科学(D辑),2000,30(1):81-87
    163.李彬,袁道先,林玉石,等.桂林盘龙洞石笋发光性特征及其古环境记录的初步研究.地球学报,1997,18(4):400-406
    164.李彬,袁道先.岩溶区碳循环与大气CO_2的源汇关系——以贵州岩溶区为例.中国岩溶,1996,15(1-2):41-49
    165.李红春,顾德隆,Lowell D.Stott等.高分辨率洞穴石笋稳定同位素应用之——京津地区5000a来的气候变化——δ(18)O记录.中国科学(D),1998,28(2):181-186.
    166.李心清,万国江.碳酸盐岩氧、碳稳定同位素地球化学研究目前面临的几个问题.地球科学进展,1999,14(3):262-268
    167.李玉成,葛宏华,周忠泽,再建气候环境演化历史的碳同位素技术.安徽大学学报(自然科学版),2001,25(3):73—77
    168.刘东生,谭明,秦小光,等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义.第四纪研究,1997,17(1),41-51.
    169.刘启明,应用δ~(13)C值探讨土壤有机质的迁移规律.中国科学院地球化学研究所硕士论文,2000
    170.刘再华,Wolfgang Dreybrodt.流动CO_2—H_2O系统中方解石溶解动力学机制——扩散层
    
    效应和CO_2转换控制.地质学报,1998,72(4):340-348
    171.刘再华,何师意,袁道先,等.土壤中的CO_2及其对岩溶作用的驱动.水文地质工程地质,1998(4):42-45
    172.刘再华,袁道先,何师意,等.四川黄龙沟景区钙华的起源和形成机理研究.地球化学,2003,32(1):1-10
    173.刘再华,袁道先,何师意.不同岩溶动力系统地碳稳定同位素和地球化学特征及其意义.地质学报,1997,71(3):281-288
    174.刘再华,袁道先,何师意.岩溶动力系统水化学动态变化规律分析.中国岩溶,1999,18(2):103—108
    175.刘再华.碳酸盐岩岩溶作用对大气CO_2沉降地贡献.中国岩溶,2000,19(4):293-299
    176.宁有丰,刘卫国,曹蕴宁.植物生长过程中碳同位素分馏对气候的响应.海洋地质与第四纪地质,2002,22(3):105—108
    177.潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程——以桂林峰丛洼地岩溶系统为例.中国岩溶,1999,18(4):287-296
    178.潘根兴.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义.南京农业大学学报,1999,22(1):51—57
    179.彭子成,王兆荣,孙卫东等.高精度热电离质谱(TIMS)铀系法对第四纪标样年龄测定的研究.科学通报,1997,42(19):2090~2093.
    180.钱会,张益谦.开放系统中CaCO_3的溶解与沉淀对水溶液的成分及其性质的影响.中国岩溶,1995,14(4):352-361
    181.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究-含量与分布规律.生态学杂志,1997,16(6):17-21
    182.沈承德,易维熙,刘东生.CO_2全球循环及其同位素示踪研究.第四纪研究,1995,1:53-61
    183.宋焕荣,黄尚瑜.碳酸盐的结晶沉淀.中国岩溶,1990,9(2):105-117
    184.宋文质,王少彬,苏维翰,等.我国农田的主要温室气体CO_2、CH_4和N_2O排放研究.环境科学,1996,17(1):85-88
    185.覃嘉銘,林玉石,张美良,等.桂林全新世石笋高分辨率δ~(13)C记录及其古生态意义.第四纪研究,2000,20(4),351-358.
    186.谭明,刘东生,钟华等.季风条件下全新世洞穴碳酸盐稳定同位素气候信息初步研究.科学通报,1997,42(12):1302~1306.
    187.谭明,潘根兴,王先锋,等.石笋与环境——石笋纹层形成的环境机理初探.中国岩溶,1999,18(3),197—205.
    188.谭明,秦小光,刘东生.石笋记录的年际、十年、百年尺度气候变化.中国科学(D),1998,28(3),272-277.
    189.谭明,秦小光,沈凛梅,等.中国洞穴碳酸盐双重光性显微旋回及其意义.科学通报,1999,44(6),646-648.
    190.谭明,侯居峙,程海.定量重建气候历史地石笋年层方法.第四纪研究,2002,22(3):209—219
    191.谭明,刘东生.洞穴碳酸钙沉积的古气候记录研究.地球科学进展,1996,11(4):388—394
    192.唐灿,周平根.北京典型岩溶区土壤中的CO_2及其对岩溶作用的驱动.中国岩溶,1999,18(3):213-218
    193.涂光炽.九十年代固体地球科学及超大型矿床研究若干进展.矿物学报,1997,17(4):357-363
    
    
    194.万国江等著.碳酸盐岩与环境(卷一).地震出版社,1995,北京
    195.汪永进,陈琪,刘泽纯,等.南京汤山溶洞石笋连续200ka古气候记录.科学通报,1997,42(19),2093-2097.
    196.汪永进,吴江滢,吴金全,等.末次冰期南京石笋高分辨率气候记录与GRIP冰芯对比.中国科学(D),2000,30(5),533-539.
    197.王国安,韩家懋.中国西北C-3植物的碳同位素组成与年降雨量关系初探.地质科学,2001,36(4):494—499
    198.王国安,韩家懋,刘东生.中国北方黄土区C_3草本植物碳同位素组成研究.中国科学(D辑),2003,33(6):550-556
    199.王国安,韩家懋,周力平.中国北方C_3植物碳同位素组成与年均温度关系.中国地质,2002,29(1):55—57
    200.王世杰,季宏兵,欧阳自远,周德全,郑乐平,黎廷宇.碳酸盐岩风化成土的初步研究.中国科学(D辑),1999,29(5):441-449
    201.王先锋 刘东生 梁汉东 谭明 秦小光 周强,石笋微层物质组成的二次离子质谱初步分析及其环境意义.第四纪研究,1999,(1),57—66.
    202.魏菊英,王关玉.同位素地球化学.地质出版社,1988,140—152
    203.翁金桃.碳酸盐岩在全球碳循环中的作用.地球科学进展,1995,10(2):154—158
    204.徐胜友,何师意.碳酸盐岩土壤CO_2的动态特征及其对溶蚀作用的驱动.中国岩溶,1996,15(1—2):50—57
    205.徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO_2源汇关系的初步估算.科学通报,1997.42(9):953-956
    206.鄢来斌,马义兵,张福锁.根际中碳和氮的输入与转化.土壤,1993,25(5):242-244
    207.杨立铮,卫迦.岩溶系统对大气CO_2的调节作用.成都理工学院学报,1997,24(增刊):30-37
    208.袁道先,地球系统的碳循环和资源环境效应。第四纪研究,2001,21(3):223-232
    209.袁道先,现代岩溶学和全球变化研究,地学前缘,1997,4(1~2):17-25
    210.袁道先.碳循环与全球岩溶.第四纪研究,1993,1:1-6
    211.袁道先.岩溶与全球变化研究.地球科学进展,1995,10(5):471-474
    212.张邦琨,曾信波.喀斯特森林的土壤温度变化规律.土壤,1996,1:46-48
    213.张捷,包浩生.生物喀斯特及其微形态研究.地球科学进展,1995,10(5):457—463
    214.张民,龚子同.用稳定同位素探讨土壤及钙质结核的碳酸盐来源.土壤,1994,26(2):65-69
    215.郑乐平,万国江,黎廷宇,等.黔中岩溶地区草地与乔木林土壤CO_2运移及源汇效应的初步研究.资源环境与可持续发展——庆贺涂光炽院士从事革命和地球科学工作60周暨80华诞,中国科学院地球化学研究所等编,科学出版社,1999,177—182
    216.郑乐平.岩溶地区土壤CO_2的组成特征及其源汇效应研究.中国科学院地球化学研究所博士后出站报告,1998,贵阳
    217.周运超.洞穴滴水的水文地球化学过程.中国科学院地球化学研究所博士后出站报告,2004,贵阳

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700